A Hausdorff-measure boundary element method for acoustic scattering by fractal screens

Andrea Moiola

http://matematica.unipv.it/moiola/

UNIVERSITÀ DI PAVIA
Department of Mathematics
"Felice Casorati"

A. Caetano (Aveiro), S.N. Chandler-Wilde (Reading), A. Gibbs (UCL), D.P. Hewett (UCL) arXiv:2212.06594

Acoustic wave scattering by a planar screen

Acoustic waves in free space $\left(\mathbb{R}^{n+1}\right)$ are governed by the wave equation $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies the Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Acoustic wave scattering by a planar screen

Acoustic waves in free space $\left(\mathbb{R}^{n+1}\right)$ are governed by the wave equation $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies the Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Scattering: incoming wave u^{i} hits obstacle Γ and generates scattered field u^{s}.

Acoustic wave scattering by a planar screen

Acoustic waves in free space $\left(\mathbb{R}^{n+1}\right)$ are governed by the wave equation $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies the Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Scattering: incoming wave u^{i} hits obstacle Γ and generates scattered field u^{s}.

$$
u^{t o t}=u^{i}+u^{s}
$$

$$
\begin{aligned}
& \Delta u^{s}+k^{2} u^{s}=0 \\
& \text { in } D:=\mathbb{R}^{n+1} \backslash \bar{\Gamma}
\end{aligned}
$$

$\int u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}}$

u^{s} satisfies Sommerfeld radiation condition (SRC) at infinity: $\lim _{r=|\mathbf{x}| \rightarrow \infty} r^{n / 2}\left(\partial_{r} u^{s}-\mathrm{i} k u^{s}\right)=0$

Acoustic wave scattering by a planar screen

Acoustic waves in free space $\left(\mathbb{R}^{n+1}\right)$ are governed by the wave equation $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies the Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Scattering: incoming wave u^{i} hits obstacle Γ and generates scattered field u^{s}.

u^{s} satisfies Sommerfeld radiation condition (SRC) at infinity: $\lim _{r=|\mathbf{x}| \rightarrow \infty} r^{n / 2}\left(\partial_{r} u^{s}-\mathrm{i} k u^{s}\right)=0$
Planar screen obstacle: Γ bounded subset of $\Gamma_{\infty}:=\left\{\mathbf{x} \in \mathbb{R}^{n+1}: x_{n+1}=0\right\} \cong \mathbb{R}^{n}, n=1,2$.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

Magnitude density |[du/dn]|

Classical problem when Γ is open and Lipschitz.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

Magnitude density |[du/dn]|

Classical problem when Γ is open and Lipschitz.

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Waves and fractals: applications

Wideband fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Scattering by ice crystals in atmospheric physics
(C. Westbrook)

Fractal apertures in laser optics
(J. Christian)

Scattering by fractal screens

Plenty of mathematical challenges:

- How to formulate well-posed BVPs?

What is the right function space setting?
How to impose BCs?
How to write BVP as integral equation?

- How do prefractal solutions converge to fractal solutions?
- How can we accurately compute the scattered field?

- ...

Tools developed here (hopefully!) relevant to (numerical) analysis of other IEs, Ψ DOs, BVPs, integration on rough/complicated/fractal domains.

Our main contributions

- SCW, DH,

IEOT, 2015
Wavenumber-explicit continuity \& coercivity est. in acoustic scattering by planar scr.

- SCW, DH, AM,

Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to BIEs on fractal scr.

- SCW, DH,

SIAM J. Math. Anal., 2018
Well-posed PDE and integral equation formulations for scattering by fractal screens,

- AC, DH, AM,

Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets

Numerical methods

Numer. Math., 2021

- SCW, DH, AM, J.Besson, Boundary element methods for acoustic scattering by fractal screens
- J.Bannister, AG, DH, Acoustic scattering by impedance screens/cracks with fractal boundary: well-posedness analysis and boundary element approximation
- AG, DH, AM,

Numerical quadrature for singular integrals on fractals

- AC, SCW, AG, DH, AM,

A crash course in BIEs and BEM (boundary element method)

BVP:

$$
\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}
$$

A crash course in BIEs and BEM (boundary element method)

BVP:

$$
\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}
$$

- Represent scattered field in D e.g. as $u^{s}(x)=\mathcal{S} \phi(x)=-\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y), x \in D$ \mathcal{S} is a "layer potential" (a superposition of point sources on Γ),
$\phi=[\partial u / \partial n]_{-}^{+}$is an unknown "density" on Γ

$$
\Phi(x, y)=\frac{\mathrm{e}^{i k|x-y|}}{4 \pi|x-y|}(n=2)
$$

A crash course in BIEs and BEM (boundary element method)

BVP:

$$
\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}
$$

- Represent scattered field in D e.g. as $u^{s}(x)=\mathcal{S} \phi(x)=-\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y), x \in D$ \mathcal{S} is a "layer potential" (a superposition of point sources on Γ), $\phi=[\partial u / \partial n]_{-}^{+}$is an unknown "density" on Γ

$$
\Phi(x, y)=\frac{\mathrm{e}^{i k k|x-y|}}{4 \pi|x-y|}(n=2)
$$

- Derive a BIE for ϕ, e.g. $\quad S \phi=g$,
$S: V \rightarrow V^{*}, \quad V=H_{\Gamma}^{-1 / 2}$ where $\boldsymbol{S} \phi(x)=\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y)$ is a boundary integral operator (BIO), $\quad g=\gamma u^{i}$

A crash course in BIEs and BEM (boundary element method)

BVP:

$\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}$

- Represent scattered field in D e.g. as $u^{s}(x)=\mathcal{S} \phi(x)=-\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y), x \in D$ \mathcal{S} is a "layer potential" (a superposition of point sources on Γ), $\phi=[\partial u / \partial n]_{-}^{+}$is an unknown "density" on Γ

$$
\Phi(x, y)=\frac{\mathrm{e}^{i k k|x-y|}}{4 \pi|x-y|}(n=2)
$$

- Derive a BIE for ϕ, e.g. $\quad S \phi=g$,
$S: V \rightarrow V^{*}, \quad V=H_{\Gamma}^{-1 / 2}$ where $S \phi(x)=\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y)$ is a boundary integral operator (BIO), $\quad g=\gamma u^{i}$
- Solve the BIE numerically:

Find $\quad \phi_{N}=\sum_{j=1}^{N} c_{j} \psi_{j} \in V_{N} \subset V$ by solving a linear system $A \mathbf{c}=\mathbf{f}$.
E.g. $\psi_{j}=$ piecewise polynomials on a mesh of Γ. Galerkin or collocation method.

A crash course in BIEs and BEM (boundary element method)

BVP:

$\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}$

- Represent scattered field in D e.g. as $u^{s}(x)=\mathcal{S} \phi(x)=-\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y), x \in D$ \mathcal{S} is a "layer potential" (a superposition of point sources on Γ), $\phi=[\partial u / \partial n]_{-}^{+}$is an unknown "density" on Γ

$$
\Phi(x, y)=\frac{\mathrm{e}^{i k k|x-y|}}{4 \pi|x-y|}(n=2)
$$

- Derive a BIE for ϕ, e.g. $\quad S \phi=g$,
$S: V \rightarrow V^{*}, \quad V=H_{\Gamma}^{-1 / 2}$ where $S \phi(x)=\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y)$ is a boundary integral operator (BIO), $\quad g=\gamma u^{i}$
- Solve the BIE numerically:

Find $\quad \phi_{N}=\sum_{j=1}^{N} c_{j} \psi_{j} \in V_{N} \subset V$ by solving a linear system $A \mathbf{c}=\mathbf{f}$.
E.g. $\psi_{j}=$ piecewise polynomials on a mesh of Γ. Galerkin or collocation method.

- Evaluate $u_{N}^{s}(x)=\left(\mathcal{S} \phi_{N}\right)(x) \approx u^{s}(x)$ for $x \in D$

A crash course in BIEs and BEM (boundary element method)

BVP:

$\begin{cases}\Delta u^{s}+k^{2} u^{s}=0 & D:=\mathbb{R}^{n+1} \backslash \Gamma \\ \partial_{r} u^{s}-\mathrm{i} k u^{s}=o\left(r^{-\frac{n}{2}}\right) & r=|\mathbf{x}| \rightarrow \infty \\ u^{s}=-u^{i} & \Gamma \subset \Gamma_{\infty} \cong \mathbb{R}^{n}\end{cases}$

- Represent scattered field in D e.g. as $u^{s}(x)=\mathcal{S} \phi(x)=-\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y), x \in D$ \mathcal{S} is a "layer potential" (a superposition of point sources on Γ), $\phi=[\partial u / \partial n]_{-}^{+}$is an unknown "density" on Γ

$$
\Phi(x, y)=\frac{\mathrm{e}^{i k|x-y|}}{4 \pi|x-y|}(n=2)
$$

- Derive a BIE for ϕ, e.g. $\quad S \phi=g$,
$S: V \rightarrow V^{*}, \quad V=H_{\Gamma}^{-1 / 2}$ where $S \phi(x)=\int_{\Gamma} \Phi(x, y) \phi(y) \mathrm{d} s(y)$ is a boundary integral operator (BIO), $\quad g=\gamma u^{i}$
- Solve the BIE numerically:

Find $\quad \phi_{N}=\sum_{j=1}^{N} c_{j} \psi_{j} \in V_{N} \subset V$ by solving a linear system $A \mathbf{c}=\mathbf{f}$.
E.g. $\psi_{j}=$ piecewise polynomials on a mesh of Γ. Galerkin or collocation method.

- Evaluate $u_{N}^{s}(x)=\left(\mathcal{S} \phi_{N}\right)(x) \approx u^{s}(x)$ for $x \in D$

Theorem (SCW, DH 2018): For any compact $\Gamma \subset \Gamma_{\infty}$, BVP is well-posed \& equivalent to BIE

Two ways to apply BEM to fractal Γ

(1) (Chandler-Wilde, Hewett, Moiola, Besson, 2021)

2 (Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594)

Two ways to apply BEM to fractal Γ

(1) (Chandler-Wilde, Hewett, Moiola, Besson, 2021)

Approximate Γ with Lipschitz "prefractal" Γ_{j} and apply conventional BEM on each Γ_{j}

- "Non-conforming", since typically $V_{N} \not \subset V=H_{\Gamma}^{-1 / 2}$
- BVP and BEM convergence from Mosco convergence of spaces
- No convergence rates
- Requires "thickened prefractals"
- Can use any BEM implementation

2 (Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594)

Two ways to apply BEM to fractal Γ

(1) (Chandler-Wilde, Hewett, Moiola, Besson, 2021)

Approximate Γ with Lipschitz "prefractal" Γ_{j} and apply conventional BEM on each Γ_{j}
open $\Gamma_{j} \subset \Gamma_{j+1}$

- "Non-conforming", since typically $V_{N} \not \subset V=H_{\Gamma}^{-1 / 2}$
- BVP and BEM convergence from Mosco convergence of spaces
- No convergence rates
- Requires "thickened prefractals"
- Can use any BEM implementation

2 (Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594)

- Directly discretise Γ, integration wrt Hausdorff measure
- Conforming method $V_{N} \subset V=H_{\Gamma}^{-1 / 2}$
- Easy convergence from Céa lemma + rates
- Require special quadrature formulas

What do we do?

- d-sets:
function spaces, trace operators integral operators, BIEs, variational forms Galerkin method, piecewise-constant BEM Theorem: BEM convergence
- Disjoint IFS attractors: IFS, tree structure, wavelets piecewise-constant BEM space
 Theorem: BEM convergence rates
- Numerical results:

Cantor sets, dusts, non-homogeneous sets, Sierpinski triangle

- Numerical integration on IFS attractors: barycentre rule for smooth integrand self-similarity for homogeneous singular integrals rule for Helmholtz kernel numerical examples comparison with chaos game

Part I

BIE and BEM on d-sets

d-sets and function spaces

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if $\quad c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d} \quad x \in \Gamma, 0<r \leq 1$
"Uniformly locally d-dimensional sets".
FALCONER, Triebel, Jonsson\&WAlLin, ... E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, ... Closure of Lipschitz is n-set

d-sets and function spaces

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if $\quad c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d} \quad x \in \Gamma, 0<r \leq 1$
"Uniformly locally d-dimensional sets".
FALCONER, TRIEBEL, JONSSON\&WALLIN, ... E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, ... Closure of Lipschitz is n-set

Classical function spaces, "extrinsic" on \mathbb{R}^{n} \& "intrinsic" on Γ :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\} \\
\mathbb{L}_{2}(\Gamma) & =\left\{f: \Gamma \rightarrow \mathbb{C}:\|f\|_{\mathbb{L}_{2}(\Gamma)}^{2}=\int_{\Gamma}|f(x)|^{2} \mathrm{~d} \mathcal{H}^{d}(x)<\infty\right\}
\end{aligned}
$$

d-sets and function spaces

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if $\quad c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d} \quad x \in \Gamma, 0<r \leq 1$
"Uniformly locally d-dimensional sets".
FALCONER, Triebel, Jonsson\&WAlLin, ... E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, ... Closure of Lipschitz is n-set

Classical function spaces, "extrinsic" on \mathbb{R}^{n}
\& "intrinsic" on Γ :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\} \\
\mathbb{L}_{2}(\Gamma) & =\left\{f: \Gamma \rightarrow \mathbb{C}:\|f\|_{\mathbb{L}_{2}(\Gamma)}^{2}=\int_{\Gamma}|f(x)|^{2} \mathrm{~d} \mathcal{H}^{d}(x)<\infty\right\}
\end{aligned}
$$

Trace operator: define $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)

d-sets and function spaces

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if $\quad c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d} \quad x \in \Gamma, 0<r \leq 1$
"Uniformly locally d-dimensional sets".
Falconer, Triebel, Jonsson\&Wallin, ... E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, ...

Closure of Lipschitz is n-set
Classical function spaces, "extrinsic" on \mathbb{R}^{n}
\& "intrinsic" on Γ :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\} \\
\mathbb{L}_{2}(\Gamma) & =\left\{f: \Gamma \rightarrow \mathbb{C}:\|f\|_{\mathbb{L}_{2}(\Gamma)}^{2}=\int_{\Gamma}|f(x)|^{2} \mathrm{~d} \mathcal{H}^{d}(x)<\infty\right\}
\end{aligned}
$$

Trace operator: define $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)
Use $\operatorname{tr}_{\Gamma}$ to define

$$
\begin{aligned}
& \mathbb{H}^{s-\frac{n-d}{2}}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma) \\
& \mathbb{H}^{-t}(\Gamma):=\left(\mathbb{H}^{t}(\Gamma)\right)^{*}
\end{aligned}
$$

$\mathbb{H}^{s-\frac{n-d}{2}}(\Gamma)$	\subset	$\mathbb{L}_{2}(\Gamma)$	\subset	$\mathrm{H}^{-s+\frac{n-d}{2}}(\Gamma)$
$\operatorname{tr}_{\Gamma} \uparrow$				$\operatorname{tr}_{\Gamma}^{*}$
$H^{s}\left(\mathbb{R}^{n}\right)$	\subset	$L_{2}\left(\mathbb{R}^{n}\right)$	\subset	$H^{-s}\left(\mathbb{R}^{n}\right)$

d-sets and function spaces

A compact set $\Gamma \subset \mathbb{R}^{n}$ is a d-set if $\quad c_{1} r^{d} \leq \mathcal{H}^{d}\left(\Gamma \cap B_{r}(x)\right) \leq c_{2} r^{d} \quad x \in \Gamma, 0<r \leq 1$
"Uniformly locally d-dimensional sets".
FALCONER, Triebel, Jonsson\&WAlLin, ... E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, ...

Closure of Lipschitz is n-set
Classical function spaces, "extrinsic" on \mathbb{R}^{n}
\& "intrinsic" on Γ :

$$
\begin{aligned}
H^{s}\left(\mathbb{R}^{n}\right) & =\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi<\infty\right\} \\
\mathbb{L}_{2}(\Gamma) & =\left\{f: \Gamma \rightarrow \mathbb{C}:\|f\|_{\mathbb{L}_{2}(\Gamma)}^{2}=\int_{\Gamma}|f(x)|^{2} \mathrm{~d} \mathcal{H}^{d}(x)<\infty\right\}
\end{aligned}
$$

Trace operator: define $\operatorname{tr}_{\Gamma} \varphi=\left.\varphi\right|_{\Gamma}$ for $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
For $s>\frac{n-d}{2}$, it extends to $\operatorname{tr}_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{L}_{2}(\Gamma)$ (continuous linear op. with dense image)

Use $\operatorname{tr}_{\Gamma}$ to define

$$
\begin{aligned}
& \mathbb{H}^{s-\frac{n-d}{2}}(\Gamma):=\operatorname{tr}_{\Gamma}\left(H^{s}\left(\mathbb{R}^{n}\right)\right) \subset \mathbb{L}_{2}(\Gamma) \\
& \mathbb{H}^{-t}(\Gamma):=\left(\mathbb{H}^{t}(\Gamma)\right)^{*} \\
& H_{\Gamma}^{s}=\left\{f \in H^{s}\left(\mathbb{R}^{n}\right), \operatorname{supp} f \subset \Gamma\right\} \\
& \widetilde{H}^{s}(O):={\overline{C_{0}^{\infty}(O)}{ }^{H^{s}\left(\mathbb{R}^{n}\right)}}^{\text {and }}
\end{aligned}
$$

$\mathbb{H}^{s-\frac{n-d}{2}}(\Gamma)$	\subset	$\mathbb{L}_{2}(\Gamma)$	\subset	$\mathbb{H}^{-s+\frac{n-d}{2}}(\Gamma)$
$\operatorname{tr}_{\Gamma} \uparrow$				$\downarrow \operatorname{tr}_{\Gamma}^{*}$
$\widetilde{H}^{s}\left(\Gamma^{c}\right)^{\perp}$				H_{Γ}^{-s}
\cap				\cap
$H^{s}\left(\mathbb{R}^{n}\right)$	\subset	$L_{2}\left(\mathbb{R}^{n}\right)$	\subset	$H^{-s}\left(\mathbb{R}^{n}\right)$

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0 . \quad\left(u^{s}=0\right.$ if $\left.d \leq n-1\right)$

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0 . \quad\left(u^{s}=0\right.$ if $\left.d \leq n-1\right)$

$$
t_{d}:=\frac{1}{2}-\frac{n-d}{2} \in\left(0, \frac{1}{2}\right]
$$

$\begin{gathered} \mathbb{H}^{t_{d}}(\Gamma) \\ \operatorname{tr}_{\Gamma} \uparrow \\ \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp} \end{gathered}$	C	$\mathbb{L}_{2}(\Gamma)$	\subset	$\begin{array}{r} \mathbb{H}^{-t_{d}}(\Gamma) \\ \quad{ }_{H_{\Gamma}^{-1 / 2}} \operatorname{tr}_{\Gamma}^{*} \\ H^{-1} \end{array}$

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0 . \quad\left(u^{s}=0\right.$ if $\left.d \leq n-1\right)$

$$
t_{d}:=\frac{1}{2}-\frac{n-d}{2} \in\left(0, \frac{1}{2}\right]
$$

We define a single-layer operator as a mapping between intrinsic spaces:

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0 . \quad\left(u^{s}=0\right.$ if $\left.d \leq n-1\right)$

$$
t_{d}:=\frac{1}{2}-\frac{n-d}{2} \in\left(0, \frac{1}{2}\right]
$$

We define a single-layer operator as a mapping between intrinsic spaces:

Theorem

\mathbb{S} is integral operator in Hausdorff measure:
$\forall \Psi \in L_{\infty}(\Gamma)$

$$
\begin{aligned}
& \mathbb{S} \Psi(x) \\
& =\int_{\Gamma} \Phi(x, y) \Psi(y) \mathrm{d} \mathcal{H}^{d}(y) \\
& \mathcal{H}^{s} \text {-a.e. } x \in \Gamma
\end{aligned}
$$

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0$.

$$
\left(u^{s}=0 \text { if } d \leq n-1\right)
$$

$$
t_{d}:=\frac{1}{2}-\frac{n-d}{2} \in\left(0, \frac{1}{2}\right]
$$

We define a single-layer operator as a mapping between intrinsic spaces:

Theorem

S is integral operator in Hausdorff measure:
$\forall \Psi \in L_{\infty}(\Gamma)$

$$
\begin{aligned}
& \mathbb{S} \Psi(x) \\
& =\int_{\Gamma} \Phi(x, y) \Psi(y) \mathrm{d} \mathcal{H}^{d}(y) \\
& \mathcal{H}^{s} \text {-a.e. } x \in \Gamma
\end{aligned}
$$

Single-layer operator on d-sets

From now on, assume that scatterer Γ is a d-set with $n-1<d \leq n$.
Γ produces scattered wave $u^{s} \neq 0 . \quad\left(u^{s}=0\right.$ if $\left.d \leq n-1\right)$

$$
t_{d}:=\frac{1}{2}-\frac{n-d}{2} \in\left(0, \frac{1}{2}\right]
$$

We define a single-layer operator as a mapping between intrinsic spaces:

Theorem

\mathbb{S} is integral operator in Hausdorff measure:
$\forall \Psi \in L_{\infty}(\Gamma)$

$$
\begin{aligned}
& \mathbb{S} \Psi(x) \\
& =\int_{\Gamma} \Phi(x, y) \Psi(y) \mathrm{d} \mathcal{H}^{d}(y) \\
& \mathcal{H}^{s} \text {-a.e. } x \in \Gamma
\end{aligned}
$$

Continuous for $|t|<t_{d}$
Coercive and invertible for $t=0$
$\begin{aligned} \mathbb{S}: \mathbb{H}^{t-t_{d}}(\Gamma) \rightarrow \mathbb{H}^{t+t_{d}}(\Gamma) & \left.\text { Conjecture: } \mathbb{S} \text { invertible for }|t|<t_{d} \quad \text { (true for Lipschitz } \Gamma, d=n\right) \\ & \text { Conjecture would imply regularity for scattering BIE: } \phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}\end{aligned}$

Variational problems and Galerkin method on d-sets

Two equivalent variational problems. "Extrinsic form":

$$
\text { Datum: } g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp} \text { (trace of } u^{i} \text {). }
$$

$$
\text { find } \phi \in H_{\Gamma}^{-1 / 2}, \quad\langle S \phi, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\langle g, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi \in H_{\Gamma}^{-1 / 2}
$$

"Intrinsic" form:
(recall: $\mathbb{S}=\operatorname{tr}_{\Gamma} S \operatorname{tr}_{\Gamma}^{*}$)

$$
\text { find } \tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad\langle\mathbb{S} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

Variational problems and Galerkin method on d-sets

Two equivalent variational problems. "Extrinsic form":

$$
\text { Datum: } g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp} \text { (trace of } u^{i} \text {). }
$$

$$
\text { find } \phi \in H_{\Gamma}^{-1 / 2}, \quad\langle\mathbf{S} \phi, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\langle g, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi \in H_{\Gamma}^{-1 / 2}
$$

"Intrinsic" form:
(recall: $\mathbb{S}=\operatorname{tr}_{\Gamma} S \operatorname{tr}_{\Gamma}^{*}$)

$$
\text { find } \tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad\langle\mathbb{S} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

Theorem (ChANDLER-WILDE, HEWETT 2015): sesquilinear forms are continuous \& coercive $\Rightarrow \quad$ Both variational problems are well-posed. $\quad \phi=\operatorname{tr}_{\Gamma}^{*} \widetilde{\phi}$

Variational problems and Galerkin method on d-sets

Two equivalent variational problems.
Datum: $g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp}\left(\right.$ trace of $\left.u^{i}\right)$.
"Extrinsic form":

$$
\text { find } \phi \in H_{\Gamma}^{-1 / 2}, \quad\langle S \phi, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\langle g, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi \in H_{\Gamma}^{-1 / 2}
$$

"Intrinsic" form:

$$
\text { find } \tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad\langle\mathbb{S} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

Theorem (ChANDLER-Wilde, Hewett 2015): sesquilinear forms are continuous \& coercive $\Rightarrow \quad$ Both variational problems are well-posed. $\quad \phi=\operatorname{tr}_{\Gamma}^{*} \widetilde{\phi}$
$\Rightarrow \quad$ For any N-dimensional $V_{N} \subset H_{\Gamma}^{-1 / 2}$ or $\mathbb{V}_{N} \subset \mathbb{H}^{-t_{d}}(\Gamma)$, the Galerkin methods
find $\phi_{N} \in V_{N}, \quad\left\langle\mathbf{S} \phi_{N}, \psi_{N}\right\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\left\langle g, \psi_{N}\right\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi_{N} \in V_{N}$ find $\widetilde{\phi}_{N} \in \mathbb{V}_{N}, \quad\left\langle\mathbb{S}_{N}, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t} d(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t_{d}(\Gamma) \times \mathbb{H}^{-t} d(\Gamma)}} \quad \forall \widetilde{\psi}_{N} \in \mathbb{V}_{N}$
are well-posed.

Variational problems and Galerkin method on d-sets

Two equivalent variational problems.
Datum: $g \in \widetilde{H}^{1 / 2}\left(\Gamma^{c}\right)^{\perp}\left(\right.$ trace of $\left.u^{i}\right)$.
"Extrinsic form":

$$
\text { find } \phi \in H_{\Gamma}^{-1 / 2}, \quad\langle S \phi, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\langle g, \psi\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi \in H_{\Gamma}^{-1 / 2}
$$

"Intrinsic" form:

$$
\text { find } \tilde{\phi} \in \mathbb{H}^{-t_{d}}(\Gamma), \quad\langle\mathbb{S} \tilde{\phi}, \widetilde{\psi}\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi} \in \mathbb{H}^{-t_{d}}(\Gamma)
$$

Theorem (Chandler-Wilde, Hewett 2015): sesquilinear forms are continuous \& coercive \Rightarrow Both variational problems are well-posed. $\quad \phi=\operatorname{tr}_{\Gamma}^{*} \widetilde{\phi}$
$\Rightarrow \quad$ For any N-dimensional $V_{N} \subset H_{\Gamma}^{-1 / 2}$ or $\mathbb{V}_{N} \subset \mathbb{H}^{-t_{d}}(\Gamma)$, the Galerkin methods
find $\phi_{N} \in V_{N}, \quad\left\langle\mathbf{S} \phi_{N}, \psi_{N}\right\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)}=-\left\langle g, \psi_{N}\right\rangle_{H^{1 / 2}\left(\Gamma_{\infty}\right) \times H^{-1 / 2}\left(\Gamma_{\infty}\right)} \quad \forall \psi_{N} \in V_{N}$ find $\widetilde{\phi}_{N} \in \mathbb{V}_{N}, \quad\left\langle\mathbb{S}_{N}, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t} d(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t_{d}(\Gamma) \times \mathbb{H}^{-t} d(\Gamma)}} \quad \forall \widetilde{\psi}_{N} \in \mathbb{V}_{N}$
are well-posed.

$$
\text { If } d<n, \mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \text { is possible, } H_{\Gamma}^{0}=L_{2}(\Gamma)=\{0\}
$$

Piecewise-constant BEM on d-sets

Finding $\widetilde{\phi}_{N}=\sum_{j=1}^{n} c_{j} f^{j} \in \mathbb{V}_{N}, \quad\left\langle\mathbb{S} \tilde{\phi}_{N}, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t} d(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=-\left\langle\operatorname{tr}_{\Gamma} g, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t} t_{(\Gamma)}} \times \mathbb{H}^{-t_{d}(\Gamma)} \quad \forall \tilde{\psi}_{N} \in \mathbb{V}_{N}$ where $\left\{f^{j}\right\}_{j=1}^{N}$ is a basis of \mathbb{V}_{N}, is equivalent to solving the $N \times N$ linear system
$A \vec{c}=\vec{b}$,
$A_{i j}:=\left\langle\mathbb{S}^{j}, f^{i}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}$,
$b_{i}:=-\left\langle\operatorname{tr}_{\Gamma} g, f^{i}\right\rangle_{\mathbb{H}^{t} d(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}$,
$i, j=1, \ldots, N$.

Can choose $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$.
Need to compute integrals wrt \mathcal{H}^{d} !

Piecewise-constant BEM on d-sets

Finding $\widetilde{\phi}_{N}=\sum_{j=1}^{n} c_{j} f^{j} \in \mathbb{V}_{N}, \quad\left\langle\mathbb{S} \widetilde{\phi}_{N}, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}_{N}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi}_{N} \in \mathbb{V}_{N}$ where $\left\{f^{j}\right\}_{j=1}^{N}$ is a basis of \mathbb{V}_{N}, is equivalent to solving the $N \times N$ linear system
$A \vec{c}=\vec{b}$,
$A_{i j}:=\left\langle\mathbb{S} f^{j}, f^{i}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}$,
$b_{i}:=-\left\langle\operatorname{tr}_{\Gamma} \boldsymbol{g}, f^{i}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}$,
$i, j=1, \ldots, N$.

Can choose $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$. Need to compute integrals wrt \mathcal{H}^{d} !

Piecewise-constant BEM

\mathbb{V}_{N} is the space of piecewise-constant functions on a partition $\left\{T_{j}\right\}_{j=1}^{N}$ of Γ, with \mathcal{H}^{d}-measurable elements $T_{j}, \quad \mathcal{H}^{d}\left(T_{j}\right)>0, \quad \mathcal{H}^{d}\left(T_{j} \cap T_{i}\right)=0$ for $j \neq i$.
$\mathbb{L}_{2}(\Gamma)$-orthonormal basis: $\quad f^{j}(x)=\left(\mathcal{H}^{d}\left(T_{j}\right)\right)^{-1 / 2}$ for $x \in T_{j}, \quad f^{j}(x)=0$ otherwise.

Piecewise-constant BEM on d-sets

Finding $\widetilde{\phi}_{N}=\sum_{j=1}^{n} c_{j} f^{j} \in \mathbb{V}_{N}, \quad\left\langle\mathbb{S} \widetilde{\phi}_{N}, \tilde{\psi}_{N}\right\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}=-\left\langle\operatorname{tr}_{\Gamma} g, \widetilde{\psi}_{N}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)} \quad \forall \tilde{\psi}_{N} \in \mathbb{V}_{N}$
where $\left\{f^{j}\right\}_{j=1}^{N}$ is a basis of \mathbb{V}_{N}, is equivalent to solving the $N \times N$ linear system

$$
A \vec{c}=\vec{b}, \quad A_{i j}:=\left\langle\mathbb{S} f^{j}, f^{i}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}, \quad b_{i}:=-\left\langle\operatorname{tr}_{\Gamma} g, f^{i}\right\rangle_{\mathbb{H}_{d}(\Gamma) \times \mathbb{H}^{-t_{d}(\Gamma)}}, \quad i, j=1, \ldots, N .
$$

Can choose $\mathbb{V}_{N} \subset \mathbb{L}_{2}(\Gamma) \stackrel{\text { dense }}{\subset} \mathbb{H}^{-t_{d}}(\Gamma)$.
Need to compute integrals wrt \mathcal{H}^{d} !

Piecewise-constant BEM

\mathbb{V}_{N} is the space of piecewise-constant functions on a partition $\left\{T_{j}\right\}_{j=1}^{N}$ of Γ, with \mathcal{H}^{d}-measurable elements $T_{j}, \quad \mathcal{H}^{d}\left(T_{j}\right)>0, \quad \mathcal{H}^{d}\left(T_{j} \cap T_{i}\right)=0$ for $j \neq i$.
$\mathbb{L}_{2}(\Gamma)$-orthonormal basis: $\quad f^{j}(x)=\left(\mathcal{H}^{d}\left(T_{j}\right)\right)^{-1 / 2}$ for $x \in T_{j}, \quad f^{j}(x)=0$ otherwise.

Theorem: BEM convergence for d-sets

For a sequence $\left(\mathbb{V}_{N}\right)_{N \in \mathbb{N}}$ of discrete spaces, $\quad \widetilde{\phi}_{N} \rightarrow \widetilde{\phi} \quad$ if $h_{N}:=\max _{j=1, \ldots, N} \operatorname{diam}\left(T_{j}\right) \rightarrow 0$.
How to get convergence rates? We need stronger assumptions on Γ.

Part II

BEM on IFS attractors

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|s_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.

$\begin{aligned} & \text { : }: ~ \\ & \text { it } \end{aligned}$
: 4 :
:
:
:

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|s_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.
Assume open set condition (OSC): $\exists O \subset \mathbb{R}^{n}$ open, $s(O) \subset O, s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset \forall m \neq m^{\prime}$. Then Γ is d-set, $\sum_{m=1}^{M} \rho_{m}^{d}=1$.

Iterated function systems (IFS)

IFS is a family of M contracting similarities:

$$
s_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad\left|\boldsymbol{s}_{m}(\boldsymbol{x})-\boldsymbol{s}_{m}(\boldsymbol{y})\right|=\rho_{m}|\boldsymbol{x}-\boldsymbol{y}|, \quad 0<\rho_{m}<1, \quad m=1, \ldots, M
$$

There exists a unique non-empty compact Γ with $\Gamma=s(\Gamma)$, where $s(E):=\bigcup_{m=1}^{M} s_{m}(E)$.
Assume open set condition (OSC): $\exists O \subset \mathbb{R}^{n}$ open, $s(O) \subset O, s_{m}(O) \cap s_{m^{\prime}}(O)=\emptyset \forall m \neq m^{\prime}$. Then Γ is d-set, $\sum_{m=1}^{M} \rho_{m}^{d}=1$.

IFS is homogeneous if $\rho_{m}=\rho \forall m \quad$ (then $d=\frac{\log M}{\log 1 / \rho}$).
Γ is disjoint if $\Gamma_{m}:=s_{m}(\Gamma)$ are all disjoint.
(FAlCONER, HUTCHINSON, Triebel,. . .)
Disjoint implies OSC and $d<n$.

IFS tree structure and wavelets

Disjoint IFS attractors have natural tree structure:

$$
\Gamma_{0}:=\Gamma, \quad \Gamma_{\mathbf{m}}:=s_{\mathbf{m}}(\Gamma), \quad s_{\mathbf{m}}:=s_{m_{1}} \circ \ldots \circ s_{m_{\ell}}, \quad \mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{1, \ldots, M\}^{\ell}, \quad \ell \in \mathbb{N}
$$

IFS tree structure and wavelets

Disjoint IFS attractors have natural tree structure:

$$
\Gamma_{0}:=\Gamma, \quad \Gamma_{\mathbf{m}}:=s_{\mathbf{m}}(\Gamma), \quad s_{\mathbf{m}}:=s_{m_{1}} \circ \ldots \circ s_{m_{\ell}}, \quad \mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in\{1, \ldots, M\}^{\ell}, \quad \ell \in \mathbb{N}
$$

Characteristic functions:
$\chi_{\mathbf{m}}(x):= \begin{cases}1 & x \in \Gamma_{\mathbf{m}} \\ 0 & \text { otherwise }\end{cases}$
Linear combinations give hierarchical orthonormal wavelet basis of $\mathbb{L}_{2}(\Gamma)$.

Collecting $\Gamma_{\mathbf{m}} \mathbf{s}$ according to diameter, wavelet basis gives
characterisation of $\mathbb{H}^{t}(\Gamma)$ and its norm. (Jonsson 1998)
$\left\{\mathbb{H}^{t}(\Gamma)\right\}_{|t|<1} \&\left\{H_{\Gamma}^{s}\right\}_{-(n-d) / 2-1<s<-(n-d) / 2}$ are interpolation scales

Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis: $0<h<\operatorname{diam}(\Gamma)$
$\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)$

Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis:

$$
0<h<\operatorname{diam}(\Gamma)
$$

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each $T_{j}=\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(T_{j}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis:

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each $T_{j}=\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(T_{j}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis:

$$
\mathbb{V}_{N}=\operatorname{span}\left\{\chi_{\mathbf{m}}, \mathbf{m} \in\{1, \ldots, M\}^{\ell}, \ell \in \mathbb{N}, \quad \operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \leq h, \operatorname{diam}\left(\Gamma_{\left(m_{1}, \ldots, m_{\ell-1}\right)}\right)>h\right\} \subset \mathbb{L}_{2}(\Gamma)
$$

Each $T_{j}=\Gamma_{\mathbf{m}}$ is a copy of Γ under similarity $s_{\mathbf{m}}$, with $\operatorname{diam}\left(T_{j}\right) \leq h$.

$$
\operatorname{diam}(\Gamma)=\sqrt{2}, M=4
$$

$\rho=\frac{1}{3}, h=0.5, N=4$

$\begin{gathered} H H \\ H \# \end{gathered}$	$\left.\begin{array}{c} E H \\ H i n \end{array}\right)$	π	$\left.\begin{array}{c} 11 \\ H i \end{array}\right)$
$\begin{aligned} & H \\ & H \end{aligned}$	$\begin{gathered} \pi \\ H \end{gathered}$	$\begin{gathered} 47 \\ H \end{gathered}$	$\begin{gathered} \text { H } \\ H \end{gathered}$
$\binom{\text { Hit}}{H}$	$\left.\begin{array}{l} 18 \mathrm{Ein} \\ \mathrm{Hin} \end{array}\right)$	4	His
H茫	$\begin{gathered} \text { Hin} \\ H i n \end{gathered}$		$\begin{aligned} & \text { Hin } \\ & H \end{aligned}$

Piecewise-constant BEM convergence for disjoint IFS attractors

Using coercivity, Céa, relation BEM space/wavelets, coefficient decay in $\mathbb{H}^{t}(\Gamma)$:

Theorem (CCGHM 2022)

Γ disjoint IFS attractor. Assume BIE solution $\phi \in H_{\Gamma}^{s}$ for some $-\frac{1}{2}<s<-\frac{n-d}{2}$. Then

Piecewise-constant BEM convergence for disjoint IFS attractors

Using coercivity, Céa, relation BEM space/wavelets, coefficient decay in $\mathbb{H}^{t}(\Gamma)$:

Theorem (CCGHM 2022)

Γ disjoint IFS attractor. Assume BIE solution $\phi \in H_{\Gamma}^{s}$ for some $-\frac{1}{2}<s<-\frac{n-d}{2}$. Then

$$
\left\|\widetilde{\phi}-\widetilde{\phi}_{N}\right\|_{\mathbb{H}^{-\frac{1}{2}+\frac{n-d}{2}}{ }_{(\Gamma)}=\left\|\phi-\phi_{N}\right\|_{H_{\Gamma}^{-\frac{1}{2}}} \leq c h^{s+\frac{1}{2}}\|\phi\|_{H_{\Gamma}^{s}} . \text { }}
$$

- $h^{2 s+1}$ super-convergence of linear functionals, e.g.: point value $u^{s}(x)$ and far-field
- Regularity assumption on ϕ implied by previous conjecture on $\mathbb{S} \quad H_{\Gamma}^{-\frac{n-d}{2}}=\{0\}$
- For homogeneous IFS, if conjecture is valid, rates are

$$
M^{-\ell / 2} \quad \text { for } n=1, \quad(\rho M)^{-\ell / 2} \quad \text { for } n=2
$$

with ℓ the "level" of the BEM space

- In the limit $d \nearrow n$, we recover classical results for Lipschitz screens
- Inverse estimates in \mathbb{V}_{N} : bound $H_{\Gamma}^{s_{1}}$ error norm $-1 / 2<s_{1}<s$ and condition number
- Can control "fully discrete error" taking into account numerical integration

Part III

Numerical results

2D scattering problem: Cantor set $\Gamma \subset \mathbb{R}$

Rate $2^{-\ell / 2}$ in $H_{\Gamma}^{-1 / 2}$ norm as expected, independent of $\rho . \quad u^{i}(x)=\mathrm{e}^{\mathrm{i} k \theta \cdot x}$ Similar plots (with double rate $2^{-\ell}$) for near-field $u^{s}(x)$ and far-field.

3D scattering problem: Cantor dust $\Gamma \subset \mathbb{R}^{2}$

ρ-dependent rate $(4 \rho)^{-\ell / 2}$ in $H_{\Gamma}^{-1 / 2}$ norm as expected.
Double rates $(4 \rho)^{-\ell}$ for near-field and far-field.

Non-homogeneous dust and Sierpinski triangle in \mathbb{R}^{2}

© Non-homogeneous disjoint IFS attractor with $M=4, \quad \rho_{1,2,3}=\frac{1}{4}, \quad \rho_{4}=\frac{1}{2}, \quad d=\frac{\log 3}{\log 2}$

Non-homogeneous dust and Sierpinski triangle in \mathbb{R}^{2}

Non-homogeneous dust, absolute increment errors

Δ Non-homogeneous disjoint IFS attractor with $M=4, \quad \rho_{1,2,3}=\frac{1}{4}, \quad \rho_{4}=\frac{1}{2}, \quad d=\frac{\log 3}{\log 2}$
<Sierpinski triangle is not disjoint: does not satisfy BEM convergence theory assumptions.

Comparison against "prefractal-BEM" for Cantor sets in \mathbb{R}

Prefractal-BEM solution \widetilde{u} computed on Lipschitz prefractal approximations of Γ as in (Chandler-Wilde, Hewett, Moiola, Besson, 2021)

Compare far-fields on circle "at infinity"
< Ratio between Hausdorff-BEM and prefractal-BEM errors.

Same number of DOFs (\approx computational effort).
$\rho<0.3$: Hausdorff-BEM is far more accurate
$\rho \approx 1 / 3$: Lebesgue-BEM has strange "enhanced accuracy"
$\rho>0.4$: the methods are comparable
Results are independent of wavenumber k.

Part IV

Numerical quadrature

Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

$$
\begin{aligned}
A_{i j^{\prime}} & =\left\langle\mathbb{S}_{\mathbf{m}^{\prime}}, \chi_{\mathbf{m}}\right\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=\int_{\Gamma} \int_{\Gamma} \Phi(x, y) \chi_{\mathbf{m}^{\prime}}(x) \chi_{\mathbf{m}}(y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \\
& =\int_{\Gamma_{\mathbf{m}}} \int_{\Gamma_{\mathbf{m}^{\prime}}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(\boldsymbol{y}) \quad \Phi(x, y)=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} \text { if } n=2
\end{aligned}
$$

Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

$$
\begin{aligned}
A_{i j^{\prime}} & =\left\langle\mathbb{S} \chi_{\mathbf{m}^{\prime}}, \chi_{\mathbf{m}}\right\rangle_{\mathbb{H}_{d} t_{d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=\int_{\Gamma} \int_{\Gamma} \Phi(x, y) \chi_{\mathbf{m}^{\prime}}(x) \chi_{\mathbf{m}}(y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \\
& =\int_{\Gamma_{\mathbf{m}}} \int_{\Gamma_{\mathbf{m}^{\prime}}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \quad \Phi(x, y)=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} \text { if } n=2
\end{aligned}
$$

We studied how to approximate these and general integrals on IFS attractors in Gibbs, Hewett, Moiola, Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals

Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

$$
\begin{aligned}
A_{i j^{\prime}} & =\left\langle\mathbb{S} \chi_{\mathbf{m}^{\prime}}, \chi_{\mathbf{m}}\right\rangle_{\mathbb{H}^{t_{d}}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma)}=\int_{\Gamma} \int_{\Gamma} \Phi(x, y) \chi_{\mathbf{m}^{\prime}}(x) \chi_{\mathbf{m}}(y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \\
& =\int_{\Gamma_{\mathbf{m}}} \int_{\Gamma_{\mathbf{m}^{\prime}}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \quad \Phi(x, y)=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} \text { if } n=2
\end{aligned}
$$

We studied how to approximate these and general integrals on IFS attractors in
Gibbs, Hewett, Moiola,
Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals

Consider Hausdorff and more general "invariant measures":
Given IFS s_{1}, \ldots, s_{M} and $p_{1}, \ldots, p_{M} \in(0,1), \sum_{m=1}^{M} p_{m}=1$,
\exists ! Borel μ s.t. $\quad \mu(A)=\sum_{m=1}^{M} p_{m} \mu\left(s_{m}^{-1}(A)\right), \quad \operatorname{supp}(\mu)=\Gamma$
(HUTCHINSON 1981)

$$
\left(p_{m}=\rho_{m}^{d} \text { if } \mu=\mathcal{H}^{d}\right)
$$

Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

$$
\begin{aligned}
A_{i j j^{\prime}} & =\left\langle\mathbb{S} \chi_{\mathbf{m}^{\prime}}, \chi_{\mathbf{m}}\right\rangle_{\mathbb{H}^{t} d}(\Gamma) \times \mathbb{H}^{-t_{d}}(\Gamma) \\
& =\int_{\Gamma} \int_{\Gamma} \Phi(x, y) \chi_{\mathbf{m}^{\prime}}(x) \chi_{\mathbf{m}}(y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \\
& \int_{\Gamma_{\mathbf{m}^{\prime}}} \Phi(x, y) \mathrm{d} \mathcal{H}^{d}(x) \mathrm{d} \mathcal{H}^{d}(y) \quad \Phi(x, y)=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} \text { if } n=2
\end{aligned}
$$

We studied how to approximate these and general integrals on IFS attractors in
Gibbs, Hewett, Moiola,
Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals
Consider Hausdorff and more general "invariant measures":
(HUTCHINSON 1981)
Given IFS s_{1}, \ldots, s_{M} and $p_{1}, \ldots, p_{M} \in(0,1), \sum_{m=1}^{M} p_{m}=1$,
\exists ! Borel μ s.t. $\mu(A)=\sum_{m=1}^{M} p_{m} \mu\left(s_{m}^{-1}(A)\right), \operatorname{supp}(\mu)=\Gamma \quad\left(p_{m}=\rho_{m}^{d}\right.$ if $\left.\mu=\mathcal{H}^{d}\right)$
3 quadrature rules:

- Barycentre rule for "smooth" (C^{1} and C^{2}) integrands
- Self-similar rule for homogeneous singular integrands $\quad|x-y|^{-t}$ or $\log |x-y|$
- Singularity-subtraction rule for Helmholtz fundamental solution $\quad \Phi(x, y)=\frac{1}{4 \pi|x-y|}+\mathcal{R}$

Each $\Gamma_{\mathbf{m}}$ is similar copy of Γ : for simplicity we just consider integrals over Γ.

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{\Omega}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{g}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre and weights are easily computed:

$$
\mu\left(\Gamma_{\mathbf{m}}\right)=p_{m_{1}} \cdots p_{m_{\ell}} \mu(\Gamma)
$$

$x_{\mathbf{m}}=\frac{\int_{\Gamma_{\mathbf{m}}} x \mathrm{~d} \mu(x)}{\mu\left(\Gamma_{\mathbf{m}}\right)}=s_{m_{1}} \circ \cdots \circ s_{m_{\ell}}\left(\left[I-\sum_{m=1}^{M} p_{m} \rho_{m} A_{m}\right]^{-1} \sum_{m=1}^{M} p_{m} \delta_{m}\right)$
where $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in(1, \ldots, M)^{\ell}, \quad s_{m}(x)=\rho_{m} A_{m} x+\delta_{m}$

Barycentre rule for smooth integrals

As before, partition Γ in $\Gamma_{\mathbf{m}}=s_{\mathbf{m}}(\Gamma)$ with $\operatorname{diam}\left(\Gamma_{\mathbf{m}}\right) \approx h_{\theta}$.
Extend classical midpoint rule:
Approximate $\left.f\right|_{\Gamma_{\mathbf{m}}}$ with $f\left(\mathbf{x}_{\mathbf{m}}\right)$, where $x_{\mathbf{m}}$ is barycentre of $\Gamma_{\mathbf{m}}$

$$
\int_{\Gamma} f(x) \mathrm{d} \mu(x)=\sum_{\mathbf{m}} \int_{\Gamma_{\mathbf{m}}} f(x) \mathrm{d} \mu(x) \approx \sum_{\mathbf{m}} \mu\left(\Gamma_{\mathbf{m}}\right) f\left(\mathbf{x}_{\mathbf{m}}\right)
$$

Barycentre and weights are easily computed:

$$
\mu\left(\Gamma_{\mathbf{m}}\right)=p_{m_{1}} \cdots p_{m_{\ell}} \mu(\Gamma)
$$

$x_{\mathbf{m}}=\frac{\int_{\Gamma_{\mathbf{m}}} x \mathrm{~d} \mu(x)}{\mu\left(\Gamma_{\mathbf{m}}\right)}=\boldsymbol{s}_{m_{1}} \circ \cdots \circ \boldsymbol{s}_{m_{\ell}}\left(\left[I-\sum_{m=1}^{M} p_{m} \rho_{m} A_{m}\right]^{-1} \sum_{m=1}^{M} p_{m} \delta_{m}\right)$
where $\mathbf{m}=\left(m_{1}, \ldots, m_{\ell}\right) \in(1, \ldots, M)^{\ell}, \quad s_{m}(x)=\rho_{m} A_{m} x+\delta_{m}$

$$
\text { Error } \left.\leq \frac{n}{2} h_{马}^{2} \mu(\Gamma)|f|_{C^{2}\left(\cup_{\mathbf{m}}\right.} \operatorname{Hull}\left(\Gamma_{\mathbf{m}}\right)\right)
$$

Same story for double integrals.

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.
Singularity of $|x-y|^{-t}$ is localised on the red line.

- Example:

Cantor set $\subset \mathbb{R}$ $M=2$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty \quad$ iff $t<d$.
Singularity of $|x-y|^{-t}$ is localised on the red line.

- Example:

Cantor set $\subset \mathbb{R}$
$M=2$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.
Singularity of $|x-y|^{-t}$ is localised on the red line.

Decompose double integral over $\Gamma \times \Gamma$: $\quad I_{\Gamma, \Gamma}^{t}=\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}$
On $\Gamma_{m} \times \Gamma_{m}$ use self-similarity of Γ and t-homogeneity of $|x-y|^{t}$:

$$
I_{\Gamma_{m}, \Gamma_{m}}^{t}=\rho_{m}^{2 d-t} I_{\Gamma, \Gamma}^{t}
$$

- Example:

Cantor set $\subset \mathbb{R}$
$M=2$

Quadrature rule for singular homogeneous integrals

Integrability. Γ a compact d-set, $y \in \Gamma$:
$\int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(x)<\infty$ iff $t<d, \quad I_{\Gamma, \Gamma}^{t}:=\int_{\Gamma} \int_{\Gamma}|x-y|^{-t} \mathrm{~d} \mathcal{H}^{d}(y) \mathrm{d} \mathcal{H}^{d}(x)<\infty$ iff $t<d$.
Singularity of $|x-y|^{-t}$ is localised on the red line.

Decompose double integral over $\Gamma \times \Gamma: \quad I_{\Gamma, \Gamma}^{t}=\sum_{m=1}^{M} \sum_{m^{\prime}=1}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}$
On $\Gamma_{m} \times \Gamma_{m}$ use self-similarity of Γ and t-homogeneity of $|x-y|^{t}$:

$$
I_{\Gamma_{m}, \Gamma_{m}}^{t}=\rho_{m}^{2 d-t} I_{\Gamma, \Gamma}^{t}
$$

Can compute $I_{\Gamma, \Gamma}^{t}$ only in terms of (smooth!) off-diagonal integrals:

- Example:

Cantor set $\subset \mathbb{R}$ $M=2$

$$
I_{\Gamma, \Gamma}^{t}=\frac{1}{1-\sum_{m=1}^{M} \rho_{m}^{2 d-t}} \sum_{m=1}^{M} \sum_{\substack{m^{\prime}=1 \\ m^{\prime} \neq m}}^{M} I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t}
$$

Compute $I_{\Gamma, \Gamma}^{t}$ by applying barycentre rule to smooth $I_{\Gamma_{m}, \Gamma_{m^{\prime}}}^{t} m \neq m^{\prime}$
All this extends to: $\quad \log |x-y|, \quad$ invariant measures $\mu \neq \mu^{\prime}, \quad$ single integrals.

Quadrature and BEM

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{\mathrm{ik}|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{\Theta}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Quadrature and BEM

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{\mathrm{ik}|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{\Theta}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Fully discrete analysis from Strang argument:
BEM error bounds taking into account the approximation of the integrals.
h^{2} convergence rate is preserved if $h_{G} \lesssim h^{1+d}$ ($h_{B} \lesssim h^{1+d / 2}$ for homogeneous IFS). From numerics: $h_{Q} \lesssim h$ seems to be enough.

Quadrature and BEM

Split Helmholtz fundamental solution as

$$
\Phi(x, y)=\left\{\begin{aligned}
\frac{i}{4} H_{0}^{(1)}(k|x-y|) & =-\frac{1}{2 \pi} \log |x-y|+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{2} \\
\frac{\mathrm{e}^{\mathrm{ik}|x-y|}}{4 \pi|x-y|} & =\frac{1}{4 \pi|x-y|}+\mathcal{R}(|x-y|) & & \text { in } \mathbb{R}^{3}
\end{aligned} r l\right. \text { Lipschitz }
$$

Compute the elements of the Galerkin matrix and RHS vector by approximating homogeneous term with self-similar rule and smooth term \mathcal{R} with barycentre rule.

- Quadrature error bound for each entry. $\quad h_{G}^{2}$-bound despite $\mathcal{R} \notin C^{2}$.

Fully discrete analysis from Strang argument:
BEM error bounds taking into account the approximation of the integrals.
h^{2} convergence rate is preserved if $h_{G} \lesssim h^{1+d} \quad\left(h_{B} \lesssim h^{1+d / 2}\right.$ for homogeneous IFS). From numerics: $h_{Q} \lesssim h$ seems to be enough.

Barycentre rule requires value of $\mathcal{H}^{d}(\Gamma)$: not known for most fractals $\Gamma \notin \mathbb{R}$! This is irrelevant for the computation of near-field $u^{s}(x)$ and far-field in scattering BVP.

Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solution on $\Gamma \times \Gamma$

Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solution on $\Gamma \times \Gamma$

< Cantor sets in \mathbb{R}
Cantor dusts in \mathbb{R}^{2}
$k=5$
Error plotted against \# quadrature points

Dashed lines = theoretical rates

冓教 non "hull-disjoint" $k=2$
Error plotted against h_{G}


```
    % non-uniform
```


Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule:
(Forte, Mendivil, Vrscay 1998)
(i) choose $x_{0} \in \mathbb{R}^{n}$
(ii) sequence $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ of i.i.d. random variables in $\{1, \ldots, M\}$ with probabilities $\left\{p_{1}, \ldots, p_{M}\right\}$
(iii) construct the stochastic sequence $x_{j}=s_{m_{j}}\left(x_{j-1}\right)$ for $j \in \mathbb{N}$
(iv) approximate the integral of $f \in C^{0}$ as $\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\Gamma} f(x) \mathrm{d} \mu(x)$

Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule:
(i) choose $x_{0} \in \mathbb{R}^{n}$
(ii) sequence $\left\{m_{j}\right\}_{j \in \mathbb{N}}$ of i.i.d. random variables in $\{1, \ldots, M\}$ with probabilities $\left\{p_{1}, \ldots, p_{M}\right\}$
(iii) construct the stochastic sequence $x_{j}=s_{m_{j}}\left(x_{j-1}\right)$ for $j \in \mathbb{N}$
(iv) approximate the integral of $f \in C^{0}$ as $\frac{1}{N} \sum_{j=1}^{N} f\left(x_{j}\right) \xrightarrow{N \rightarrow \infty} \int_{\Gamma} f(x) \mathrm{d} \mu(x)$

Approximation of $\int_{\Gamma} f \mathrm{~d} \mu$ for $f \in C^{\infty}$ on $\Gamma=$ Koch snowflake $\mu=$ invariant measure with non-homogeneous weights p_{m}.
(IFS: $M=7, \rho_{1: 6}=\frac{1}{3}, \rho_{7}=\frac{1}{\sqrt{3}}$) 1000 random realisations.

Chaos game (all) - Barycentre rule \leftarrow Chaos game (averaged) $\cdots O\left(N^{-2 / d}\right)$ $\cdots\left(N^{-1 / 2}\right)$

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen Γ :
Γ compact: BVP is well-posed, equivalent to BIE
Γd-set: BIE in Hausdorff measure, convergence of piecewise-constant BEM Γ disjoint IFS: concrete recipe for BEM space and quadrature, convergence rates

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen Γ :
Γ compact: BVP is well-posed, equivalent to BIE
Γd-set: BIE in Hausdorff measure, convergence of piecewise-constant BEM
Γ disjoint IFS: concrete recipe for BEM space and quadrature, convergence rates

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$)
- Non-disjoint attractors A, $d=n$ *
- Non-planar rough scatterers? E.g. $\operatorname{dim}_{H}(\Gamma)>n-1$, curved screens....
- Fast BEM implementation
- Maxwell equations? Other PDEs? (Laplace, reaction-diffusion already covered)
- Volume integral equation, penetrable materials, ...

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen Γ :
Γ compact: BVP is well-posed, equivalent to BIE
Γd-set: BIE in Hausdorff measure, convergence of piecewise-constant BEM
Γ disjoint IFS: concrete recipe for BEM space and quadrature, convergence rates

Open questions and ongoing work:

- Solution regularity theory ($\phi \in H_{\Gamma}^{-\frac{n-d}{2}-\epsilon}$)
- Non-disjoint attractors $\mathrm{A}, d=n$ *
- Non-planar rough scatterers? E.g. $\operatorname{dim}_{H}(\Gamma)>n-1$, curved screens....
- Fast BEM implementation
- Maxwell equations? Other PDEs? (Laplace, reaction-diffusion already covered)
- Volume integral equation, penetrable materials, ...

Thank you!

Quadrature: Gibbs, Hewett, Moiola, Numer. Algorithms, 2022 Everything else: Caetano, Chandler-Wilde, Gibbs, Hewett, Moiola, arXiv:2212.06594 Julia code:

