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Acoustic wave scafttering by a planar screen

Acoustic waves in free space (R™*+!) are governed by the wave equation %Lg — AU =0.

In time-harmonic regime, assume  U(x, t)=R{u(x)e "} and look for u.
u satisfies the Helmholtz equation Au + k?u = 0, with wavenumber k > 0.
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Planar screen obstacle: T'bounded subset of I', := {x € R™!: x,,; =0} =R, n=1,2.



Scattering by Lipschitz and rough screens

Incident field is plane wave ul(x) = 4%, |d| = 1.

Real part total field Real part scattered field

Magnitude total field Magnitude scattered field

///

Classical problem when T is open and Lipschitz.

Magnitude far field z>0

Magnitude density |[du/dn]|
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Scattering by Lipschitz and rough screens

Incident field is plane wave ul(x) = 4%, |d| = 1.

Real part total field Real part scattered field Magnitude far field z>0

Magnitude scattered field
11 Magnitude density |[du/dn]|

Classical problem when T is open and Lipschitz.

What happens for rougher than Lipschitz, e.g. fractal, I'?
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Waves and fractals: applications

Wideband fractal antennas

www.antenna-theory.com

(Figures from http://www.antenna-theory.com/antennas/fractal.php)
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Waves and fractals: applications

Wideband fractal antennas

Scattering by ice crystals
in atmospheric physics
(C. Westbrook)

Fractal apertures
in laser optics
(J. Christian)
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Scattering by fractal screens

Plenty of mathematical challenges:

» How to formulate well-posed BVPs?
What is the right function space setting?
How to impose BCs?

How to write BVP as integral equation?

» How do prefractal solutions converge to fractal solutions?
» How can we accurately compute the scattered field?

> ...
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Tools developed here (hopefully!) relevant to (numerical) analysis of
otherlkEs, ¥DOs, BVPs, integration on rough/complicated/fractal domains.
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Our main contributions

| BVPS, FORMULATIONS, FUNCTION SPACES

» SCW, DH, I[EQT, 2015
Wavenumber-explicit continuity & coercivity est. in acoustic scattering by planar scr.
» SCW, DH, AM, IEOT, 2017
Sobolev spaces on non-Lipschitz subsets of R™ with application to BIEs on fractal scr.
» SCW, DH, SIAM J. Math. Anal., 2018
Well-posed PDE and integral equation formulations for scattering by fractal screens,
» AC,DH, AM, JFA 2021

Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets
NUMERICAL METHODS \

» SCW, DH, AM, J.Besson, Numer. Math., 2021
Boundary element methods for acoustic scattering by fractal screens
» J.Bannister, AG, DH, MB3AS 2022

Acoustic scattering by impedance screens/cracks with fractal boundary:
well-posedness analysis and boundary element approximation

» AG, DH, AM, Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals
» AC,SCW, AG, DH, AM, arXiv:2212.06594, 2022

A Hausdorff-measure BEM for acoustic scattering by fractal screens
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Theorem (SCW, DH 2018): For any compactI'cI'y,, BVP is well-posed & equivalent to BIE
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Two ways to apply BEM to fractal I

1 (CHANDLER-WILDE, HEWETT, MOIOLA, BESSON, 2021)

Approximate I' with Lipschitz *prefractal” I'; and apply conventional BEM on each T

open FJ - Fj+1

Aok ok ok

z
compact [ 5 I non-nested I';%1';; 1
» “Non-conforming”, since typically Vy ¢ V = H- /2

A A 4
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» BVP and BEM convergence from Mosco convergence of spaces
- No convergence rates

- Requires “thickened prefractals”
» Can use any BEM implementation
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1 (CHANDLER-WILDE, HEWETT, MOIOLA, BESSON, 2021)

Approximate I' with Lipschitz *prefractal” I'; and apply conventional BEM on each T

open FJ - Fj+1

Aok ok ok

» “Non-conforming”, since typically Vy ¢ V = H;l/z

» BVP and BEM convergence from Mosco convergence of spaces
No convergence rates

Requires “thickened prefractals”

» Can use any BEM implementation

non-nested I';5T ),
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compact Fj D Fj+1
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2 (CAETANO, CHANDLER-WILDE, GIBBS, HEWETT, MOIOLA, arXiv:2212.06594)
» Directly discrefise I, infegration wrt Hausdorff measure
Conformi thod Vy ¢ V = H- /2
> onforming Method ¥ V= Hy Rest of this talk!
» Easy convergence from Céa lemma + rates
» Require special quadrature formulas



What do we do?

» d-sefs:
function spaces, trace operators
infegral operators, BIEs, variational forms
Galerkin method, piecewise-constant BEM
Theorem: BEM convergence

» Disjoint IFS attractors:
IFS, ftree structure, wavelets
piecewise-constant BEM space
Theorem: BEM convergence rates

» Numerical results:
Cantor sets, dusts, non-homogeneous sets, Sierpinski triangle

» Numerical intfegration on IFS attractors:
barycentre rule for smooth integrand
self-similarity for homogeneous singular integrals
rule for Helmholtz kernel
numerical examples
comparison with chaos game
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d-sets and function spaces

A compact set T’ ¢ R is a d-set if cird <HYT NBr(x)) < cord xel,0<r<1

“Uniformly locally d-dimensional sets”. FALCONER, TRIEBEL, JONSSON&WALLIN, . ..
E.g.: Cantor sets/dusts, Sierpinski, Menger, snowflakes, . .. Closure of Lipschitz is n-set
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Single-layer operator on d-sefts

From now on, assume that scatterer T'isa d-set with n—1<d <n.
I’ produces scattered wave u® # 0. (u=0ifd<n-1)

td::%*%lE(O,%]
We define a single-layer operator as a mapping between intrinsic spaces:
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N Theorem
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Continuous for |t] < tg
Coercive and invertible for t = 0
Conjecture: S invertible for |t| < t4 (frue for LipschitzT', d = n)

d_e

Conjecture would imply regularity for scattering BIE: ¢ € H;n%

S : H(I) — H ()



Variational problems and Galerkin method on d-sets

Two equivalent variational problems. Datum: g € H'/2(r¢)* (tfrace of ub).
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find ¢ € H_I/Z (S, V) 172Dy xH-1/2(Te) = —{Gs V) HI/2(T o0 ) xH-1/2(Toc) VY € HF_I/Z
“Intrinsic” form: (recall: S = trrStr{)

find ¢ € H ), (86, ¥)maqrym-am) = ~(trg, V)marym-aqy Y € H D)
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Piecewise-constant BEM on d-sets

n
Finding ¢n = Z ijj € Vp, <S¢N7wN>th(r)><H—ld(r) = _<trF97 wN>th(F)><H_td(]f‘) Vipy € Vi
J=1
where {f/}}, is abasis of Vy, is equivalent fo solving the N x N linear system

A¢ = b, Ay = (SF, S ta(ry xm—ta (1) b = —(trr g, f ) gta () xi-ta (1) i,j=1,...,N.

d
Can choose Vi C Ly(T) = H-%(T). Need to compute integrals wrt H4!
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Piecewise-constant BEM
Vu is the space of piecewise-constant functions on a partition {’I}}j"’:1 of I,
with #4-measurable elements T;, HY(T;) >0, HHT;NT;) =0 forj+# i

Lo (T)-orthonormal basis:  fI(x) = (H4(Tj))~1/2 for x € T;, fi(x) = 0 otherwise.
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AE - b, Ay = <Sfj,fi>th (F)XHfld(F)’ bi = —<tr[‘g7fi>HLd (F)XHde (F)7 l7j = 1, e 7IV.
d
Can choose Vy C Ly(T) ecnse H—%(T). Need to compute integrals wrt 4!

Piecewise-constant BEM

Vu is the space of piecewise-constant functions on a partition {’I}}j"’:1 of I,
with #4-measurable elements T;, HY(T;) >0, HHT;NT;) =0 forj+# i

Lo (T)-orthonormal basis:  fI(x) = (H4(Tj))~1/2 for x € T;, fi(x) = 0 otherwise.

Theorem: BEM convergence for d-sets

For a sequence (Vy)nen Of discrete spaces, ¢y — ¢ if hy := maxj—;__ydiam(T}) — O.

How to get convergence rates? We need stronger assumptions on T.
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lterated function systems (IFS)

IFS is a family of M contracting similarities:

Sm:R" = R", |Sm(x) — sm(Y)| = pml|x — yl, 0<pm <1,

There exists a unique non-empty compact I' with T' = s(T"), where s(E) := |

‘&ﬁ& i}i

m=1,...,M.
g:lsm(E)-



lterated function systems (IFS)

IFS is a family of M contracting similarities:
Sm:R" = R", Ism(x) — sm(Y)| = pm|x — yl, 0<pm<1, m=1,...,M.
There exists a unique non-empty compact I' with I' = s(I'), where s(E) := ngl sm(E).

Assume open set condition (OSC): 30 c R™ open, s(0O) C O, s,»(0) N sy (0) = D Vm # m’
Then I'is d-set, "M _ pd = 1.
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lterated function systems (IFS)
IFS is a family of M contracting similarities:
Sm:R" = R", Ism(x) — sm(Y)| = pm|x — yl, 0<pm<1, m=1,...,M.
There exists a unique non-empty compact I' with I' = s(I'), where s(E) := Uﬁzl sm(E).

Assume open set condition (OSC): 30 c R™ open, s(0O) C O, s,»(0) N sy (0) =B Vm # m'.
Then I'is d-set, "M _ pd = 1.

IFS is homogeneous if pm = p Ym  (then d = £ 210).

T is disjoint if T'y, := s (T') are all disjoint. (FALCONER, HUTCHINSON, TRIEBEL,...)
Disjoint implies OSC and d < n.




IFS tree structure and wavelets

Disjoint IFS attractors have natural tree structure:

F() = F, Fm = Sm(r)7 Sm ‘= Sm; ©...0 S,

m=(my,...,my) €{1,...

M},

feN



IFS tree structure and wavelets

Disjoint IFS attractors have natural tree structure:

To:=T, Tm:=5m(l), Sm:=8m0...08m, m=(my,....,my)ec{l,... M}*, (€N

Characteristic functions:
(x) = 1 xel'p
Xm0 otherwise

Linear combinations give hierarchical
orthonormal wavelet basis of Lq(T).

Collecting I'ms according to diameter,

wavelet basis gives

characterisation of H'(I') and its norm.
(JONSSON 1998)

{HYT) } <1 & {HR} —(n—ay/2—1<s<—(n—d)/2
are interpolation scales




Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis:

yeeey

Vy = span{xm, me{1,... M}’ (N, diam(Tm)<h, diam(T,

0 < h < diam(T)

) > h} € Lo(T)



Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis: 0 < h < diam(I")

Vy = span{Xm, me{1,... M}, (N, diam(Tm)<h, diamTim .. m ) > h} € Lo(T)

Each T; = I'm is a copy of I' under similarity sy, with diam(Tj) < h.
diam(l') =v2, M =4
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Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis: 0 < h < diam(I")

Vy = span{xm, me{l,... M} /eN, diam(I'yp) < h, diam(I'(p,

Each T; = I'm is a copy of I' under similarity sy, with diam(Tj) < h.
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Piecewise-constant BEM space on IFS attractor

We exploit IFS tree structure to construct BEM space and basis: 0 < h < diam(I")

Vy = span{xm, me{1,... M}, (N, diam(Tm)<h, diamTim .. m ) > h} € Lo(T)

Each T; = I'm is a copy of I' under similarity sy, with diam(Tj) < h.
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Piecewise-constant BEM convergence for disjoint IFS attractors

Using coercivity, Céa, relation BEM space/wavelets, coefficient decay in H{(T'):

Theorem (CCGHM 2022)

I' disjoint IFS attractor. ~ Assume BIE solution ¢ € Hg for some —3 < s < =254, Then

16 — ol

1
- dngt oy = 90— onll _y < R @l
r



Piecewise-constant BEM convergence for disjoint IFS attractors

Using coercivity, Céa, relation BEM space/wavelets, coefficient decay in H{(T'):

Theorem (CCGHM 2022)

I' disjoint IFS attractor. ~ Assume BIE solution ¢ € Hg for some —3 < s < =254, Then

v

v

~ ~ 1
6 — ¢N|‘H—%+"%"(r) = ll¢ - (bN”H;% < ch®"2||¢|mg

h2st1 super-convergence of linear functionals, e.g.: point value u$(x) and far-field

n—d
Regularity assumption on ¢ implied by previous conjecture on S H. > ={0}
For homogeneous IFS, if conjecture is valid, rates are

M~2 forn=1, (pM)~"/? forn=2

with ¢ the “level” of the BEM space

In the limit d ~ n, we recover classical results for Lipschitz screens

Inverse estimates in Vy: bound H' error norm —1/2 < s; < s and condition number
Can control “fully discrete error” taking into account numerical integration
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2D scattering problem: CantorsetI' ¢ R

Real part of scattered field

() S

0 3 0 ) > 0
- L/
. “ //ﬂ =2, |-
.-
- Y
-2 -0.5 -1
. -0.5 0 0.5 1 1.5
1 €1
lée=1sll -1/2 llée=dusll, 172
Cantor set, relative errors e k=0.1 Cantor set, relative errors Er k=50
ol 12 ol
100¢ L 109 L T

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Level £

Level ¢
Rate 2-//2 in H */? norm as expected, independent of p. ui(x) = elkt-x
Similar plots (with double rate 2-¢) for near-field u®(x) and far-field.



3D scattering problem: Cantor dust I' ¢ R?

Real part scattered field

Magnitude scattered field

Cantor dust, absolute increment errors ||¢¢ — 1| 12, k= 0.1 Cantor dust, absolute increment errors ||¢¢ — gl 12 k=5
o i . ¢ B
B . . . . . \ \ . . , \ :

3 i i L i i | 3 i i L i i L
3 1 2 3 a 5 6 7 o 1 2 3 a 5 6
Level £ Level £

p-dependent rate (4p)~“/2 in Hy */* norm as expected.
Double rates (4p)~* for near-field and far-field.



Non-homogeneous dust, absolute increment errors

k=01
k=

- p-ntd2

Pa= 3.

A Non-homogeneous disjoint IFS attractor
with M = 4, p1,23 =

1




Non-homogeneous dust and Sierpinski triangle in R?

E.=r' ')
D B
- ?=
[ Y]
Na N
ar w»
T
W .
[ Y]

Sierpinski triangle, absolute increment errors

o k=01
10 k=1 |7
k=5

Level ¢

Non-homogeneous dust, absolute increment errors

o 10°

10 10?2 1
1.5 &1 Mesh size h

A Non-homogeneous disjoint IFS attractor

' log 3
With M =4, prog=3. pa=3, d=g5

b,

<« Sierpinski friangle is not disjoint:
does not satisfy BEM convergence
theory assumptions.



Comparison against “prefractal-BEM” for Cantor sets in R

Prefractal-BEM solution 1 computed on Lipschitz prefractal approximations of T as in

(CHANDLER-WILDE, HEWETT, MOIOLA, BESSON,

s — we i/ Na% — .

103
Q@ |"o-k=01
102, —é—k =30 |
p k=50
10 ¢ “%
. &%
10°} & ®—@—a
10t @
&
1072 ¢ &
o
1073 ¢ i
&
104 s— : : :
0 0.1 0.2 0.3 0.4

2021)

Compare far-fields on circle “at infinity”
<« Ratio between Hausdorff-BEM and
prefractal-BEM errors.

Same number of DOFs
(~ computational effort).
p < 0.3: Hausdorff-BEM is far more accurate

p ~ 1/3: Lebesgue-BEM has strange
“enhanced accuracy”

p > 0.4: the methods are comparable

5
Results are independent of wavenumber k.

20
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Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

Ay = Svar Xy = [ 9060w (0 xm (W)AH GO )

)AH? (x)dH? S S
/m/ (x,y) (x) (y) ®(x,y) = m'”—

21



Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

Ay = Svar Xy = [ 9060w (0 xm (W)AH GO )

)dH? (x)dH? ST
/m/ (x,y) (x) (y) ®(x,y) = m'”—

We studied how to approximate these and general integrals on IFS attractors in

GIBBS, HEWETT, MOIOLA, Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals
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Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

Ay = Svar Xy = [ 9060w (0 xm (W)AH GO )

)dH (x)dH< ST
/m/ (x,y) (x) (y) ®(x,y) = m'”—

We studied how to approximate these and general integrals on IFS attractors in

GIBBS, HEWETT, MOIOLA, Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals

Consider Hausdorff and more general “invariant meosures”' (HUTCHINSON 1981)
GivenIFS sp,...,sy and pi,...,pm € (0,1), Zm_lpmf 1,

S1Borel 1 st u(A) = SV pia(sit(A)), Supp) = (P = P i jr = HD
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Numerical integration on IFS attractors

Each element of the Galerkin matrix is double singular integral wrt Hausdorff measure:

Ay = Svar Xy = [ 9060w (0 xm (W)AH GO )

)R (x)dHY Y s
/m/ (x,y) (x) (y) ®(x,y) = m'”—

We studied how to approximate these and general integrals on IFS attractors in

GIBBS, HEWETT, MOIOLA, Numer. Algorithms, 2022
Numerical quadrature for singular integrals on fractals

Consider Hausdorff and more general “invariont measures”: (HUTCHINSON 1981)
GivenIFS si,...,sy and pi,....,puw € (0,1), M _ pn=1,

JBorel st u(A) =M puu(s,'(A), supp(p) =T (Pm = p if = HY

3 quadrature rules:
» Barycentre rule for “smooth” (C! and C?) integrands
» Self-similar rule for homogeneous singular intfegrands |x —y|~tor log |x — y

» Singularity-subtraction rule for Helmholiz fundamental solution  ®(x,y) = 47r|x gt R

Each I'y, is similar copy of T': for simplicity we just consider integrals over T'.

21



Barycentre rule for smmooth integrals
As before, partition ' in I'm = s, (I') with diam(I'm) ~ hg.

Extend classical midpoint rule:
Approximate f|r,, with f(xm). where xqy is barycentre of I'n,

/F Feodut) = 3 [ F0dnte) ~ 3 Tl (k)

22



Barycentre rule for ssmmooth integrals
As before, partition ' in I'm = s, (I') with diam(I'm) ~ hg.

Extend classical midpoint rule:
Approximate f|r,, with f(xm). where xqy is barycentre of I'n,

/F Feodut) = 3 [ F0dnte) ~ 3 Tl (k)

Barycentre and weights are easily computed:

M(Fm) = Pm 'pﬂ‘lé/’b(r)v

Xd/JJ(X) M -1 M
Xm = fl‘mi = Sm O - -0Sm, |:I_ Z pmpmAm:| Z DPmOm
#('m) m=1 m=1

wherem = (my,...,my) € (1,...,M)*,  sp(X) = pmAmX + 0m
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Barycentre rule for ssmmooth integrals
As before, partition ' in I'm = s, (I') with diam(I'm) ~ hg.

Extend classical midpoint rule:
Approximate f|r,, with f(xm). where xqy is barycentre of I'n,

/F Feodut) = 3 [ F0dnte) ~ 3 Tl (k)

Barycentre and weights are easily computed:

M(Fm) = Pm 'pﬂ‘lé/’b(r)v

#(T'm)

wherem = (my,...,my) € (1,...,M)*,  sp(x) = pmAmx +6

Jr Xdpa(x) S
Xm = lm = TPV Sm, 0+ - 0Sm, [I—Z pmpmAm:|
m=1

n
Error < 5 hg u(T) If ez, Huti(Tm))

Same story for double infegrals.

22



Quadrature rule for singular homogeneous integrals

Infegrability. ' a compact d-set, y € I:
/ Ix — y| {dHY(x) < o iff t<d, B = / / |x — y| t{dHY(y)dHY (x) < 0o iff t < d.
r ' rJr

Singularity of |x — y|~tis localised on the red line.

A Example:
Cantorset c R
M=2
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Quadrature rule for singular homogeneous integrals

Infegrability. ' a compact d-set, y € I:
/ Ix — y| {dHY(x) < o iff t<d, JE = / / |x — y| t{dHY(y)dHY (x) < 0o iff t < d.
r ' rJr

Singularity of |x — y|~tis localised on the red line.

M M
_T' ___ Decompose double integral over I x T Fr=> > I r,

m=1m’'=1

A Example:
Cantorset c R
M=2
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Quadrature rule for singular homogeneous integrals

Infegrability. ' a compact d-set, y € I:

/ Ix — y| {dHY(x) < o iff t<d, B = / / |x — y| t{dHY(y)dHY (x) < 0o iff t < d.
T ' rJr

F]XF] T

T I'xTD

FZXFZ
A Example:

Cantorset c R
M=2

Singularity of |x — y|~tis localised on the red line.

M M
Decompose double integral over I' x T': Fr=> > I r,
m=1m’'=1

On 'y, x Ty use self-similarity of T' and t-homogeneity of |x — y|b
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Quadrature rule for singular homogeneous integrals

Infegrability. ' a compact d-set, y € I:

/ Ix — y| {dHY(x) < o iff t<d, B = / / |x — y| t{dHY(y)dHY (x) < 0o iff t < d.
T ' rJr

Singularity of |x — y|~tis localised on the red line.

M M
Decompose double integral over I' x T': Fr=> > I r,

m=1m’'=1

On 'y, x Ty use self-similarity of T' and t-homogeneity of |x — y|b

t _2d—tgt
Irm,rm = Pm IF,F

Can compute If. | only in ferms of (smooth!) off-diagonal integrals:

A Example: 1 Mo M
t _ t
Cantor set c R Fr= [Nz o> K,
M—9 =D m—1Pm m=1 m’'=1
m’'#m

Compute If‘_ylw by applying barycentre rule to smooth Ifm_r ,m#m

m’

All this extends to:  log|x — y|, invariant measures p # i/,  single infegrals.

23



Quadrature and BEM

Split Helmholtz fundamental solution as

i (k|x —y|) = —L log|x — y| + R(Ix — y|) inR2
o(x. ) = { o' (Jebx — yl) = 5 logbx — bl + R(lx — ul)

. R Lipschitz
iy = wney + R(IX— YD) in &3

Compute the elements of the Galerkin matrix and RHS vector by approximating
homogeneous term with self-similar rule and smooth term R with barycentre rule.

» Quadrature error bound for each entry. hg—bound despite R ¢ C2.
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Quadrature and BEM

Split Helmholtz fundamental solution as

R Lipschitz

elklx—yl

dnlx—g] — 477\)17y| +R(|x - yl) in R?

THM (kjx — yl) = — & log |x — y| + R(x —y|) inR?
(x,y) = {4 ° #

Compute the elements of the Galerkin matrix and RHS vector by approximating
homogeneous term with self-similar rule and smooth term R with barycentre rule.

» Quadrature error bound for each entry. hg—bound despite R ¢ C2.
Fully discrete analysis from Strang argument:
BEM error bounds taking info account the approximation of the integrals.

h? convergence rate is preserved if hg < h! 4 (hg < h'*9/2 for homogeneous IFS).
From numerics: hg < h seems to be enough.
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Quadrature and BEM

Split Helmholtz fundamental solution as

i (k|x —y|) = —L log|x — y| + R(Ix — y|) inR2
o(x. ) = { o' (Jebx — yl) = 5 logbx — bl + R(lx — ul)

. R Lipschitz
iy = wney + R(IX— YD) in &3

Compute the elements of the Galerkin matrix and RHS vector by approximating
homogeneous term with self-similar rule and smooth term R with barycentre rule.

» Quadrature error bound for each entry. hg—bound despite R ¢ C2.
Fully discrete analysis from Strang argument:
BEM error bounds taking info account the approximation of the integrals.

h? convergence rate is preserved if hg < h! 4 (hg < h'*9/2 for homogeneous IFS).
From numerics: hg < h seems to be enough.

Barycentre rule requires value of #4(T"): not known for most fractals T' ¢ R!
This is irrelevant for the computation of near-field u®(x) and far-field in scattering BVP
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Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solutionon " x T’

10°

<« Cantfor setsin R
)

Cantor dusts in RZ »
k=5

Error plotted against
# quadrature points

Dashed lines
= theoretical rates

102

Qttral/|EF (@]

|7 (2]
3
o

=¢p =026
- O(N-2/1)
p=0251
O(N-2/1)
& p = 0.2501
- O(N-2/d)
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Quadrature: numerical examples

Approximation of the integral of the Helmholtz fundamental solutionon " x T’

10° =,-15 4 Cantor setsin R 10% ep=1/3
- O(N~2/) . —-- O(N /)
>p = 0. . o =¢p =026
Zow Cantor dusts in R » £, AT
= ,,—0.?{,1
! k=5 .
%_10
Error plotted against i
# quadrature points =’
Dashed lines 10° , .
. 10 10
= theoreftical rates
*(z;mmr (1!1.‘:( (I)
ot 4D Cantor dust
-©-Non-uniform (65)
-- O(h) X k=2
o) . c -
&% non hull-disjoint
Error plotted
i&g non-disjoint against hg

non-uniform

1072 107
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Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule: (FORTE, MENDIVIL, VRSCAY 1998)
(D choose xy € R™

(i) sequence {m;};cy Of i.i.d. random variables in {1, ..., M} with probabilities {p:, ..., pu}
(iii) construct the stochastic sequence x; = s, (x1) forj € N

N
(iv) approximate the integral of f € C° as %Zf()ﬁ) N /f(x)du(x)
Jj=1 r

26



Barycentre rule vs chaos game (Monte Carlo)

Chaos game is alternative quadrature rule:
(D choose xy € R™

(FORTE, MENDIVIL, VRSCAY 1998)

(i) sequence {my}jen Of i.i.d. random variablesin {1, ..., M} with probabilities {p1, ..., pu}
(i) construct the stochastic sequence x; = sy, (x-1) forj € N

N
(iv) approximate the integral of f € C° as %Zf (%) 222 / F0)dpu(x)
J=1 r

Approximation of [.. fdu for f € C>* onT' = Koch snowflake  (IFS: M=7,p.6= %7/)7:

1
L)

w = invariant measure with non-homogeneous weights py,. 1000 random realisations.

Chaos game quadrature

< Nodes

;w" &
= weights
=2 (1 realis.)

Relative error

" Relative
errors p»

107

10

._.
<
&

10°®

10?

Chaos game (all)

-e-Barycentre rule

| |~e-Chaos game (averaged)
-—-O(N~2/4)
........ O(N-12)

10* 100
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Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen I

I' compact: BVP is well-posed, equivalent to BIE
I’ d-set:  BIE in Hausdorff measure, convergence of piecewise-constant BEM
T disjoint IFS:  concrete recipe for BEM space and quadrature, convergence rates

27


https://github.com/AndrewGibbs/IFSintegrals

Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen I

I' compact: BVP is well-posed, equivalent to BIE
I’ d-set:  BIE in Hausdorff measure, convergence of piecewise-constant BEM
T disjoint IFS:  concrete recipe for BEM space and quadrature, convergence rates

Open questions and ongoing work:
n—d

Solution regularity theory (¢ € Hy, = )

» Non-disjoint attractors &4, d=n *

» Non-planar rough scatterers? E.g. dimy(I') > n— 1, curved screens,...
» Fast BEM implementation
>
>

v

Maxwell equations? Other PDEs? (Laplace, reaction-diffusion already covered)
Volume integral equation, penetrable materials, . ..

Quadrature: GIBBS, HEWETT, MOIOLA,  Numer. Algorithms, 2022
Everything else:  CAETANO, CHANDLER-WILDE, GIBBS, HEWETT, MOIOLA,  arXiv:2212.06594

Julia code: https://github.com/AndrewGibbs/IFSintegrals
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Summary and outlook

Scattering of time-harmonic acoustic waves by sound-soft planar screen I

I' compact: BVP is well-posed, equivalent to BIE
I’ d-set:  BIE in Hausdorff measure, convergence of piecewise-constant BEM
T disjoint IFS:  concrete recipe for BEM space and quadrature, convergence rates

Open questions and ongoing work:
n—d

Solution regularity theory (¢ € Hy, = )

» Non-disjoint attractors &4, d=n *

» Non-planar rough scatterers? E.g. dimy(I') > n— 1, curved screens,...
» Fast BEM implementation
>
>

v

Maxwell equations? Other PDEs? (Laplace, reaction-diffusion already covered)
Volume integral equation, penetrable materials, . ..

Thank youl!

Quadrature: GIBBS, HEWETT, MOIOLA,  Numer. Algorithms, 2022
Everything else:  CAETANO, CHANDLER-WILDE, GIBBS, HEWETT, MOIOLA,  arXiv:2212.06594

Julia code: https://github.com/AndrewGibbs/IFSintegrals
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