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Polynomials or not?

Goal:
Numerical approximation of BVPs for the Helmholtz eq. Au + x?u = 0.

Classical FEM & BEM use piecewise-polynomial approximants.

Why polynomials?
» Easy & cheap to evaluate, manipulate, differentiate, integrate. ..
» Approximation properties:

» Can approximate all functions
» Complete theory, convergence rates, only depend on smoothness

Why not polynomials?
» Can we do better?
Classical methods at large frequencies are not very satisfactory
» Not adapted to Helmholtz: polynomials are general-purpose tool
» Main goal: more accuracy for fewer DOFs

Everything can/might be extended to
fime-harmonic electromagnetic and elastic waves.



Outline

» FEM-type methods: (discretise PDE in Q)
» Trefffz methods
» Meshless methods, method of fundamental solutions (MFS)
» Partition of unity (PUM)
» Trefftz discontinuous Galerkin (TDG/UWVF)

» Quasi-Trefftz
» Approximation properties
» Instability and possible remedy

» BEM-type methods: (discretise BIE on 92)
Hybrid-numerical asymptotics BEM (HNA BEM)
(talk by F. Ecevib)

See also talk by T. Chaumont-Frelet
on approximation by
"Gaussian coherent states”.
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Trefftz methods

HIPTMAIR, M., PERUGIA 2016, A survey of Trefftz methods for the Helmholtz eq.

A Trefftz method is a finite-element-type scheme where

all discrete functions are solutions of the PDE to be approximated

in each element of a mesh.

Named after Erich Trefftz's 1926 paper.

E.g.: piecewise harmonic polynomials for Laplace equation Au = 0.
Main point: expect more accuracy for fewer DOFs.

Homogeneous Helmholtz eq. does not admit polynomial solutions:
Trefftz methods for Helmholtz are non-polynomial.



Trefftz bases

', Typical basis: (propagative) plane waves (PPWs):
x—erdx  deR® d-d=1
PPWs are just complex exponentials:
as easy & cheap to manipulate, evaluate,
| differentiate, integrate. .. as polynomials

— Usually preferred to other choices of Trefftz bases, e.g.:

circular waves cornerwaves  fundamental sol. wovebonds
Je(f‘ir) 2 N/ J€ Kr)e 159 §¢Z D, (x YJ f</72 ikx- S‘W) dp

Z> ) '%,
1‘00:.0 ] ////
s‘) >>) ",




Meshless methods and MFS

Trefftz basis functions cannot be “glued” across mesh elements. A

» Solution #1: meshless methods.
Herrera, Zielihski, Zienkiewicz. . . since 1970s.
Includes “Fokas tfransform method”.

Prominent example:
Method of fundamental solutions (MFS)

Solution u approximated by

1
uprs(X) = Y, aHYY (5% — )

2
4

(BARNETT, BETCKE 2008)
Nodes y; on a curve exterior to domain.
Coefficients a; computed by minimising error vs boundary conditions.

+ Simple, highly accurate, bounded or unbounded domains
- Delicate choice of nodes y;, little analysis, mostly 2D, instability.

Related: “Lightning method” for polygons (GOPAL, TREFETHEN 2019).



Partition of unity method

Trefftz basis functions cannot be “glued” across mesh elements. A

» Solution #2: Partition of unity method (PUM/PUFEM)
(MELENK, BABUSKA, 1995-97)

Multioly Trefftz basis {e*dm=x}, 1 M - J DOFs
e partition of unity {¢;}j=1,..0 € HY(Q) non Trefftz
Simple choice of PU:; piecewise-linear or bilinear finite elements

Vpum = span{e*dnZyp;(x)} ¢ H!(2): can use classical variational form.:

e.g. /(Vu-VE— K2 uD) —Hn/ uv = gv Vv e Vepy C HY(Q)
Q o9 a9



Trefftz DG methods

Trefftz basis functions cannot be “glued” across mesh elements. A

» Solution #3:

Allow discrete functions to be
discontinous across mesh face:
discontinuous Galerkin (DG) method.

Variational formulation weakly enforces
continuity and boundary conditions.

Examples: UWVF, TDG/PWDG, DEM, VICR, WBM, LS, FLAME, ...
NGSolve code by P Stocker: https://paulst.github.io/NGSTrefftz

A concrete Trefftz methods depends
on 2 choices:

» DG formulation
» discrete space

7 - 108 DOFs
TDG simulation by M. Sirdey


https://paulst.github.io/NGSTrefftz

TDG: sketch of the derivation

Consider Helmholtz equation with impedance (Robin) b.c.:
—Au—k?u=0 inQ c R"bdd., Lip.,n=2,3
Vu-n+iku=g € L?(09);

1 Partition 2 with a mesh 7, choose discrete Trefftz space V,(Tr)

2 Multiply with test v, integrate by parts twice on element K € Ty,
("ultraweak” formulation): Y, € Vp(Th)

/ Up(—Avp — K2vp) dV + / (—Onlp Up + Up Opp)dS =0
K S~——— oK
=0

3 Replace traces on 9K with "numerical fluxes” to weakly enforce
infer-element continuity and BCS:

u — {w}- [[vhup]]N

a,8>0 A
Vu, — {{thp}} — aikfup]n v

{-} = averages, [-[]v = normal jumps on the interfaces



TDG quasi-optimality
Summing over K we get variational formulation:
find up € Vp(Tn) st Ap(up, vp) = F(vp) Yup € Vp(Th)
mxm)cTUm:{ueL%m;—Au—ﬁv:omecdu<en}

Vo,weT(Th): = Well-posedness &
Im Ap(v,v) = |||v]||%, quasi-optimality:

_ < i _
[ An(w, v)] < 21|l ¢ 1ol 5, ) 1= welllz <3 b il = vplllzy

Holds for all discrete Trefftz spaces V,(7n) C T(Th)
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Dudality technique of (MONK, WANG 1999) allows fo
control L? norm of the error: |l — up||L2(Q) < C(r)||lu — wpl|| 7,
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Best approximation estimates

The analysis of any plane wave Trefffz method requires
best approximation estimates:

~Au—-r*u=0 inD € Ty, uec H'(D),

diam(D) = h, peN, dl,...,dpeSNfl,

p
3 ikrdy-x
nf llu—> are™% < Ce(h,p) [[ullggenr(p)
(=1 Hi(D)
Want to study convergence rate: e(h,p) =% o

p—o0

2 techniques:

» Show that Vu € T(7n), 3u, € V,(K) with the same Taylor
polynomial at a given xk (CESSENAT, DESPRES 1998)

» Vekua theory (MELENK 1995, M., HIPTMAIR, PERUGIA 2011)



Approximation by plane waves: Vekua theory

Analytical tool from (VEKUA 1942, 1967)

Allows to reduce
approximation of Helmholtz solution by plane and circular waves
1

approximation of harmonic functions by harmonic polynomials
(MELENK 1995, MoioLA 2011)

-1
—Au—r*u=0 o -AVul =0
harmonic approx. |

\%4 q
Circular waves — Harmonic polyn.

1 (Jacobi-Anger)~!

Plane waves



Vekua operators

D c R" star-shaped wrt. 0. Define two continuous functions:
‘X| \[n 2
H
Mi(x,t) = ——5 ﬁJl(w\le—t) Mi,My:Dx[0,1] R
ix|x J1 = Bessel f.
My (x,t) = ﬁ2| | \\/[7 J (iw[x[/t(1 = 1))
1
V[¢](x) ==p(x) + / M (x, t)¢(tx) dt Ag
(0]
1
Vo [0](x) :=o(x) +/ M, (x, t)o(tx) dt xeD
(0]
V : C°(D) — C°(D) is linear operator such that:
» Vo = v-1
> Ap=0 = (—A - K2) V]| =0
> P hormon[c ViP] = circular/spherical
polynomial wave

» V,V~! continuous in Sobolev norms, explicit in « (F/(D), W/-> (D))



Approximation by circular/spherical waves

span {Jo(r|x[) €}, >

Approximation of u by . -
span {Je(5|X]) Y (%) bocper jm<e 3P

inf H u-— V[P} H < C inf HV‘I[u] — PH contin. of V,
harmonic —_——— ,k,D P j,k,D
Pe{ polynomiols} —V[V-1[u]—P]
of degree <L
< Ce(h, L) Hvil[u]Hk_,_l,mD op?)(?(r)rporgisil’rs,
<Ce(h,L) llullysy .p contin. of VL.

= Orders of convergence for Helmholtz-by-CWs are the same as
harmonic functions-by-harmonic polynomials: L>k

G(h, L) ~ L)\(k-i-l—j)hk—i-l—j

The constant C depends explicitly on xh: C=C-(1+ xh)tbeirh



Approximation of circular waves by plane waves

Link between plane waves and circular/spherical waves:
Jacobi-Anger expansion

2D 12C0$9 ZIJ ‘[9 ZGC7 0eR
LEL
3D ”5” *4WZZ i je(r) Yem(€ )Yf,m(n) &nes’ r>0
plone wave £20m=—¢ sphencol w.

We need the other way round:

circular wave = linear combination of plane waves

» truncation of J-A expansion

» careful choice of directions (in 3D)
» solution of a linear system

» residual estimates

— explicit error bound



Final approximation by plane waves

Yu € H*'(D), —~Au-—r?u=0, D C R", ne {23},
; - irxd Kt 1—j,,—2Uet=)
nf llu—  agel X% < C(kh) K ™ 5T || g )
=1 Hi(D)
h = diam(D), p = PPW space dimension, D = mesh element

Better rates than polynomials!

If u extends outside D: exponential convergence.



Smooth-coefficient PDEs: quasi-Trefftz methods
All this is for constant-coefficients Helmholtz eq.: Au+ k2u=0.
What about Lu=V-(ax)Vu)+ r*nx)u = 07?

We don’t know exact solutions — no Trefftz method possible.

Quasi-Trefftz idea: (IMBERT-GERARD 2014-. . .)
use discrete functions that are approximate PDE solutions, Luy, ~ O.

More precisely,
degree-q Taylor polynomial (centred at a given xk) of Luy is O:

TEH Lu) =0 = Smallresidual:  Lup(x) = O(jx — xk|91)), xe K

Can construct quasi-Trefftz spaces
» with polynomials, or
» with generalised plane waves: el#*’®)
Basis construction and h-approximation properties are available



PPW instability

Plane-wave-based Trefftz-DG methods
» have great approximation properties
» are quasi-optimal (— convergence is guaranteed)
» are simple (exponential basis)

So why isn‘t everybody using plane waves?

The issue is “instability”. ]
Increasing # of PPWs,
at some point convergence stagnates.

107

1078 -

Discrete space contains el
an accurate approximation, LT T
but linear system cannot find it. o e ™

Numerical phenomenon: due to computer arithmetic+cancellation.

PPW instability already observed in all PPW-based Trefftz methods.
Usually described and treated as ill-conditioning issue.
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PPW instability and evanescent PWs

E. PAROLIN, D. HUYBRECHS, A. MOIOLA arXiv:2202.05658
Stable approximation of Helmholiz solutions by evanescent plane
waves Julia code on:

https://github.com/EmileParolin/evanescent-plane-wave—approx


https://arxiv.org/abs/2202.05658
https://github.com/EmileParolin/evanescent-plane-wave-approx

Adcock-Huybrechs theory

BEN ADCOCK, DAAN HUYBRECHS, SiRev 2019 & JFAA 2020,

“Frames and numerical approximation | & I1”

Goal: Approximate some v € V with linear combination of {¢,,} C V.

Result: If there exists % _| an¢, with > good approximation of v,
» small coefficients a,,

then the approximation of v in computer arithmetic is stable,
if one uses oversampling and SVD regularization.

Denoting P, s the truncated SVD projection with truncation e,

M
V= Amém
m=1

(Improvement: /e — € using oversampling.)

o= Ptee], < o, Vel )

Stability does not depend on (LS, Galerkin,...) matrix conditioning.



Fourier-Bessel basis on the disc

Let us focus on the unit disc B; ¢ R2.

Separable solutions in polar coordinates:

bp(r,0) := BpJp(kr)eP? Vpez, (r,0)eB
3p = normalization, e.g. in H!(B;) norm. Bp ~ m(%)"" as p — oo.
- aTTYy <" ,
. . ‘¢ 5‘ « »
""..‘. o .
- - - .
L - e » “
. " .‘ . " :
- ‘.. . A v
S aw ‘1‘. .’»' TR,
p=8=k/2 p=16=«k p=32=2k
Propagative mode Evanescent mode

{bp}pez is orthonormal basis of B := {ue H'(By): —Au— r?u=0}

20



Stable PPW approximation is impossible

The Jacobi-Anger expansion relates PPWs and circular waves bp:

PW, (x) = e4% = 3 (e 73,7 ) by(r, 0) d = (cos @, sin )
PEZ
102 — Modulus of Fourier coefficient
10 1 |Pem et = (8,1 ~ [p| Pl indep. of ¢.
1074 | 1
1077 ¢ | Approximation of u =3 t,b, € B
107101 | requires exponentially large coefficients.
10713 - -
0 T e 1w ue HS(By),s>1 <= [l ~o(|p|=5%)
Mode number p but |8, 1] ~ |p|~Plis much smaller!
VpeZ M
VM € N
dpech |Po= D mmPWam| <n = |pllace > (1-n) |5
o 5 ~—~

vn € (0,1) ~|p|lP!

21



Evanescent plane waves

Idea: use PPWs & evanescent plane waves (EPW)

gledx deC? d-d=1

Complex d! Again: exponential Helmholtz solutions.
() () () ()

d:\ e

¢=0 ¢(=0.1 (=02

Parametrised by p = direction, ¢ = “evanescence”.

Parametric cylinder: y:= (¢, () € Y:=[0,27) xR,

d(y) = (cos(y +i¢), sin(p +i¢)) € C?

22



EPW modal analysis

Jacobi-Anger expansion holds also for EPWs:

By (x) = €90 = 3™ (iPe~Peer 5, 1) by(x).

pez

Absolute values of Fourier coefficients

lire"Peer 51, k= 16:

102 T — T
-1 | O N || (=-2
. G Y - VALY semnnn (= -1
—4 @ a 5 £ B
10 ¥ H -_: ‘l‘ "g‘ — (=0
-7 | 2 O Os B =
10 " :i :. i: ;- .! ‘l !! mmmn C: 1
10 : : ;:_.- b t (= 2
10-18 F sl g 1 :
X = [}
1016 Hi - LH I
A R K 4k

Mode number p

Looks promising!

We can hope to
approximate
large-p Fourier modes

with EPWs
& small coefficients v,:

M
bp(x) ~ Z vmBWy, ()
m=1

23



Helmholtz solutions are EPW superpositions

We want to represent u € B as continuous superposition of EPWs:

x) = | By

w?(y)dy =: (T

v)(%)

xeB;

with density v € L2(Y; w?) and weight w?— e 2 sinh 5 ¢]

Parametric space

ry

Physical space

0 T:-A—B
Y bounded
invertible!

Herglotz density
v e A=span{ay} C L?(Y;w?)

Helmholtz solution
u € B =span{b,} C H(B)

Every Helmholtz solution is (continuous) linear combination of EPWs
lolla < 7= ulls

with small coefficients:




How to sample A? How to choose {ynm}m € Y?

Idea from (COHEN, MIGLIORATI 2017).

Fix P € N, set Ap := span{ay}p<p C A. Define probability density
» 5 p—1 = "Christoffel
P(¥) == g1 2ppi<p |9 (Y)] ony function

10% 5
10t
10~4
107

10710
10—13
10—16

i i
-3-2-10 1 2 3

We expect that any u € span{b,},<p CaN be approximated by EPWs
with parameters {y,} with small coefficients.

— Stable approx. in computer arithmetic using SVD & oversampling.

The M-dimensional EPW space depends on truncation parameter P:
the space is tuned to approximate the Fourier modes b, with |p| < P.

25



Approximation of b, by PPWs and by EPWs

e= 10714,

by, p = 8, residual [|A&, — cl|/||c]|

k=16, S = max{2M, 2|p|}

by, p = 8, coefficient norm ||€_||
T T

p = 8 101 .
o T T T ——  PPW
10 ——  PPW —=-EPW, P=40
= EPW, P=40

100 :

1074 8
—T T

10° |- 1 b 1
1075 -
10| 1w 4 .
10-16 | | | | | | 10-3L L | | | | | [ 1

0 50 100 150 200 250 300 0 50 100 150 200 250 300 I B

I
M = #DOFs M = #DOFs 4k K K 4k

Mode number p

M = #DOFs

lll-conditioning does not spoil EPW accuracy

M = #DOFs

—TTT
by, p = 40, coefficient norm ||&_||
. ps E clent e
by, p = 40, residual || A&, — c||/|[c|| o
P S B
10° - ——  PPW
= EPW, P=10
10°
1074 8
10°
1078 Bl Mode number p
107121 : 10
ool 10-0L | | | | | |
0 50 100 150 200 250 300 0 50 100 150 200 250 300




Approximation of general Helmholtz solution
uU=3,<plphbp, Ty~ (max{l,|p|—r})""/? £=100, P=2x, M =802
R{u} ul

- 22.

15.

|u — EPW|
1.2e-09

le-9
8e-10
6e-10
4e-10

- 2e-10
6.1e-13

u—PPW||, oo >7-10° ||u— EPW||, - DOFs/wavelength = A/M/[B;| ~ 1
L L

~

27



Convex polygon, same discrete space

Kk =16, M = 200,

u = fundamental solution at distance 0.25

Accuracy € Stability [|€g [le
T T T T T T T T
100 |- | 101 | —o— PPW Tip |
—a— PPW Flat
10-4 |- - 1010 |- ——EPW Tip ||
—+— EPW Flat
1078 - - 106 |- |
1012 - - 102 - |
19-16 | | | | L 19-2 | I | | |
0 100 200 300 400 500 100 200 300 400 500
M M
R{u} |u— PPW]| lu— EPW/|
2.9e-07 7.1e-13
le-13
| le-8 | le-14
le-9
2.3e-11 2.2e-17

8.5e02
I oo
L 004
0.02
—0
—-0.02
I -0.04
-6.8e-02
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Hybrid numerical-asymptotic approach

» FEM/BEM approximates u by a piecewise polynomial on a mesh.

» GO/GTD approximates u by a sum of WKB solutions
(corresponding to incident, reflected, diffracted waves):

u(x) ~ Y vy(x)e e, K — 00.
=1

Phases ¢; and amplitudes v; found by ray tracing, solving ODEs
along rays, and asymptotic matching.

» HNA methods use a FEM/BEM approximation space
incorporating oscillatory basis functions, with GO/GTD phases
and numerically computed piecewise-polynomial amplitudes.

Goal: Controllable accuracy and O(1) computational cost as k — oc.

20



Sound-soft convex polygonal scatterer

HNA survey: (CHANDLER-WILDE, GRAHAM, LANGDON, SPENCE 2012)
This setting: (CHANDLER-WILDE, LANGDON 2007)

ut = elrdx
Au+r?u=0 d| =1
u=20
useat — ¢y — yt
outgoing at infinity
Green's representation theorem: o(x,y) := iHél) (klx—y|)

um) = u'®) - [ Eyouy)dsy). xcB\D
r
Taking traces gives a boundary integral equation for d,u(y), €.9.

[ @ y)auy)dsiy) = wx), x<on
T

30



Incident, reflected and diffracted waves

According to geometric theory of diffraction (GTD), for kK — oo
" ou' s Cins

on a "lit” side Opu ~ Zan + Ae'"® + Be™'"
—_— —

—~ diffracted
incident + reflected

on a “shadow” side OpUl ~ Ael*S  Be xS
—_————
diffracted

where s is the arclength along the boundary.

Higher-order multiply-diffracted waves have the same phases eti#s,
but amplitudes A, B are harder to compute.



Hybrid numerical-asymptotic BEM

On each side T';, HNA BEM uses the ansatz

28nui + iks — —iks
dau(x(s)) = o |ty (9)e™ +u (L - s)e xely
5 )
i . .
~ {Zaau] + LUJL(S)GMS + u’; (LJ o S)efms _ wHNA(S)

where w;~ are piecewise-polynomials.

vji(s) are analytic in #{s} > 0, slowly oscillating, singular only at s = 0:

— approximated by piecewise-polynomials w:*
on two overlapping geometric meshes, graded towards the corners:

w; (L — ) +——r %

32



Convergence of hp-HNA BEM

k=128

——Rel[vg]

+
S VA

£Vl

,r\,’\rﬂﬁxrmvvvmf\/\/\/\/\/\/\A/\ |l

(GiBBS, HEWETT, HUYBRECHS, PAROLIN 2020)

“hp” approximation strategy: increase polynomial degree p
simultaneously with the number of layers n in the mesh (n = ¢p)

HEWETT, LANGDON, MELENK 2013

||u — uHNA”Loo(D) < Cﬂ5/2e77p.

[|Ont — Ypnal| +
i LD ||uHL°°(D)

#DOFs = O(n(p+ 1)) ~ 1og2 K is enough to maintain
any given accuracy for k — oo

In practice, the method is k-independent!
Analysis assumes the use of the “star-combined formulation”

33



Problems tfreated with HNA or related methods

>

vVvyVvyvVvyyvyy

Smooth scatterers
(ECEVIT, GRAHAM. . .)

Flat screens in 2D and 3D
Some non-convex polygons
Multiple obstacles
Transmission problems
Curvilinear polygons

Non-polynomial PUM-type BEM:
extended isogeometric BEM
(XIBEM)

(PEAKE, TREVELYAN, COATES 2013)

15

\‘%
\\\\
- \\\\\
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Summary

» FEM-type methods:

Trefftz methods

Meshless methods, method of fundamental solutions (MFS)
Partition of unity (PUM)

Trefftz discontinuous Galerkin (TDG/UWVF)

» Quasi-Trefftz

» Approximation properties of plane/circular/spherical waves
» Instability and possible remedy, evanescent plane waves
» BEM-type methods: HNA

vVvyy

Thank you!

Not discussed:
» Choice of PW directions: a priori & a posteriori adaptivity
» Ofther Trefftz formulations, UNVF framework
» Virtual elements (VEM): PUM and Trefftz versions (PERUGIA. . .)
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TDG: derivation — |

1 Consider Helmholtz equation with impedance (Robin) b.c.:

—Au—k?u=0 inQ c R*bdd., Lip.,n=2,3
Vu-n+iku=g € L?(09);

2 infroduce a mesh T, on €;

3 multiply the Helmholtz equation with a test function v and
infegrate by parts on a single element K € Tj:

/(Vu - VD — x2up)dV — / (n-Vu)vdsS = 0;
K 0K
4 integrate by parts again: ulfraweak step
/ (—uAD — k2uv)dV + / (—n-Vuv+un-Vo)dS = 0;
K 0K

5 choose a discrete Trefftz space V,(K),

denofte u, the discrete solution:

37



TDG: derivation — |l

6 replace traces on 9K with numerical fluxes t, and & :

~ Vu
u—>uP, §—>0'p ()ﬁa[{7

7 use the Trefftz property: V v, € V,(K)

U, Vup -ndS — /(3Kiﬁ,&p~nﬁpd5: 0;

/up(—Avp — k%vp) dV+/

OK

=0
TDG eq. on 1 element

8 Sum this equation over the elements K € Ty,.
TDG numerical fluxes on interior faces:

{ Gp= LV} — o [u]n %

pr ={u} -7 %[[vhup]]N

{-} = averages, [-]w = normal jumps on the interfaces, a,B8>0.

38



Variational formulation of the TDG
The TDG method reads: find u, € V,(Tn) s.1.

An(up, vp) = if@_l/ 6thvp-ndS+/ (1-96)gvpdS,
o9 o9
V up € Vp(Th)wWhere (F}]. = interior skeleton)
.Ah(u, U) ;:/ {{u}}[WﬂNdS +il€71/ ﬂﬂvhuﬂNﬂWﬂNdS
Fl Fl
—/ {Vnu} - [B]w dS +m/ o[u]x - [B]v dS
Fh Fh

—i—/ (1-9)uVyv-ndS +ik ! 6Vhu-nViyv-ndS
o o0

- dVhu-nvdS +i/~c/ (1 —4)uvdsS.
o0 a0

a,3>0,0< 0 < 1 are parameter functions.
Notation:  {-} = averages, [-]n = normal jumps on the interfaces

up — (Im Ap(up, up))? is @ norm on the Treffiz space = 3! u,.
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Evanescent plane waves

elrdx deC? d-d=1

Parametrised by o = direction, ¢ = “evanescence”,
Parametric cylinder: y:=(p¢) € Y:=1[0,2m) x R.

d(y) == (cos(y +i¢), sin(p +i¢)) € C?

EWy (%) := 4=

— ein(cosh Ox-d(p) efn(sinh Ox-dt () ,

oscillations along  d(p) := (cos g, sinp)
decay along  dt(p) := (—sin, cos )

A0



Weighted L?(Y) space A

Weighted L? space on parametric cylinder & orthonormal basis:

. . ¢
w(y) : = e remhlcitald y=(@{eyY » Y
¥
101 = [0l ey = [ 10G)Pu? () y
ap(y) : = ap ePEH¥) ap > 0 normalizationin ||| 4, p€ Z

A =span{aplpez " € LX(Yiw?)

Jacobi-Anger: Xe€ . y € H

p lp(9 lp+ic]) —
Zl Jp(kr)e Tpp (¥ Tp =
PEZ PEZ

apﬁp

From asymptotics & choice of w: O<7_<|p| <1y <0 VpeLZ

Vx € By, y— BWy(x) e A (not true for x € 9B;)
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Boundary sampling method

Given (PPW, EPW....) approximation set  span{¢m}m=1,... M.
how do we approximate u € B in practice?

We use boundary sampling on {xs = (, 5os) }._,

. A o= ¢ Xs), Slgooag ~
At =c with SC’: :: ug;:(S)S) nsq:{ ..... S o= uy= me(bm ~ U

Choose k2 # Laplace-Dirichlet eigenvalue on B;.

sampling in the bulk of By,
Could use instead: { impedance frace,
B/ L?(B;) / L?(0B,) projection. ..

» Oversampling: S > M .
required by Adcock-Huybrechs
» SVD regularization, threshold e:

A =Udiag(o,...,om) V7, Y :=diag({om > emaxon }),
m/
¢ = Vxiute
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EPW approximation: probability measure on Y

Probability density p & cumulative d.f. as functions of evanescence (:

Probability density py (k= 4)
10% 5

101
1074
107

—10 [ 1]
10 :

10718 4
10-16

1
0.8
0.6
0.4
0.2

0 1

Probability density pn (k = 16)
10% 5

—P=x/4
-1

10 ' epr
10 J—
1077

10710

10-13

10716 ¢

3-2-10 1 2 3
Cumulative density Yn (k = 16)
1
0.8
0.6
0.4
0.2
O 4

Probability density pn (k = 64)
102 3

10-1
10-4
10°7
10-10
10713
1071&

1 -
0.8
0.6 I
0.4
0.2 <

0 g 2)

They depend on P: target functions in span{ by} p <p-
Modes at ¢ ~ +1og(2P/k).
Computation of p requires k-dependent normalisation factors ap,.
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Parameter samples in the cylinder Y

Deterministic (P=x) Sobol (P=k) Random (P=k)
316 3 3
2 2 2
1 1 11
O EEEEEITET 0 potnsicrivaamomie 0 Masatineid i ot 12y <
. . . ) K
—2 —2 -2
-3 7 -3 -3 )
0 ™ 2T 0 ™ 2T 0 ™ 27
Deterministic (P=4k) Random (P=4k)
3 3
2 2 PR G e
. LR S E e T b
i 0 b avomdt Paiiany g
i S,
IR eI T EME L% S
@ -3 ¢
0 ™ 2T 0 Q0 27 T 2T

Samples computed on (0, 1)? & uniform prob., mapped to Y by Y1,
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Approximation by PPWs

Approximation of circular waves {b,}, by equispaced PPWs

k=16, e=10"1,  S=max{2M,2|p|},  residual & = 14¢.<l

llell

Accuracy & (bp, @, S, €) Stability [|€g [l
T T T T 1016

102 — T M1
—o— M =4k
-1 | | 13 |- |
10 10 m M=8k
1074 1 1010 g aA— M =16k
1077 1 107 1| —— M =32k
10710 1 1 10tf 1
10713 1 1 10t f 1
10716 I I I I 1072 I I I I
-4k kK 4k -4k KK 4k
Mode number p Mode number p
» Propagative modes |p| < «: O(e) errorvVM, O(1) coeff.s

» Evanescent modes |p| = 3k: O(1) errorVM, large coeff.'s
Condition number is irrelevant!
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Approximation by EPWs

Approximation of {b,}, , k=16, AM=4P, 6 M=8P

Accuracy E(bp, ®p i, S, €) Stability [[€s . ||¢2
102 T T T T 1016 T T T
1071 | ] 1013 1
1074 1 1010 |- 1
1077 ) 107 | 1
10710 ) 10% | )
1071 | l 10 | 1
O T R h am 0 T R A an
Mode number p Mode number p

Discrete EPW space approximates all bys for |p| < P!
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Approximation by EPWs

Approximation of {b,}, AM=4P, ¢ M=8P P=4k, k=16

Uniform Sobol Random
Accuracy E(bp, ®pu, S, €) Accuracy E(by, ®pa, S, €) Accuracy E(bp, ®pu, S, €)
102 T T T T 102 T T T T 102 T T T T
101 1 1071 1 101 1
1074 | 1 10741 1 1074 | 1
1077 1 1077 f 1 1077 f 1
10-10 |- § 10-10 |- | 10-10 |- §
10-13 | § 10-13 | i 10-13 | §
il [ el [ U man
Mode number p Mode number p Mode number p
Stability H&s,eHﬂ Stability [[€s . |le Stability H&s,eHﬂ
1016 i — i 1016 i — i 1016 i — i
1013 |- . 1013 | 1l 1013 | §
1010 - § 1010 | 1l 1010 | §
107 . 107 | § 107 | |
10% | 11 10t p 11 10t 1
101 . 10! | § 10t | |
e | O e | e
Mode number p Mode number p Mode number p




Approximation of general (tfruncated) u

Evanescent PW approximation of rough w: (S=2M,x = 16)

u= Y by it~ (max{l,[p| —x})"V/2
[pI<P

EPWs constructed assuming that P is known. Deterministic sampling.

; M __ dim(approx. space),
Convergence forM & plotted against 5571 = Tim (solufion space)
Accuracy E(u, ®par, S, €) Stability [|£g lle2/|ull5
100 10'% —e-P=1k
—a— P=2x
10-4 101 ——P=3k
——P=4k
1078
10-12 \0\._.
10-16 1 | | | > M/N :
1 2 3 4 5 1 2 3 4 5

Error is P-independent.
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Singular values of the matrix A

PPWs

102
10°
1072
10—4
106
10—8
10—10
10—12
10714
10—16

0 100 200 300 400 500

m

1 —16

k=16

(Sobol, P = 4k)

0 100 200 300 400 500

Comparable condition numbers, larger e-rank for EPWs.
Can further increase e-rank by raising P.

m
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