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Polynomials or not?
Goal:
Numerical approximation of BVPs for the Helmholtz eq. ∆u + κ2u = 0.

Classical FEM & BEM use piecewise-polynomial approximants.

Why polynomials?
▶ Easy & cheap to evaluate, manipulate, differentiate, integrate. . .
▶ Approximation properties:

▶ Can approximate all functions
▶ Complete theory, convergence rates, only depend on smoothness

Why not polynomials?
▶ Can we do better?

Classical methods at large frequencies are not very satisfactory
▶ Not adapted to Helmholtz: polynomials are general-purpose tool
▶ Main goal: more accuracy for fewer DOFs

Everything can/might be extended to
time-harmonic electromagnetic and elastic waves.
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Outline

▶ FEM-type methods: (discretise PDE in Ω)
▶ Trefftz methods
▶ Meshless methods, method of fundamental solutions (MFS)
▶ Partition of unity (PUM)
▶ Trefftz discontinuous Galerkin (TDG/UWVF)
▶ Quasi-Trefftz

▶ Approximation properties
▶ Instability and possible remedy
▶ BEM-type methods: (discretise BIE on ∂Ω)

Hybrid-numerical asymptotics BEM (HNA BEM)
(talk by F. Ecevit)

See also talk by T. Chaumont-Frelet
on approximation by
“Gaussian coherent states”.
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Part I

FEM-type methods



Trefftz methods

HIPTMAIR, M., PERUGIA 2016, A survey of Trefftz methods for the Helmholtz eq.

A Trefftz method is a finite-element-type scheme where
all discrete functions are solutions of the PDE to be approximated
in each element of a mesh.

Named after Erich Trefftz’s 1926 paper.

E.g.: piecewise harmonic polynomials for Laplace equation ∆u = 0.

Main point: expect more accuracy for fewer DOFs.

Homogeneous Helmholtz eq. does not admit polynomial solutions:
Trefftz methods for Helmholtz are non-polynomial.
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Trefftz bases

Typical basis: (propagative) plane waves (PPWs):

x 7→ eiκd·x d ∈ Rn d · d = 1

PPWs are just complex exponentials:
as easy & cheap to manipulate, evaluate,
differentiate, integrate. . . as polynomials

→ Usually preferred to other choices of Trefftz bases, e.g.:

circular waves
Jℓ(κr)eiℓθ, ℓ ∈ Z

corner waves
Jξ(κr)eiξθ, ξ /∈ Z

fundamental sol.
Φκ(x,yj)

wavebands∫ φ2

φ1
eiκx·(cosφ

sinφ) dφ
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Meshless methods and MFS
Trefftz basis functions cannot be “glued” across mesh elements.

▶ Solution #1: meshless methods.

Herrera, Zieliński, Zienkiewicz. . . since 1970s.
Includes “Fokas transform method”.

Prominent example:
Method of fundamental solutions (MFS)

Solution u approximated by

uMFS(x) =
∑N

j=1 ajH
(1)
0 (κ|x− yj|)

Nodes yj on a curve exterior to domain.
[BARNETT, BETCKE 2008]

Coefficients aj computed by minimising error vs boundary conditions.

+ Simple, highly accurate, bounded or unbounded domains
– Delicate choice of nodes yj, little analysis, mostly 2D, instability.

Related: “Lightning method” for polygons [GOPAL, TREFETHEN 2019].
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Partition of unity method
Trefftz basis functions cannot be “glued” across mesh elements.

▶ Solution #2: Partition of unity method (PUM/PUFEM)
[MELENK, BABUŠKA, 1995–97]

Multiply • Trefftz basis {eiκdm ·x}m=1,...,M
• partition of unity {φj}j=1,...,J ⊂ H1(Ω)

→ M · J DOFs
non Trefftz

Simple choice of PU: piecewise-linear or bilinear finite elements

× =

VPUM = span{eiκdm ·xφj(x)} ⊂ H1(Ω): can use classical variational form.:

e.g.
∫
Ω

(∇u · ∇v− κ2uv) + iκ
∫
∂Ω

uv =

∫
∂Ω

gv ∀v ∈ VPUM ⊂ H1(Ω)
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Trefftz DG methods
Trefftz basis functions cannot be “glued” across mesh elements.

▶ Solution #3:
Allow discrete functions to be
discontinous across mesh face:
discontinuous Galerkin (DG) method.

Variational formulation weakly enforces
continuity and boundary conditions.

Examples: UWVF, TDG/PWDG, DEM, VTCR, WBM, LS, FLAME, . . .

NGSolve code by P. Stocker: https://paulst.github.io/NGSTrefftz

A concrete Trefftz methods depends
on 2 choices:
▶ DG formulation
▶ discrete space 7 · 108 DOFs

TDG simulation by M. Sirdey
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TDG: sketch of the derivation
Consider Helmholtz equation with impedance (Robin) b.c.:

−∆u − κ2u = 0 in Ω ⊂ Rn bdd., Lip., n = 2,3

∇u · n + iκu = g ∈ L2(∂Ω);

1 Partition Ω with a mesh Th , choose discrete Trefftz space Vp(Th)

2 Multiply with test v, integrate by parts twice on element K ∈ Th
(“ultraweak” formulation): ∀vp ∈ Vp(Th)∫

K
up(−∆vp − κ2vp)︸ ︷︷ ︸

=0

dV +

∫
∂K

(−∂nup vp + up ∂nvp)dS = 0

3 Replace traces on ∂K with “numerical fluxes” to weakly enforce
inter-element continuity and BCs:

up → {{up}} −
β

iκ
[[∇hup]]N

∇up → {{∇hup}} − αiκ[[up]]N

α, β > 0

{{·}} = averages, [[·]]N = normal jumps on the interfaces

K1

K2
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TDG quasi-optimality
Summing over K we get variational formulation:

find up ∈ Vp(Th) s.t. Ah(up, vp) = F(vp) ∀vp ∈ Vp(Th)

Vp(Th) ⊂ T (Th) :=
{

v ∈ L2(Ω) : −∆v − κ2v = 0 in each K ∈ Th

}
∀ v,w ∈ T (Th) :

Im Ah(v, v) = |||v|||2Fh

|Ah(w, v)| ≤ 2 |||w|||F+
h
|||v|||Fh


⇒ Well-posedness &

quasi-optimality:
|||u − up|||Fh ≤ 3 inf

vp∈Vp(Th)
|||u − vp|||F+

h

Holds for all discrete Trefftz spaces Vp(Th) ⊂ T (Th)

|||v|||2Fh
:=

1
κ

∥∥∥√β[[∇hv]]N
∥∥∥2

F I
h

+ κ
∥∥√α[[v]]N

∥∥2
F I

h
+

1
κ

∥∥∥√δ∂nv
∥∥∥2

∂Ω
+ κ

∥∥∥√1−δv
∥∥∥2

∂Ω

|||v|||2F+
h
:=|||v|||2Fh

+κ
∥∥∥β−1/2{{v}}

∥∥∥2

F I
h

+
1
κ

∥∥∥α−1/2{{∇hv}}
∥∥∥2

F I
h

+ κ
∥∥∥δ−1/2v

∥∥∥2

∂Ω

Duality technique of [MONK, WANG 1999] allows to
control L2 norm of the error: ∥u − up∥L2(Ω) ≤ C(κ)|||u − up|||Fh
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Part II

Approximation in Trefftz spaces
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Best approximation estimates

The analysis of any plane wave Trefftz method requires
best approximation estimates:

−∆u − κ2u = 0 in D ∈ Th , u ∈ Hk+1(D),

diam(D) = h, p ∈ N, d1, . . . ,dp ∈ SN−1,

inf
α⃗∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓeiκ dℓ·x

∥∥∥∥∥
H j(D)

≤ C ϵ(h,p) ∥u∥Hk+1(D)

Want to study convergence rate: ϵ(h,p) h→0−−−→
p→∞

0

2 techniques:
▶ Show that ∀u ∈ T (Th), ∃up ∈ Vp(K) with the same Taylor

polynomial at a given xK [CESSENAT, DESPRÉS 1998]
▶ Vekua theory [MELENK 1995, M., HIPTMAIR, PERUGIA 2011]
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Approximation by plane waves: Vekua theory

Analytical tool from [VEKUA 1942, 1967]

Allows to reduce
approximation of Helmholtz solution by plane and circular waves
↓
approximation of harmonic functions by harmonic polynomials

[MELENK 1995, MOIOLA 2011]

−∆u − κ2u = 0
V−1

−−→ −∆V−1[u] = 0
harmonic approx. ↓

Circular waves
V←−−− Harmonic polyn.

↓ (Jacobi–Anger)−1

Plane waves
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Vekua operators
D ⊂ Rn star-shaped wrt. 0. Define two continuous functions:

M1(x, t) = −
κ|x|
2

√
t
n−2

√
1− t

J1
(
ω|x|
√

1− t
)

M2(x, t) = −
iκ|x|

2

√
t
n−3

√
1− t

J1
(
iω|x|

√
t(1− t)

)
M1,M2 : D × [0,1]→ R

J1 = Bessel f.

V [ϕ](x) :=ϕ(x) +
∫ 1

0
M1(x, t)ϕ(tx)dt

0 x

V2[ϕ](x) :=ϕ(x) +
∫ 1

0
M2(x, t)ϕ(tx)dt x ∈ D

V : C0(D)→ C0(D) is linear operator such that:

▶ V2 = V−1

▶ ∆ϕ = 0 ⇐⇒ (−∆− κ2) V [ϕ] = 0

▶ P =
harmonic

polynomial ⇐⇒ V [P] =
circular/spherical

wave

▶ V ,V−1 continuous in Sobolev norms, explicit in κ [H j(D),W j,∞(D)]
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Approximation by circular/spherical waves

Approximation of u by
span

{
Jℓ(κ|x|) eiℓθ

}
|ℓ|≤L 2D

span
{
jℓ(κ|x|) Y m

ℓ ( x
|x| )

}
0≤ℓ≤L,|m|≤ℓ

3D

inf

P∈
{

harmonic
polynomials

of degree ≤L

} ∥∥ u − V [P]︸ ︷︷ ︸
=V [V−1[u]−P]

∥∥
j,κ,D ≤ C inf

P

∥∥V−1[u]− P
∥∥

j,κ,D contin. of V ,

≤ C ϵ(h,L)
∥∥V−1[u]

∥∥
k+1,κ,D

harmonic
approx. results,

≤ C ϵ(h,L) ∥u∥k+1,κ,D contin. of V−1.

⇒ Orders of convergence for Helmholtz-by-CWs are the same as
harmonic functions-by-harmonic polynomials: L ≥ k

ϵ(h,L) ∼ Lλ(k+1−j)hk+1−j

The constant C depends explicitly on κh: C = C · (1 + κh)j+6e
3
4κh
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Approximation of circular waves by plane waves

Link between plane waves and circular/spherical waves:
Jacobi–Anger expansion

2D eiz cos θ =
∑
ℓ∈Z

iℓJℓ(z) eiℓθ z ∈ C, θ ∈ R

3D eirξ·η︸ ︷︷ ︸
plane wave

= 4π
∑
ℓ≥0

ℓ∑
m=−ℓ

iℓ jℓ(r) Yℓ,m(ξ)︸ ︷︷ ︸
spherical w.

Yℓ,m(η) ξ, η ∈ S2, r ≥ 0

We need the other way round:

circular wave ≈ linear combination of plane waves

▶ truncation of J–A expansion
▶ careful choice of directions (in 3D)
▶ solution of a linear system
▶ residual estimates

→ explicit error bound
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Final approximation by plane waves

∀u ∈ Hk+1(D), −∆u − κ2u = 0, D ⊂ Rn , n ∈ {2,3},

inf
α⃗∈Cp

∥∥∥∥∥u −
p∑

ℓ=1

αℓeiκ x·dℓ

∥∥∥∥∥
H j(D)

≤ C(κh) hk+1−jp−λ(k+1−j)
n−1 ∥u∥Hk+1(D)

h = diam(D), p = PPW space dimension, D = mesh element

Better rates than polynomials!

If u extends outside D: exponential convergence.
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Smooth-coefficient PDEs: quasi-Trefftz methods

All this is for constant-coefficients Helmholtz eq.: ∆u + κ2u = 0.
What about Lu = ∇ ·

(
a(x)∇u

)
+ κ2n(x)u = 0?

We don’t know exact solutions→ no Trefftz method possible.

Quasi-Trefftz idea: [IMBERT-GÉRARD 2014–. . . ]
use discrete functions that are approximate PDE solutions, Luh ≈ 0.

More precisely,
degree-q Taylor polynomial (centred at a given xK) of Lvh is 0:

T q+1
xK [Luh ] = 0 ⇒ Small residual: Lvh(x) = O(|x− xK |q+1), x ∈ K

Can construct quasi-Trefftz spaces
▶ with polynomials, or
▶ with generalised plane waves: eiκP(x)

Basis construction and h-approximation properties are available
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PPW instability
Plane-wave-based Trefftz-DG methods
▶ have great approximation properties
▶ are quasi-optimal (→ convergence is guaranteed)
▶ are simple (exponential basis)

So why isn’t everybody using plane waves?

The issue is “instability”.
Increasing # of PPWs,
at some point convergence stagnates.

Discrete space contains
an accurate approximation,
but linear system cannot find it. 0 50 100 150 200 250 300

10−16

10−12

10−8

10−4

100

M = #DOFs

bp, PPW, residual ∥Aξϵ − c∥/∥c∥

p = 8
p = 40

Numerical phenomenon: due to computer arithmetic+cancellation.

PPW instability already observed in all PPW-based Trefftz methods.
Usually described and treated as ill-conditioning issue.
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Part III

PPW instability and evanescent PWs

E. PAROLIN, D. HUYBRECHS, A. MOIOLA arXiv:2202.05658
Stable approximation of Helmholtz solutions by evanescent plane
waves Julia code on:
https://github.com/EmileParolin/evanescent-plane-wave-approx

https://arxiv.org/abs/2202.05658
https://github.com/EmileParolin/evanescent-plane-wave-approx


Adcock–Huybrechs theory

BEN ADCOCK, DAAN HUYBRECHS, SiRev 2019 & JFAA 2020,
“Frames and numerical approximation I & II”

Goal: Approximate some v ∈ V with linear combination of {ϕm} ⊂ V .

Result: If there exists
∑M

m=1 amϕm with ▶ good approximation of v,
▶ small coefficients am ,

then the approximation of v in computer arithmetic is stable,
if one uses oversampling and SVD regularization.

Denoting Pϵ
{ϕm} the truncated SVD projection with truncation ϵ,

∥∥∥v − Pϵ
{ϕm}v

∥∥∥
V
≤ inf

a∈CM

(∥∥∥∥∥v −
M∑

m=1

amϕm

∥∥∥∥∥
V

+
√
ϵ ∥a∥CM

)

(Improvement:
√
ϵ→ ϵ using oversampling.)

Stability does not depend on (LS, Galerkin,. . . ) matrix conditioning.
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Fourier–Bessel basis on the disc

Let us focus on the unit disc B1 ⊂ R2.

Separable solutions in polar coordinates:

bp(r, θ) := βp Jp(κr)eipθ ∀p ∈ Z, (r, θ) ∈ B1

βp = normalization, e.g. in H1(B1) norm. βp ∼ κ
(2|p|

eκ

)|p| as p→∞.

p = 8 = κ/2
Propagative mode

p = 16 = κ p = 32 = 2κ
Evanescent mode

{bp}p∈Z is orthonormal basis of B :=
{
u ∈ H1(B1) : −∆u − κ2u = 0

}
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Stable PPW approximation is impossible

The Jacobi–Anger expansion relates PPWs and circular waves bp:

PWφ(x) := eiκd·x =
∑
p∈Z

(
ipe−ipφβp

−1
)
bp(r, θ) d = (cosφ, sinφ)

φ

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

Modulus of Fourier coefficient
|ipe−ipφβ−1

p | = |β−1
p | ∼ |p|−|p| indep. of φ.

Approximation of u =
∑

p ûpbp ∈ B
requires exponentially large coefficients.

u ∈ Hs(B1), s ≥ 1 ⇐⇒ |ûp| ∼ o(|p|−s+ 1
2 )

but |β−1
p | ∼ |p|−|p| is much smaller!

∀p ∈ Z
∀M ∈ N
∀µ ∈ CM

∀η ∈ (0,1)

∥∥∥∥∥bp −
M∑

m=1

µmPW 2πm
M

∥∥∥∥∥
B

≤ η =⇒ ∥µ∥ℓ1(CM ) ≥ (1− η) |βp|︸︷︷︸
∼|p||p|
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Evanescent plane waves
Idea: use PPWs & evanescent plane waves (EPW)

eiκd·x d ∈ C2 d · d = 1

Complex d! Again: exponential Helmholtz solutions.

ζ = 0 ζ = 0.1 ζ = 0.2 ζ = 1 κ = 16

Parametrised by φ = direction, ζ = “evanescence”.
Parametric cylinder: y := (φ, ζ) ∈ Y := [0,2π)× R.

d(y) :=
(
cos(φ+ iζ), sin(φ+ iζ)

)
∈ C2

ζ

φ

Y
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EPW modal analysis

Jacobi–Anger expansion holds also for EPWs:

EWy(x) = eiκd(y)·x =
∑
p∈Z

(
ipe−ipφepζβ−1

p
)

bp(x).

Absolute values of Fourier coefficients |ipe−ipφepζβ−1
p |, κ = 16:

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

ζ= -2
ζ= -1
ζ= 0
ζ= 1
ζ= 2

Looks promising!

We can hope to
approximate
large-p Fourier modes
with EPWs
& small coefficients vm :

bp(x) ≈
M∑

m=1

vmEWym (x)
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Helmholtz solutions are EPW superpositions
We want to represent u ∈ B as continuous superposition of EPWs:

u(x) =
∫

Y
EWy(x) v(y) w2(y)dy =: (Tv)(x) x ∈ B1

with density v ∈ L2(Y ;w2) and weight w2= e−2κ sinh |ζ|+ 1
2 |ζ|

ζ

φ
0 2π

Y

Parametric space

Herglotz density

v ∈ A = span{ap} ⊂ L2(Y ;w2)

T : A → B

bounded
invertible!

B1

Physical space

Helmholtz solution

u ∈ B = span{bp} ⊂ H1(B1)

Every Helmholtz solution is (continuous) linear combination of EPWs
with small coefficients: ∥v∥A ≤ τ−1

− ∥u∥B
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How to sample A? How to choose {ym}m ∈ Y ?
Idea from [COHEN, MIGLIORATI 2017].

Fix P ∈ N, set AP := span{ap}|p|≤P ⊂ A. Define probability density

ρ(y) := w2

2P+1

∑
|p|≤P |ap(y)|2 on Y

ρ−1 = “Christoffel
function”

Generate M ∈ N nodes {ym}m=1,...,M ⊂ Y distributed according to ρ:

−3 −2 −1 0 1 2 3
10−16

10−13

10−10

10−7

10−4

10−1

102

ζ

Probability density ρN (κ = 16)

P =κ/4

P =κ

P =4κ

0 π 2π

−3

−2

−1

0

1

2

3

ϕ

ζ
Sobol (P=4κ)

p = 4κ

We expect that any u ∈ span{bp}|p|≤P can be approximated by EPWs
with parameters {ym} with small coefficients.

→ Stable approx. in computer arithmetic using SVD & oversampling.

The M-dimensional EPW space depends on truncation parameter P:
the space is tuned to approximate the Fourier modes bp with |p| ≤ P.
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Approximation of bp by PPWs and by EPWs
κ = 16, ϵ = 10−14, S = max{2M ,2|p|}

p = 8

0 50 100 150 200 250 300
10−16

10−12

10−8

10−4

100

M = #DOFs

bp, p = 8, residual ‖Aξε − c‖/‖c‖

PPW
EPW, P =40

0 50 100 150 200 250 300
10−3

101

105

109

1013

M = #DOFs

bp, p = 8, coefficient norm ‖ξε‖

PPW
EPW, P =40

p = 40

0 50 100 150 200 250 300
10−16

10−12

10−8

10−4

100

M = #DOFs

bp, p = 40, residual ‖Aξε − c‖/‖c‖

PPW
EPW, P =40

0 50 100 150 200 250 300
10−3

101

105

109

1013

M = #DOFs

bp, p = 40, coefficient norm ‖ξε‖

PPW
EPW, P =40

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

-4κ -κ κ 4κ
10−16

10−13

10−10

10−7

10−4

10−1

102

Mode number p

Ill-conditioning does not spoil EPW accuracy
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Approximation of general Helmholtz solution
u =

∑
|p|≤P ûpbp, ûp ∼ (max{1, |p| − κ})−1/2, κ = 100, P = 2κ, M = 802

ℜ{u}

|u − PPW |

|u|

|u − EPW |

∥u − PPW∥L∞ ≳ 7 · 109 ∥u − EPW∥L∞ DOFs/wavelength = λ
√

M/|B1| ≈ 1
27



Convex polygon, same discrete space
κ = 16, M = 200, u = fundamental solution at distance 0.25

0 100 200 300 400 500
10−16

10−12

10−8

10−4

100

M

Accuracy E

0 100 200 300 400 500
10−2

102

106

1010

1014

M

Stability ‖ξS,ε‖`2

PPW Tip
PPW Flat
EPW Tip
EPW Flat

ℜ{u} |u − PPW | |u − EPW |

28



Part IV

BEM-type methods: HNA



Hybrid numerical-asymptotic approach

▶ FEM/BEM approximates u by a piecewise polynomial on a mesh.

▶ GO/GTD approximates u by a sum of WKB solutions
(corresponding to incident, reflected, diffracted waves):

u(x) ∼
J∑

j=1

vj(x)eiκϕj(x), κ→∞.

Phases ϕj and amplitudes vj found by ray tracing, solving ODEs
along rays, and asymptotic matching.

×≈

▶ HNA methods use a FEM/BEM approximation space
incorporating oscillatory basis functions, with GO/GTD phases
and numerically computed piecewise-polynomial amplitudes.

Goal: Controllable accuracy and O(1) computational cost as κ→∞.
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Sound-soft convex polygonal scatterer
HNA survey: [CHANDLER-WILDE, GRAHAM, LANGDON, SPENCE 2012]
This setting: [CHANDLER-WILDE, LANGDON 2007]

Ω

u i = eiκd·x

|d| = 1∆u + κ2u = 0

u = 0

uScat = u − u i

outgoing at infinity

Green’s representation theorem: Φ(x,y) := i
4H(1)

0 (κ|x− y|)

u(x) = u i(x)−
∫
Γ

Φ(x,y)∂nu(y)ds(y), x ∈ R2 \ Ω

Taking traces gives a boundary integral equation for ∂nu(y), e.g.∫
Γ

Φ(x,y)∂nu(y)ds(y) = u i(x), x ∈ ∂Ω.
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Incident, reflected and diffracted waves
According to geometric theory of diffraction (GTD), for κ→∞

on a “lit” side ∂nu ∼ 2
∂u i

∂n︸ ︷︷ ︸
incident + reflected

+Aeiκs + Be−iκs︸ ︷︷ ︸
diffracted

on a “shadow” side ∂nu ∼ Aeiκs + Be−iκs︸ ︷︷ ︸
diffracted

where s is the arclength along the boundary.

Ω

lit side

shadow side 1
2

3

4

Higher-order multiply-diffracted waves have the same phases e±iκs,
but amplitudes A,B are harder to compute.

31



Hybrid numerical-asymptotic BEM
On each side Γj, HNA BEM uses the ansatz

∂nu
(
x(s)

)
=

[
2∂nu i

0

]
︸ ︷︷ ︸

GO

+ v+
j (s)eiκs + v−

j (Lj − s)e−iκs︸ ︷︷ ︸
GTD

x ∈ Γj

≈
[
2∂nu i

0

]
+ w+

j (s)e
iκs + w−

j (Lj − s)e−iκs = ψHNA(s)

where w±
j are piecewise-polynomials.

v±
j (s) are analytic in ℜ{s} > 0, slowly oscillating, singular only at s = 0:

→ approximated by piecewise-polynomials w±
j

on two overlapping geometric meshes, graded towards the corners:

w+
j (s)

w−
j (Lj − s)

s
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Convergence of hp-HNA BEM

[GIBBS, HEWETT, HUYBRECHS, PAROLIN 2020]

“hp” approximation strategy: increase polynomial degree p
simultaneously with the number of layers n in the mesh (n = cp)

HEWETT, LANGDON, MELENK 2013

∥∂nu − ψHNA∥L2(Γ) +
∥u − uHNA∥L∞(D)

∥u∥L∞(D)

≤ Cκ5/2e−τp.

#DOFs = O(n(p + 1)) ∼ log2 κ is enough to maintain
any given accuracy for κ→∞

In practice, the method is κ-independent!

Analysis assumes the use of the “star-combined formulation”
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Problems treated with HNA or related methods
▶ Smooth scatterers

[ECEVIT, GRAHAM. . . ]
▶ Flat screens in 2D and 3D
▶ Some non-convex polygons
▶ Multiple obstacles
▶ Transmission problems
▶ Curvilinear polygons
▶ . . .

Non-polynomial PUM-type BEM:
extended isogeometric BEM
(XIBEM)
[PEAKE, TREVELYAN, COATES 2013]
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Summary

▶ FEM-type methods:
▶ Trefftz methods
▶ Meshless methods, method of fundamental solutions (MFS)
▶ Partition of unity (PUM)
▶ Trefftz discontinuous Galerkin (TDG/UWVF)
▶ Quasi-Trefftz

▶ Approximation properties of plane/circular/spherical waves
▶ Instability and possible remedy, evanescent plane waves
▶ BEM-type methods: HNA

Not discussed:
▶ Choice of PW directions: a priori & a posteriori adaptivity
▶ Other Trefftz formulations, UWVF framework
▶ Virtual elements (VEM): PUM and Trefftz versions [PERUGIA. . . ]

Thank you!
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Part V

Extras



TDG: derivation — I
1 Consider Helmholtz equation with impedance (Robin) b.c.:

−∆u − κ2u = 0 in Ω ⊂ Rn bdd., Lip., n = 2,3

∇u · n + iκu = g ∈ L2(∂Ω);

2 introduce a mesh Th on Ω;

3 multiply the Helmholtz equation with a test function v and
integrate by parts on a single element K ∈ Th :∫

K
(∇u · ∇v − κ2uv)dV −

∫
∂K

(n · ∇u)v dS = 0;

4 integrate by parts again: ultraweak step∫
K
(−u∆v − κ2uv)dV +

∫
∂K

(−n · ∇u v + u n · ∇v)dS = 0;

5 choose a discrete Trefftz space Vp(K),

denote up the discrete solution;
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TDG: derivation — II

6 replace traces on ∂K with numerical fluxes ûp and σ̂p:

u → ûp,
∇u
iκ
→ σ̂p on ∂K ;

7 use the Trefftz property: ∀ vp ∈ Vp(K)∫
K

up(−∆vp − κ2vp)︸ ︷︷ ︸
=0

dV +

∫
∂K

ûp∇vp · n dS −
∫
∂K

iκσ̂p · n vp dS = 0︸ ︷︷ ︸
TDG eq. on 1 element

;

8 Sum this equation over the elements K ∈ Th .

TDG numerical fluxes on interior faces: σ̂p = 1
iκ{{∇hup}} − α [[up]]N

ûp = {{up}} − β 1
iκ [[∇hup]]N

K1

K2

{{·}} = averages, [[·]]N = normal jumps on the interfaces, α, β > 0.
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Variational formulation of the TDG
The TDG method reads: find up ∈ Vp(Th) s.t.

Ah(up, vp) = iκ−1
∫
∂Ω

δ g∇hvp · n dS +

∫
∂Ω

(1− δ)g vp dS,

∀ vp ∈ Vp(Th)where (F I
h = interior skeleton)

Ah(u, v) :=
∫
F I

h

{{u}}[[∇hv]]N dS + iκ−1
∫
F I

h

β [[∇hu]]N [[∇hv]]N dS

−
∫
F I

h

{{∇hu}} · [[v]]N dS + iκ
∫
F I

h

α [[u]]N · [[v]]N dS

+

∫
∂Ω

(1 − δ)u ∇hv · n dS + iκ−1
∫
∂Ω

δ∇hu · n∇hv · n dS

−
∫
∂Ω

δ∇hu · n v dS + iκ
∫
∂Ω

(1 − δ)u v dS.

α, β > 0, 0 < δ < 1 are parameter functions.

Notation: {{·}} = averages, [[·]]N = normal jumps on the interfaces

up 7→ (Im Ah(up,up))
1
2 is a norm on the Trefftz space ⇒ ∃ !up.
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Evanescent plane waves

eiκd·x d ∈ C2 d · d = 1

Parametrised by φ = direction, ζ = “evanescence”.

Parametric cylinder: y := (φ, ζ) ∈ Y := [0,2π)× R.

d(y) :=
(
cos(φ+ iζ), sin(φ+ iζ)

)
∈ C2

EWy(x) := eiκd(y)·x

= eiκ(cosh ζ)x·d(φ) e−κ(sinh ζ)x·d⊥(φ),

oscillations along d(φ) := (cosφ, sinφ)

decay along d⊥(φ) := (− sinφ, cosφ)
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Weighted L2(Y ) space A
Weighted L2 space on parametric cylinder & orthonormal basis:

w(y) : = e−κ sinh |ζ|+ 1
4 |ζ| y = (φ, ζ) ∈ Y

∥v∥2A : = ∥v∥2L2(Y ;w2) =

∫
Y
|v(y)|2w2(y)dy

ζ

φ

Y
w

ap(y) : = αp ep(ζ+iφ) αp > 0 normalization in ∥·∥A , p ∈ Z

A : = span{ap}p∈Z
∥·∥A ⊊ L2(Y ;w2)

Jacobi–Anger: x ∈ B1 y ∈
Y

EWy(x) =
∑
p∈Z

ipJp(κr)eip(θ−[φ+iζ]) =
∑
p∈Z

τpap(y)bp(x), τp :=
ip

αpβp
.

From asymptotics & choice of w: 0 < τ− ≤ |τp| ≤ τ+ <∞ ∀p ∈ Z.

∀x ∈ B1, y 7→ EWy(x) ∈ A (not true for x ∈ ∂B1)
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Boundary sampling method
Given (PPW, EPW,. . . ) approximation set span{ϕm}m=1,...,M ,
how do we approximate u ∈ B in practice?

We use boundary sampling on
{
xs =

( r=1
θs=

2πs
S

)}
s=1,...,S ⊂ ∂B1:

Aξ = c with As,m := ϕm(xs),
cs := u(xs)

s=1,...,S
m=1,...,M → uM =

∑
m

ξmϕm ≈ u.

Choose κ2 ̸= Laplace–Dirichlet eigenvalue on B1.

Could use instead:

{ sampling in the bulk of B1,
impedance trace,
B / L2(B1) / L2(∂B1) projection. . .

▶ Oversampling: S > M

▶ SVD regularization, threshold ϵ:

}
required by Adcock–Huybrechs

A = U diag(σ1, . . . , σM ) V ∗, Σϵ := diag({σm > ϵmax
m′

σm′}),

ξϵ = VΣ†
ϵU

∗c
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EPW approximation: probability measure on Y

Probability density ρ & cumulative d.f. as functions of evanescence ζ:

−3 −2 −1 0 1 2 3
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Probability density ρN (κ = 4)

P =κ/4

P =κ

P =4κ
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Probability density ρN (κ = 16)

P =κ/4

P =κ

P =4κ
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Probability density ρN (κ = 64)
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P =κ
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Cumulative density ΥN (κ = 4)
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Cumulative density ΥN (κ = 16)
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1

ζ

Cumulative density ΥN (κ = 64)

They depend on P: target functions in span{bp}|p|≤P .
Modes at ζ ≈ ± log(2P/κ).
Computation of ρ requires κ-dependent normalisation factors αp.
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Parameter samples in the cylinder Y

0 π 2π
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3

ϕ
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Random (P=κ)
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Sobol (P=4κ)

0 π 2π

−3

−2

−1

0

1

2

3

ϕ

ζ
Random (P=4κ)

Samples computed on (0,1)2 & uniform prob., mapped to Y by Υ−1.
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Approximation by PPWs

Approximation of circular waves {bp}p by equispaced PPWs

κ = 16, ϵ = 10−14, S = max{2M ,2|p|}, residual E = ∥Aξϵ−c∥
∥c∥

-4κ -κ κ 4κ
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Mode number p

Accuracy E(bp,ΦM , S, ε)

-4κ -κ κ 4κ
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104

107

1010

1013

1016

Mode number p

Stability ‖ξS,ε‖`2

M=4κ

M=8κ

M=16κ

M=32κ

▶ Propagative modes |p| ≲ κ: O(ϵ) error ∀M , O(1) coeff.’s
▶ Evanescent modes |p| ≳ 3κ: O(1) error ∀M , large coeff.’s

Condition number is irrelevant!
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Approximation by EPWs

Approximation of {bp}, P = 4κ , κ = 16, ▲ M = 4P, ♦ M = 8P
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Discrete EPW space approximates all bps for |p| ≤ P!
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Approximation by EPWs

Approximation of {bp}, ▲ M = 4P, ♦ M = 8P P = 4κ, κ = 16
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Approximation of general (truncated) u

Evanescent PW approximation of rough u: (S = 2M , κ = 16)

u =
∑
|p|≤P

ûpbp, ûp ∼ (max{1, |p| − κ})−1/2

EPWs constructed assuming that P is known. Deterministic sampling.

Convergence for M ↗ plotted against M
2P+1 = dim(approx. space)

dim(solution space) :
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P =1κ
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P =4κ

Error is P-independent.
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Singular values of the matrix A

κ = 16
PPWs EPWs (Sobol, P = 4κ)
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100
102

m

M=4κ

M=8κ

M=16κ

M=32κ

Comparable condition numbers, larger ϵ-rank for EPWs.
Can further increase ϵ-rank by raising P.
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