Stable approximation of Helmholtz solutions by evanescent plane waves

Andrea Moiola
https://euler.unipv.it/moiola/
\section*{UNIVERSITÀ DI PAVIA}
Department of Mathematics
"Felice Casorati"

Nicola Galante (INRIA) - Daan Huybrechs (KU Leuven) - Emile Parolin (INRIA)
2D: Parolin, Moiola, Huybrechs, M2AN, 2023
3D: Galante, Moiola, Parolin, arXiv:2401.04016, 2024

Helmholtz equation

Homogeneous Helmholtz equation:

$$
\Delta u+\kappa^{2} u=0
$$

Wavenumber $\kappa=\omega / c>0$, $\lambda=\frac{2 \pi}{\kappa}=$ wavelength.

$u(\mathbf{x})$ represents the space dependence of time-harmonic solutions
$U(\mathbf{x}, t)=\Re\left\{\mathrm{e}^{-\mathrm{i} \omega t} u(\mathbf{x})\right\}$ of the wave equation $\frac{1}{c^{2}} \frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
Fundamental PDE in acoustics, electromagnetism, elasticity. . .

- "Easy" PDE for small κ : perturbation of Laplace eq.
- "Difficult" PDE for large κ : high-frequency problems

Propagative plane waves

A difficulty for $\kappa \gg 1$ is the approximation of Helmholtz solutions
One can beat (piecewise) polynomial approximations using propagative plane waves (PPWs):

$$
\mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathbf{x}} \quad \mathbf{d} \in \mathbb{R}^{n} \quad \mathbf{d} \cdot \mathbf{d}=1
$$

Some uses of PPWs:

- Trefftz methods: UWVF, TDG, PWDG, DEM, VTCR, WBM, LS, PUM. . .
- reconstruction of sound fields from point measurements (microphones) in experimental acoustics

PPWs are complex exponentials:
easy \& cheap to manipulate, evaluate, differentiate, integrate. . .
\rightarrow preferred against other Trefftz functions (e.g. circular waves)
Rich PPW approximation theory for Helmholtz solutions:

- Cessenat, Després 1998, Taylor-based, h
- Melenk 1995, Moiola, Hiptmair, Perugia 2011, Vekua theory, hp, κ-explicit Better rates vs DOFs than polynomials

A negative result

Take $\Omega=B_{1} \subset \mathbb{R}^{n}$ the unit disc/ball, $n \in\{2,3\}$.
Choose your favourite

- wavenumber $\kappa>0$
- norm on Ω
- target relative accuracy $0<\delta<1$
(e.g. $\left.\|\cdot\|_{H^{1}(\Omega)},\|\cdot\|_{L^{2}(\Omega)}, \frac{\|\cdot\|_{H^{1}(\Omega)}}{\|P N\|_{H^{1}(\Omega)}}\right)$
- finite PPW set $\mathrm{e}^{\mathrm{i} k \mathbf{d}_{1} \cdot \mathbf{x}} \ldots \mathrm{e}^{\mathrm{i} k \mathbf{d}_{\rho} \cdot \mathbf{x}}$
(e.g. $0.5,1 \%$ or 10^{-10})
- large number M
(e.g. equispaced \mathbf{d}_{j})
(e.g. 10^{20})

Then we can give you an explicit u such that:

$$
\begin{array}{r}
u \in C^{\infty}\left(\mathbb{R}^{n}\right), \quad \Delta u+\kappa^{2} u=0, \quad\|u\|_{\text {your favourite }}=1 \\
\forall \boldsymbol{\mu} \in \mathbb{C}^{P} \text { with }\left\|u-\sum_{p=1}^{P} \mu_{p} \mathrm{e}^{\mathrm{i} / \mathbf{d}_{p} \cdot \mathbf{x}}\right\|_{\text {your favourite }} \leq \delta \quad \Longrightarrow \quad\|\boldsymbol{\mu}\|_{\mathbb{C}^{P}} \geq M
\end{array}
$$

Every PPW combination with accuracy δ has huge coefficient vector! If $M>$ (machine precision) $)^{-1}$, we can't represent u in computer arithmetic with PPWs. Accuracy and stability (bounded coefficients) are mutually exclusive.

Instability

The absence of good approximations to some Helmholtz solutions with coefficient norm proportional to $\|u\|$ is "instability".

This is the source of all notorious troubles with PPW-based Trefftz methods: ill-conditioning, convergence stagnation, cancellation, high sensitivity to parameters...

Existence of small-coefficient approximations
is a necessary condition for stable floating-point computations.
It is also sufficient, according to
ADCOCk, HuYBRECHS, "Frames and numerical approximation I \& II", 2019 \& 2020
Goal: Approximate some $v \in V$ with linear combination of $\left\{\phi_{p}\right\} \subset V$.
Result: If there exists $\sum_{p} \mu_{p} \phi_{p}$ with \quad good approximation of v, \leftarrow OK for PPW

- small coefficients $\mu_{p}, \quad \leftarrow$ False for PPW
then the approximation of v in computer arithmetic is stable, if one uses oversampling and SVD regularization.

Stability does not depend on (LS, Galerkin,....) matrix conditioning.

Part I

Evanescent plane waves

Evanescent plane waves

Evanescent plane waves (EPW):

$$
\mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathbf{x}} \quad \mathbf{d} \in \mathbb{C}^{n} \quad \mathbf{d} \cdot \mathbf{d}=d_{1}^{2}+\cdots+d_{n}^{2}=1
$$

- Complex d!
- Idea from WBM (wave-based method) by Wim Desmet etc (Leuven)
- Helmholtz solutions
- Complex exponentials: cheap computations, exact quadrature...
$-\mathrm{e}^{\mathrm{i} \kappa \mathrm{d} \cdot \mathrm{x}}=\mathrm{e}^{\mathrm{i} \kappa \Re \mathrm{d} \cdot \mathrm{x}} \mathrm{e}^{-\kappa \Im \mathrm{d} \cdot \mathrm{x}}$,
$\mathbf{d} \cdot \mathbf{d}=1 \Rightarrow \Re \mathbf{d} \cdot \Im \mathbf{d}=0$
$\Re \mathbf{d}$: propagation direction, $\kappa|\Re \mathbf{d}| \geq \kappa$
$\Im \mathbf{d}$: evanescence direction
- $\left|\mathrm{e}^{\mathrm{i} \kappa \mathbf{d} \cdot \mathbf{x}}\right|=\mathrm{e}^{-\kappa \Im \mathbf{d} \cdot \mathbf{x}}$ essentially localised, need normalisation, easy e.g. in L^{∞}

Evanescent plane waves: parametrisation

$\mathrm{e}^{\mathrm{i} / \mathrm{d} \cdot \mathbf{x}} \quad \mathbf{d} \in \mathbb{C}^{n}$
$\mathbf{d} \cdot \mathbf{d}=1 \Longleftrightarrow\left\{\begin{array}{l}|\Re \mathbf{d}|^{2}-|\Im \mathbf{d}|^{2}=1 \\ \Re \mathbf{d} \cdot \Im \mathbf{d}=0\end{array}\right.$
d parametrised by:

- $\mathbf{p}=\frac{\Re \mathbf{d}}{\Re \mathfrak{d} \mid} \in \mathbb{S}^{n-1}$: propagation direction
- $\mathbf{e} \in \mathbb{S}^{n-2}$: evanescence direction in the hyperplane $\perp \mathbf{p}$
- $\eta=|\Im \mathbf{d}| \in[0, \infty)$: evanescence strength
 $\eta=0 \Longleftrightarrow$ EPW is PPW $\quad|\Re \mathbf{d}|=\sqrt{1+\eta^{2}}$

Parameter vector $\quad \mathbf{y}:=(\mathbf{p}, \mathbf{e}, \eta) \quad \in \quad Y:=\mathbb{S}^{n-1} \times \mathbb{S}^{n-2} \times[0, \infty), \quad \mathrm{EW}_{\mathbf{y}}(\mathbf{x}):=\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}(\mathbf{y}) \cdot \mathbf{x}}$

In 2D: $\mathbf{p} \in \mathbb{S}^{1} \sim \theta \in[0,2 \pi), \quad \mathbf{e}= \pm 1$
In 3D: use Euler angles of rotation from reference direction $\mathbf{d}_{\uparrow}=\left(\mathrm{i} \eta, 0, \sqrt{1+\eta^{2}}\right) \rightarrow \mathbf{d}$

Herglotz functions \& EPW Herglotz representation

Herglotz functions are continuous superposition of PPWs:

$$
u(\mathbf{x})=\int_{\mathbb{S}^{n-1}} v(\mathbf{d}) \mathrm{e}^{\mathrm{i} / \mathbf{d} \cdot \mathbf{x}} \mathrm{d} \mathbf{d} \quad \text { for } \quad v \in L^{2}\left(\mathbb{S}^{n-1}\right)
$$

Only some Helmholtz solutions $u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ are Herglotz:
$L^{2}\left(\mathbb{S}^{n-1}\right) \ni v \mapsto u$ has dense image (WECK 2004) but is not surjective.

Idea: Define the EPW version of Herglotz functions:

$$
u(\mathbf{x})=(T v)(\mathbf{x}):=\int_{Y} v(\mathbf{y}) \underbrace{\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}(\mathbf{y}) \cdot \mathbf{x}}}_{E N_{\mathbf{y}}(\mathbf{x})} w^{2}(\mathbf{y}) \mathrm{d} \mathbf{y} \quad \text { for } \quad v \in L_{w^{2}}^{2}(Y)
$$

Weight $w>0$ is a normalisation, needed since $Y=\mathbb{S}^{n-1} \times \mathbb{S}^{n-2} \times[0, \infty)$ is unbounded in η.

Goal:

For every Helmholtz solution $u \in H^{1}(\Omega)$ we want v with $T v=u$ and $\|v\|_{L_{w^{2}}^{2}(Y)} \sim\|u\|_{H^{1}(\Omega)}$.

Herglotz representation on the disc and the sphere

Theorem: Helmholtz solutions on B_{1} are EPW superposition

For Ω the disc/ball $B_{1}, \quad T: \mathcal{A} \subset L_{w^{2}}^{2}(Y) \rightarrow \mathcal{B}:=\left\{u \in H^{1}\left(B_{1}\right), \Delta u+\kappa^{2} u=0\right\}$ is invertible. In particular, for all Helmholtz solutions $u \in H^{1}\left(B_{1}\right)$, there is a density $v=T^{-1} u$ such that

$$
u(\mathbf{x})=\int_{Y} v(\mathbf{y}) \mathrm{EW}_{\mathbf{y}}(\mathbf{x}) w^{2}(\mathbf{y}) \mathrm{d} \mathbf{y}, \quad\|v\|_{L_{w^{2}}^{2}(Y)} \leq C\|u\|_{H^{1}\left(B_{1}\right)}
$$

Need appropriate weight $w(\mathbf{y})=\mathrm{e}^{-\kappa \eta} \eta^{\frac{2 n-5}{4}}$
Key tool: expansion of EPWs in circular/spherical wave basis, extending Jacobi-Anger
EPWs are a continuous frame for the Helmholtz solution space $\mathcal{B} . \quad T=$ synthesis operator
Numerical recipes from discretisation of integral representation
Conjecture: the same theorem holds for all convex Ω (with the right w)

Circular \& spherical waves

Separable Helmholtz solutions in polar and spherical coordinates:

$$
\begin{array}{llrl}
2 D: & b_{\ell}(\mathbf{x})=\beta_{\ell} J_{\ell}(\kappa r) \mathrm{e}^{\mathrm{i} \ell \vartheta} & \ell \in \mathbb{Z}, \quad \mathbf{x}=(r, \vartheta) \in B_{1} \\
3 D: & b_{\ell}^{m}(\mathbf{x})=\beta_{\ell} j_{\ell}(\kappa|\mathbf{x}|) Y_{\ell}^{m}(\mathbf{x} /|\mathbf{x}|) & \ell, m \in \mathbb{Z},|m| \leq \ell, \quad \mathbf{x} \in B_{1}
\end{array}
$$

$\beta_{\ell}=$ normalisation in $H_{\kappa}^{1}\left(B_{1}\right)$ norm

$$
\beta_{\ell} \sim \kappa\left(\frac{2}{\mathrm{e} \kappa}\right)^{|\ell|}|\ell|^{|\ell|+\frac{n-2}{2}} \text { for }|\ell| \rightarrow \infty
$$

Orthonormal basis of $\mathcal{B}=\left\{u \in H^{1}\left(B_{1}\right), \Delta u+\kappa^{2} u=0\right\}$

b_{ℓ} and b_{ℓ}^{m} are Herglotz functions with density $v(\theta)=\beta_{\ell} \frac{\mathrm{e}^{\mathrm{i} \ell \theta}}{2 \pi \mathrm{i}^{\ell}}$, $v(\mathbf{d})=\beta_{\ell} \frac{Y_{e}^{m}(\mathbf{d})}{4 \pi \mathrm{i}^{\ell}}:$ $\|v\|_{L^{2}\left(\mathbb{S}^{n-1}\right)} \sim|\ell|^{|\ell|}$

Expansion of PPW in Fourier modes

Jacobi-Anger expansion: $\quad \mathbf{d} \in \mathbb{R}^{n}, \mathbf{d} \cdot \mathbf{d}=1$

$$
\mathrm{e}^{\mathrm{i} / \mathbf{d} \cdot \mathbf{x}}= \begin{cases}\sum_{\ell \in \mathbb{Z}}\left(\mathrm{i}^{\ell} \mathrm{e}^{-\mathrm{i} \ell \theta_{\mathbf{d}}} \beta_{\ell}^{-1}\right) b_{\ell}(\mathbf{x}) & \mathbf{d}=\left(\cos \theta_{\mathbf{d}}, \sin \theta_{\mathbf{d}}\right) \\ 4 \pi \sum_{\ell=0}^{\infty} \mathrm{i}^{\ell} \beta_{\ell}^{-1} \sum_{m=-\ell}^{\ell} \overline{Y_{\ell}^{m}(\mathbf{d})} b_{\ell}^{m}(\mathbf{x})\end{cases}
$$

Mode number ℓ (2D)

The modulus of Fourier coefficient decays $\sim \beta_{\ell}^{-1} \sim|\ell|^{-|\ell|}$
In 2D: $\quad\left|\mathrm{i}^{\ell} \mathrm{e}^{-\mathrm{i} \ell \theta_{\mathbf{d}}} \beta_{\ell}^{-1}\right|=\left|\beta_{\ell}^{-1}\right| \sim|\ell|^{-|\ell|} \quad$ indep. of $\theta_{\mathbf{d}}$
\Rightarrow the approximation of $u=\sum_{\ell} \widehat{u}_{\ell} b_{\ell} \in \mathcal{B}$
with $\widehat{u}_{\ell} \neq 0$ for some $|\ell| \gg \kappa$
requires exponentially large coefficients
$\forall \ell \in \mathbb{Z} \quad(|m| \leq \ell)$ $\forall P \in \mathbb{N}$
$\forall \mathbf{d}_{1} \ldots, \mathbf{d}_{P} \in \mathbb{S}^{n-1}$ $\forall \boldsymbol{\mu} \in \mathbb{C}^{P}$ $\forall \delta \in(0,1)$

$$
\left\|b_{\ell}^{(m)}(\mathbf{x})-\sum_{p=1}^{P} \mu_{p} \mathrm{e}^{\mathrm{i} \kappa \mathbf{d}_{p} \cdot \mathbf{x}}\right\|_{H^{1}\left(B_{1}\right)} \leq \delta \quad \Longrightarrow \quad\|\boldsymbol{\mu}\|_{l^{1}\left(\mathbb{C}^{p}\right)} \geq(1-\delta) \underbrace{\left|\beta_{\ell}\right|}_{\sim|\ell|^{|\ell|}}
$$

Complex-direction Jacobi-Anger \& EPW Fourier expansion

Now we expand EPWs in Fourier modes.
Generalised Jacobi-Anger expansion:
$\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}(\mathbf{y}) \cdot \mathbf{x}}=\left\{\begin{array}{l}\sum_{\ell \in \mathbb{Z}}\left(\mathrm{i}^{\ell} \mathrm{e}^{-\mathrm{i} \ell \theta}\left(\eta+\sqrt{\eta^{2}+1}\right)^{ \pm \ell} \beta_{\ell}^{-1}\right) b_{\ell}(\mathbf{x}) \quad \mathbf{y}=(\theta, \pm, \eta) \in[0,2 \pi) \times\{ \pm 1\} \times[0, \infty) \\ 4 \pi \sum_{\ell=0}^{\infty} \mathrm{i}^{\ell} \sum_{m=-\ell}^{\ell}\left[\sum_{m^{\prime}=-\ell}^{\ell} \overline{D_{\ell}^{m^{\prime}, m}(\boldsymbol{\theta}, \psi)} \gamma_{\ell}^{m^{\prime}} \mathbf{i}^{-m^{\prime}} P_{\ell}^{m^{\prime}}\left(\sqrt{\eta^{2}+1}\right)\right] \beta_{\ell}^{-1} b_{\ell}^{m}(\mathbf{x}) \quad \mathbf{y}=(\boldsymbol{\theta}, \psi, \eta)\end{array}\right.$
$D_{\ell}^{m^{\prime}, m}=$ Wigner matrix entry (spherical harmonic rotation)
$P_{\ell}^{m}=$ associated Legendre function (evaluated out of $[-1,1]$)
$\gamma_{\ell}^{m}=\sqrt{\frac{(2 \ell+1)(\ell-m)!}{4 \pi(\ell+m)!}}$
$\boldsymbol{\theta}, \psi=$ Euler angles
\triangleleft Absolute values of Fourier coefficients (2D) $\left(\eta+\sqrt{\eta^{2}+1}\right)^{ \pm \ell} \beta_{\ell}^{-1}=\mathrm{e}^{\ell \zeta} \beta_{\ell}^{-1} \quad \zeta= \pm \operatorname{arcsinh} \eta$ Looks promising!
We can hope to approximate large- ℓ Fourier modes with EPWs \& small coefficients.

3D EPW modal expansion

Absolute value of Fourier coefficients, plotted against (ℓ, m), $0 \leq|m| \leq \ell \leq 80$ In brackets: 2 Euler angles, $2 \kappa\left(\sqrt{\eta^{2}+1}-1\right) \sim 2 \kappa \eta$

Invertibility of EPW Herglotz representation

We want to use the EPW Fourier expansion to prove invertibility of

$$
\begin{aligned}
T: \mathcal{A} \subset L_{w^{2}(Y)}^{2} & \rightarrow \mathcal{B}:=\left\{u \in H^{1}\left(B_{1}\right), \Delta u+\kappa^{2} u=0\right\} \\
v & \mapsto u(\mathbf{x})=\int_{Y} v(\mathbf{y}) \mathrm{EW}_{\mathbf{y}}(\mathbf{x}) w^{2}(\mathbf{y}) \mathrm{d} \mathbf{y}
\end{aligned}
$$

Consider 2D case.

$$
\mathbf{y}=(\theta, \pm, \eta) \in[0,2 \pi) \times\{ \pm 1\} \times[0, \infty)=Y
$$

$$
w(\mathbf{y})=\mathrm{e}^{-\kappa \eta} \eta^{-\frac{1}{4}}, \quad a_{\ell}(\mathbf{y}):=\alpha_{\ell}\left(\eta+\sqrt{\eta^{2}+1}\right)^{ \pm \ell} \mathrm{e}^{\mathrm{i} \ell \theta} \in L_{w^{2}}^{2}(Y), \quad \alpha_{\ell}=L_{w^{2}}^{2}(Y) \text {-normalisation }
$$ $\left\{a_{\ell}, \ell \in \mathbb{Z}\right\}$ is orthonormal basis of $\mathcal{A}:=\operatorname{span}\left\{a_{\ell}, \ell \in \mathbb{Z}\right\} \subsetneq L_{w^{2}}^{2}(Y)$

$$
\mathrm{EW}_{\mathbf{y}}(\mathbf{x})=\sum_{\ell \in \mathbb{Z}} \tau_{\ell} \overline{a_{\ell}(\mathbf{y})} b_{\ell}(\mathbf{x}) \quad \begin{array}{|}
\forall \mathbf{x} \in B_{1}, \\
\forall \mathbf{y} \in Y,
\end{array} \quad \tau_{\ell}=\frac{\mathrm{i}^{\ell}}{\alpha_{\ell} \beta_{\ell}},
$$

$$
0<\tau_{-} \leq\left|\tau_{\ell}\right| \leq \tau_{+}<\infty \quad \forall \ell
$$

The operator $\quad T: \mathcal{A} \rightarrow \mathcal{B}$ is diagonal in ONB $\left\{a_{\ell}\right\},\left\{b_{\ell}\right\}$, bounded and invertible:

$$
T: a_{\ell} \mapsto \sum_{\ell^{\prime}} \tau_{\ell^{\prime}} b_{\ell^{\prime}} \int_{Y} a_{\ell} \overline{a_{\ell^{\prime}}} w^{2}=\tau_{\ell} b_{\ell}, \quad \quad \tau_{-}\|v\|_{\mathcal{A}} \leq\|T v\|_{\mathcal{B}} \leq \tau_{+}\|v\|_{\mathcal{A}} \quad \forall v \in \mathcal{A}
$$

Every Helmholtz solution is EPW superposition with small coefficients: $\quad\|v\|_{\mathcal{A}} \leq \tau_{-}^{-1}\|u\|_{\mathcal{B}}$

Parameter sampling in Y

How to choose points $\left\{\mathbf{y}_{p}\right\}_{p} \in Y$ and discrete EPW set $\left\{\mathrm{e}^{\mathrm{i} \kappa \mathbf{d}\left(\mathbf{y}_{p}\right) \cdot \mathbf{x}}\right\}_{p}$?
Construct quadrature rule, using technique from COhen, Migliorati, 2017.
Fix Fourier truncation $L \in \mathbb{N}$, probability density $\rho(\mathbf{y}):=\frac{w^{2}}{2 L+1} \sum_{|\ell| \leq L}\left|a_{\ell}(\mathbf{y})\right|^{2}$ on Y and generate $P \in \mathbb{N}$ nodes $\left\{\mathbf{y}_{p}\right\}_{p=1, \ldots, P} \subset Y$ distributed according to ρ.

From Cohen-Migliorati, expect that any $u \in \operatorname{span}\left\{b_{\ell}\right\}_{|\ell| \leq L}$ can be approximated by EPWs

$$
\left\{\mathbf{x} \mapsto \frac{1}{\sqrt{P \sum_{|\ell| \leq L}\left|a_{\ell}\left(\mathbf{y}_{p}\right)\right|^{2}}} \mathrm{EW}_{\mathbf{y}_{p}}(\mathbf{x})\right\}_{p=1, \ldots, P} \subset \mathcal{B}
$$

with small coefficients.
\rightarrow Stable approximation in computer arithmetic using SVD \& oversampling. Confirmed by numerics!

The P-dimensional EPW space depends on truncation parameter L : the space is tuned to approximate the Fourier modes b_{ℓ} with $|\ell| \leq L$.

Part II

Numerical results

Approximation by PPWs and by EPWs - 2D

$$
\ell=40
$$

Approximation of spherical waves b_{ℓ}^{0} by PPWs and EPWs - 3D

 Increasing \#DOFs does not improve PPW error.

Condition number is irrelevant.

EPW approximation of random circular wave combination

EPW approximation of random spherical wave combination

\triangle PPW error

\#random params $=\operatorname{dim} \mathcal{A}_{L}=676$
$\# D O F s=P=2704$

- EPW error

Polygonal domain: discrete space for circumscribed circle

```
\kappa=16, }\quad#DOFs=P=200
u= fundamental solution at distance 0.25,
\(L^{\infty}\) normalisation
```


$$
|u-P P W|
$$

$$
|u-E P W|
$$

Trefftz discontinuous Galerkin

Corner singularity: $\quad u(\mathbf{x})=J_{\nu}(k r) \mathrm{e}^{\mathrm{i} \nu \vartheta} \in H^{1+\nu-\epsilon}\left((0,1) \times\left(-\frac{1}{2}, \frac{1}{2}\right)\right), \quad \nu=\frac{2}{3}, \quad \kappa=10$ TDG on 8-triangle mesh

PPW error stalls at 10^{-3} while EPW error keeps decreasing.
We observe that EPWs gives better results than PPWs also for smooth $J_{1}(k r) \mathrm{e}^{\mathrm{i} \vartheta} \in C^{\infty}\left(\mathbb{R}^{2}\right)$.

Collocation matrix singular values - 3D

Singular values σ_{p} of $\mathbf{A} \in \mathbb{C}^{2 P \times P}, A_{s, p}=\phi_{p}\left(\mathbf{x}_{s}\right)$ $\kappa=6, L=4 \kappa$
Collocation nodes: $\mathbf{x}_{s}=$ Sloan-Womersley extremal points on $\partial B_{1} \subset \mathbb{R}^{3}$

EPWs do not reduce condition number for large P.
Higher ϵ-rank ($\#\left\{\sigma_{p} \geq \epsilon \sigma_{\max }\right\}$) gives larger numerically achievable approximation space.

Summary

- Approximation by PPWs is unstable: accuracy requires large coefficients
- Approximation by evanescent PWs seems to be stable
- Key new result is stable Herglotz transform $u=\int_{Y} v$ EW
- EPWs parameters chosen with sampling in Y
- III-conditioning is not the issue: the key is small-coefficient representation

Ongoing:

Thank you!

General convex geometries Proof of discrete EPW stability Simpler computational recipes Faster linear algebra Use in Trefftz-DG
Presence of evanescent modes in BVPs

