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Maxwell equations in heterogeneous media
Given:
I wavenumber k > 0
I sources J,K ∈ H(div0;R3), compactly supported
I ε0, µ0 > 0
I ε, µ ∈ L∞(R3; SPD) such that

Ωi := int
(

supp(ε− ε0I) ∪ supp(µ− µ0I)
)

is bounded and Lipschitz

Find E,H ∈ Hloc(curl;R3) such that

ik εE +∇×H = J in R3,

−ik µH +∇× E = K in R3,

(E,H) satisfy Silver–Müller radiation condition

|
√
ε0E−√µ0H× x

|x| | = O|x|→∞(|x|−2).

ε, µ

Ωi

ε = ε0
µ = µ0

Special case: “transmission problem”, i.e. homogeneous scatterer

ε =

{
εi

ε0
µ =

{
µi in Ωi

µ0 in Ωo := R3 \ Ωi
0 < εi , ε0, µi , µ0 constant.
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Wave scattering

The example we have in mind is incident wave EInc,HInc hitting Ωi :

→ BVP with data J = ik2(ε0 − ε)EInc,
supported on Ωi : K = ik2(µ− µ0)HInc.

Incoming field
EInc =

√
µ0
ε0

Aeik
√
ε0µ0x·d

HInc = d× Aeik
√
ε0µ0x·d

datum

Scattered field

E
H

BVP solution

Total field

E + EInc

H + HInc

physical field

3



Goal and motivation

If ε, µ are sufficiently regular then the problem is well-posed.
From Fredholm theory we have∥∥∥∥( E

H

)∥∥∥∥
Ωi/o

≤ C
∥∥∥∥( J

K

)∥∥∥∥
Ωi/o

Goal: find out how C = C(k, ε, µ) depends on k, ε and µ.

Why? In FEM & BEM analysis and in UQ for time-harmonic problems,
explicit parameter dependence allows to control:
I Quasi-optimality & pollution effect
I Gmres iteration numbers
I Matrix compression
I hp-FEM & BEM (Melenk–Sauter)
I Shape differentiation & uncertainty quantification
I . . .
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Who cares?
LAFONTAINE, SPENCE, WUNSCH, arXiv 2019: (Helmholtz)
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What about Helmholtz? [M. & S. 2019]

Simplest heterogeneous Helmholtz problem: find u ∈ H1
loc(Rd) s.t.

∆u + k2 n u = f in Rd

+Sommerfeld radiation c.
f ∈ L2(Rd), n =

{
ni constant in Ωi ,

1 in Ωo.

I If 0 < ni < 1, Ωi star-shaped Ωi ∪ supp f ⊂ BR

‖∇u‖2L2(BR) + k2
∥∥√n u

∥∥2
L2(BR)

≤
[
4R2 +

1
ni

(
2R +

d − 1
k

)2 ]
‖f ‖2L2(BR)

Fully explicit, k-independent, shape-robust estimate.
(For d = 2 it implies bounds for Maxwell TE/TM modes.)

I If ni > 1, Ωi strictly convex & C∞:
superalgebraic blow up in k, quasi-resonances,
ray trapping, creeping waves. . .

Dependence on parameters is complicated!
Monotonicity of n & shape of Ωi are crucial.
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Wavenumber-explicit bounds: a bit of history

I MORAWETZ 1960S/70S: introduced main tools (multipliers)
I MELENK 1995: 1st k-explicit bound for Helmholtz, bdd dom.
I CHANDLER-WILDE, MONK 2008: unbounded domains
I HIPTMAIR, MOIOLA, PERUGIA 2011: Maxwell, bdd dom.

homogeneous coeff.
heterogeneous coeff.

I MOIOLA, SPENCE 2019: Helmholtz & piecewise-constant n
I GRAHAM, PEMBERY, SPENCE 2019: Helmholtz & general coeff.
I VERFÜRTH 2019: Maxwell & impedance

Plenty of other related contributions exist!
BARUCQ, CHAUMONT-FRELET, FENG, HETMANIUK, LORTON, PETERSEIM,
SAUTER, TORRES, WIENERS&WOHLMUTH, [your name here], . . .

Our goal: extend [GRAHAM, PEMBERY, SPENCE 2019] to Maxwell eq.s.
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Bound #1: transmission problem

Single homogeneous scatterer:

ε =

{
εi in Ωi

ε0 in Ωo
, µ =

{
µi in Ωi

µ0 in Ωo
0 < εi , ε0, µi , µ0 constant.

If εi ≤ ε0 , µi ≤ µ0 , Ωi star-shaped , Ωi ∪ supp J ∪ supp K ⊂ BR, then

εi ‖E‖2BR
+ µi ‖H‖2BR

≤ 4R2
(
ε0
εi

+
µ0

µi

)(
ε0 ‖K‖2BR

+ µ0 ‖J‖2BR

)
.

‖·‖BR
= ‖·‖L2(BR)

Equivalent to wavenumber-independent H(curl; BR) bound for E.

If εi is (constant) SPD matrix, same holds if max eig(εi) ≤ ε0 and with
εi substituted by min eig(εi) in the bound. Same for µi .
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Bound #2: more general ε, µ

Assume ε, µ ∈W 1,∞(Ωi ; SPD), Ωi Lipschitz,

I Ωi star-shaped
I ‖εi‖L∞(∂Ωi)

≤ ε0, ‖µi‖L∞(∂Ωi)
≤ µ0, i.e. jumps are “upwards” on ∂Ωi

I ε∗ := ess infx∈Ωi

(
ε+ (x · ∇)ε

)
> 0, µ∗ := ess infx∈Ωi

(
µ+ (x · ∇)µ

)
> 0

“weak monotonicity” in radial direction, avoid trapping of rays
I “extra regularity” (E,H ∈ H1(Ωi ∪Ωo)3 or ε, µ ∈ C1(Ωi) or W 1,∞(R3))

Then we have explicit wavenumber-independent bound:

ε∗ ‖E‖2BR
+ µ∗ ‖H‖2BR

≤ 4R2
(‖ε‖2L∞(BR)

ε∗
+
ε0µ0

µ∗

)
‖K‖2BR

+ 4R2
(‖µ‖2L∞(BR)

µ∗
+
ε0µ0

ε∗

)
‖J‖2BR

.

Expect (from Helmholtz analogy) superalgebraic blow up in k
if any of the first 3 assumptions is lifted.

Similar results when R3 is truncated with impedance BCs.
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How our bound was obtained
First consider smooth case E,H ∈ C1(R3;C3).

(i) Multiply the 2 PDEs by the “test fields” (Morawetz multipliers)

(εE× x + R
√
εµH) & (µH× x− R

√
εµE) in BR ⊃ Ωi ,

(ε0E× x + r
√
ε0µ0H) & (µ0H× x− r

√
ε0µ0E) in R3 \ BR,

(ii) integrate by parts in Ωi , BR \ Ωi and R3 \ BR,
(iii) sum 3 contributions, (iv) take <eal part, (v) have fun!∫

BR

E ·
(
ε+ (x · ∇)ε

)︸ ︷︷ ︸
≥ε∗ by assumpt.

E + H ·
(
µ+ (x · ∇)µ

)︸ ︷︷ ︸
≥µ∗ by assumpt.

H Using PDEs &
∇·[εE]=∇·[µH]=0

= 2
∫

BR

<
{
K · (εE× x +

√
ε0µ0R H) + J · (µH× x−√ε0µ0R E)

}
+

∫
∂Ωi

[terms from IBP]︸ ︷︷ ︸
≤0 by εi�ε0,µi�µ0, n·x≥0,

[[ET ,HT ,(εE)N ,(µH)N ]]=0

+

∫
∂BR

[terms from IBP]︸ ︷︷ ︸
≤0 by S–M radiation c.

Conclude by Cauchy–Schwarz.
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Rough coefficients, regularity and density

Proof in previous slide only uses elementary results if E,H ∈ C1(R3;C3).

For general case we need density of inclusion

C∞(D)3⊂
{
v ∈ H(curl; D),∇·[Av] ∈ L2(D),Av·n̂ ∈ L2(∂D),vT ∈ L2

T (∂D)
}

for A = ε & A = µ, D Lipschitz bdd.

If A ∈ C1(Ωi ; SPD), this density is non-trivial but follows from regularity
results for layer potentials on manifolds [MITREA, TAYLOR 1999].

I Equivalent step for Helmholtz was much simpler.
I Constant scalar ε & µ: density proved in COSTABEL, DAUGE 1998.
I If E,H ∈ H1

loc(R3;C3) then no density is needed.
E.g. ensured if ε, µ ∈W 1,∞(R3; SPD) (no jumps).

I What about A ∈W 1,∞(Ωi ; SPD)?
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Summary

Time-harmonic Maxwell eq.s in R3 with heterogeneous inclusion:
I fully explicit bounds on ‖E‖H(curl,BR) if ε, µ “radially growing”

I also for impedance BVPs in star-shaped domains
I extends Helmholtz results from [GRAHAM, PEMBERY, SPENCE 2019]

Some open questions:
I resonance-free strip in complex k plane?
I presence of quasi-resonances blow up for “wrong” coefficients?
I rougher (W 1,∞(Ωi ; SPD),L∞) coefficients?
I relation with shape-differentiation and UQ?

Preprint coming soon. . .

Thank you!
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