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Maxwell equations in heterogeneous media

Given:
» wavenumber k> 0
sources J,K € H(divo; R3), compactly supported
€0, o >0
e, 1 € L=(R3; SPD) such that
Q== int(supp(e — eol) Usupp(p — /A()l)) is bounded and Lipschitz

vyy

Find E,H € Hj,c(curl; R®) such that
ikeE+V xH=J in R3,

—ikyH+VxE=K  inRS eg’{‘
(E, H) satisfy SilveMuUller radiation condition : (— e

|V€oE — /oH x |§T|:O|x\—>oo(|x|_2)~ K= to

Special case: “transmission problem”, i.e. homogeneous scatterer

€ pi N €Yy
€= = 0 < €, €0, pi, o constant.
{60 H {,U/O in QO — RS\Qi i €0, Mis HO



Wave scafttering

The example we have in mind is incident wave E¢ HI"¢ hitting €;:

— BVP with data J = ik?(ep — €)EI™,
supported on Q;: K =il?(p — po)He,

Incoming field Scattered field Total field
Ec = | /1o Aetkveorioxd E E+E™
HI"C — d x Aeik\/Mx-d H H-+ Hinc

BVP solution physical field



Goal and motivation

If €, 1 are sufficiently regular then the problem is well-posed.
From Fredholm theory we have

(%)l =<l(=)

Goal: find out how C = C(k,e, 1) dependson k, e and p.

Qi/o

Why? In FEM & BEM analysis and in UQ for time-harmonic problems,
explicit parameter dependence allows to control:

» Quasi-optimality & pollution effect

» Gmres iteration numbers

» Matrix compression

» hp-FEM & BEM (Melenk-Sauter)

» Shape differentiation & uncertainty quantification
>



Who cares?

LAFONTAINE, SPENCE, WUNSCH, arXiv 2019:

The following is a uou—exhau;tlve IV LV olocRel il Tl frequency-explicit conver-

el for solving the Helmholtz equation where a cen-

tral role is played by either the non-trapping resolvent estimate (1.5), or its analogue
(with the same k-dependence) for the commonly-used approximation of the exterior
problem where the exterior domain @, is truncated and an impedance boundary
condition is imposed:

conforming FEMs (including continuous interior-penalty methods) [72,
Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1], 77, Lemma 3.5],
[78, Assumptions 4.8 and 4.18], (45, §2.1], [110, Theorem 3.1], [113, §3.1], [44,
§3.2.1], [40, Remark 3.2], [41, Remark 3.1], [29, Assumption 1], [30, Definition
2], [55, Theorem 3.2], [50, Lemma 6.7], [14, Equation 4],

least squares methods [33, Assumption A1], [10, Remark 1.2], [64, Assumption
1 and equation after Equation 5.37],

DG methods based on piece-wise polynomials [46, Theorem 2.2|, [47, Theorem
2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76,
Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3, [112,
Remark 3.1], [94, Theorem 2.2],

plane-wave/Trefftz- DG methods [3, Theorem 1], (59, Equation 3.5], [60, The-
orem 2.2, [2, Lemma 4.1], [61. Proposition 2.1],

multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assump-
tion 5.3], 8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
integral-equation methods [71, Equation 3.24], [75, Equation 4.4, [24, Chap-
ter 5], [53, Theorem 3.2, [111, Remark 7.5, [43, Theorem 2], , Theorem
3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz
boundary-value problems (with these bounds often called “stability estimates™) mo-
tivated by applications in numerical analysis: [36], [57], [26], (11], [7], [70], [98], [28],
(6], [9], [27]. [93]. [54], [55] [83], [50], Of these papers, all but [70], [6], [27], [11] are
in nontrapping situations, [70], [6], [27] are in parabolic trapping scenarios, and [11]
proves the exponential growth (1.7) under elliptic trapping.

(Helmholtz)



What about Helmholtz? (M. &S. 2019)
Simplest heterogeneous Helmholtz problem: find u € HL.(R?) s.t.

Au+ kznu:fl i.” R feI?RY), n= n; cl:ons‘ron’rin Q,
+Sommerfeld radiation c. 1 inQ,.

»IfO<n; <1, Qstar-shaped Q; Usupp f C Bgr

2
2 2 1 d-1 2
||Vu||L2(BR) + k2 H\/ﬁuHLZ(BR) < [4R2 + E <2R+ Ic ) :| HfHL2(BR)

Fully explicit, k-independent, shape-robust estimate.
(For d = 2 it implies bounds for Maxwell TE/TM modes.)

> Ifn; > 1, Q;strictly convex & C=;
superalgebraic blow up in k, quasi-resonances,

ray trapping, creeping waves. .
Dependence on parameters is complicated! @ i
Monotonicity of n & shape of Q; are crucial.



Wavenumber-explicit bounds: a bit of history

» MORAWETZ 1960s/70s: intfroduced main tools (multipliers)
» MELENK 1995: 1st ke-explicit bound for Helmholiz, bdd dom.
» CHANDLER-WILDE, MONK 2008: unbounded domains
» HIPTMAIR, MOIOLA, PERUGIA 2011 Maxwell, bdd dom.

homogeneous coeff.

heterogeneous coeff.

» MOIOLA, SPENCE 2019: Helmholtz & piecewise-constant n
» GRAHAM, PEMBERY, SPENCE 2019: Helmholtz & general coeff.
» VERFURTH 2019:; Maxwell & impedance

Plenty of other related contributions exist!
BARUCQ, CHAUMONT-FRELET, FENG, HETMANIUK, LORTON, PETERSEIM,
SAUTER, TORRES, WIENERS&WOHLMUTH, (your name here), ...

Our goal: extend (GRAHAM, PEMBERY, SPENCE 2019) to Maxwell eq.s.



Bound #1: transmission problem

Single homogeneous scatterer:

i in i in gy
€= “ Y u= H "0 < €, €0, i, o constant.
€0 INQ, o iN €,

If ‘ e < €o ‘ ‘ i < po ‘ ‘ Q; star-shaped ‘ Q; UsuppJd UsuppK C Bg, then

2 2 Mo
B, + 3, < 4R( 2+ L2 (o I, + o 913,).

i L

I1e = [Il2(Br)
Equivalent to wavenumber-independent H(curl; Bg) bound for E.

If €; is (constant) SPD matrix, same holds if max eig(e;) < eo and with
¢; substituted by min eig(¢;) in the bound. Same for p;.



Bound #2: more generdl ¢, u

Assume e, i € W1 (Q;; SPD), Q; Lipschitz,
» Q; star-shaped
> il o0, = €0 [HillL< a0, < 1o, 1.€.jumps are “upwards” on 9
> €. = essinfxcq, (6 +(x- V)e) > 0, py := essinfgeq, (,u + (x- V);L) >0
“weak monotonicity” in radial direction, avoid trapping of rays
» “extraregularity” (E,H € H (Q;UQ,)3 or e, u € CH(Q;) or WH(R3))

Then we have explicit wavenumber-independent bound:
ex [ Ell, + w5,

2
lel2oe(me)  €otio ) el mm  como oo
S4R2( o, p )KBR+4R2< M“‘)+ - >|J||BR~

* * *

Expect (from Helmholtz analogy) superalgebraic blow up in k
if any of the first 3 assumptions is lifted.

Similar results when R3 is fruncated with impedance BCs.



How our bound was obtained
First consider smooth case E,H € C!(R3;C3).
() Multiply the 2 PDEs by the “test fields” (Morawetz multipliers)

(Exx+R/gH) & (Hxx-RJ/GE)  inBgoQ,
(60@ X X+ T‘\/GoluoiH) & (Moﬁ XX — r\/eouoiE) in R3 \ Bg,

(i integrate by partsin = Q;, Bgr\Q and RS\ Bg,
(iii) sum 3 contributions,  (iv) take Real part, (v) have fun!

w o Using PDEs &
/B E (c+(x V))E+H (u+(x-V)y)H o dinopoEs 8
N———— N———
: >e. by assumpt. > . by assumpt.

= 2/ §R{K- (E x X+ \/eoioRH) +J - (uH x X — ./eouoRf)}
Br

+ / [ferms from IBP]  + / [terms from IBP]

o —_— OBp “—————

<0by €=eo,pui=po, n-x>0, <0 by S-M radiation c.
[Er,Hr,(¢E)n,(nH)N]=0

Conclude by Cauchy-Schwarz.



Rough coefficients, regularity and density

Proof in previous slide only uses elementary results if E,H € C!(R3; C3).

For general case we need density of inclusion

c=([D)%c {v € H(curl; D), V-[Av] € L%(D), Av-fi € L2(D), vy € L%(&D)}
forA=¢& A=y, D Llipschitzbdd.

If A € C1(Q; SPD), this density is non-trivial but follows from regularity
results for layer potentials on manifolds (MITREA, TAYLOR 1999).

» Equivalent step for Helmholtz was much simpler.
» Constant scalar e & p: density proved in COSTABEL, DAUGE 1998,

» If E,H € H! (R* C?) then no density is needed.
E.g. ensured if ¢, € WH>°(R3; SPD) (N0 jumps).

» What about A € W>°(Q;; SPD)?



Summary

Time-harmonic Maxwell eq.s in R3 with heterogeneous inclusion:
» fully explicit bounds on ||E||g ey gy if € 1 “radially growing”
» also for impedance BVPs in star-shaped domains
» extends Helmholtz results from (GRAHAM, PEMBERY, SPENCE 2019)

Some open questions:
» resonance-free strip in complex k plane?
» presence of quasi-resonances blow up for “wrong” coefficients?
» rougher (W1>°(Q;; SPD), L*°) coefficients?
» relation with shape-differentiation and UQ?
Preprint coming soon. ..

Thank youl!
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