Explicit bounds for electromagnetic transmission problems

Andrea Moiola

UNIVERSITÀ DI PAVIA
Department of Mathematics "Felice Casorati"

Joint work with E.A. Spence (Bath)

Maxwell equations in heterogeneous media

Given:

- wavenumber $k>0$
- sources $\mathbf{J}, \mathbf{K} \in H\left(\operatorname{div}^{0} ; \mathbb{R}^{3}\right)$, compactly supported
- $\epsilon_{0}, \mu_{0}>0$
- $\epsilon, \mu \in L^{\infty}\left(\mathbb{R}^{3} ;\right.$ SPD $)$ such that
$\Omega_{i}:=\operatorname{int}\left(\operatorname{supp}\left(\epsilon-\epsilon_{0} \mathbf{\underline { I }}\right) \cup \operatorname{supp}\left(\mu-\mu_{0} \mathbf{\underline { \mathbf { I } }}\right)\right)$ is bounded and Lipschitz
Find $\mathbf{E}, \mathbf{H} \in H_{\text {loc }}\left(\operatorname{curl} ; \mathbb{R}^{3}\right)$ such that

$$
\begin{aligned}
\text { i } \boldsymbol{k} \in \mathbf{E}+\nabla \times \mathbf{H}=\mathbf{J} & \text { in } \mathbb{R}^{3}, \\
-\mathrm{i} \boldsymbol{k} \mu \mathbf{H}+\nabla \times \mathbf{E}=\mathbf{K} & \text { in } \mathbb{R}^{3},
\end{aligned}
$$

(\mathbf{E}, \mathbf{H}) satisfy Silver-Müller radiation condition

$$
\left\lvert\, \sqrt{\epsilon_{0}} \mathbf{E}-\sqrt{\left.\mu_{0} \mathbf{H} \times \frac{\mathbf{x}}{|\mathbf{x}|} \right\rvert\,=\mathcal{O}_{|\mathbf{x}| \rightarrow \infty}\left(|\mathbf{x}|^{-2}\right) .} \begin{array}{ll}
\epsilon=\epsilon_{0} \\
\mu & =\mu_{0}
\end{array}\right.
$$

Special case: "transmission problem", i.e. homogeneous scatterer

$$
\epsilon=\left\{\begin{array}{ll}
\epsilon_{i} \\
\epsilon_{0}
\end{array} \quad \mu=\left\{\begin{array}{ll}
\mu_{i} & \text { in } \Omega_{i} \\
\mu_{0} & \text { in } \Omega_{0}:=\mathbb{R}^{3} \backslash \overline{\Omega_{i}}
\end{array} \quad 0<\epsilon_{i}, \epsilon_{0}, \mu_{i}, \mu_{0}\right. \text { constant. }\right.
$$

Wave scattering

The example we have in mind is incident wave $\mathbf{E}^{\text {Inc }}, \mathbf{H}^{\text {Inc }}$ hitting Ω_{i} :
\rightarrow BVP with data
supported on Ω_{i} :
Incoming field
$\mathbf{E}^{I n c}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \mathbf{A} \mathrm{e}^{\mathrm{i} k \sqrt{\epsilon_{0} \mu_{0}} \mathbf{x} \cdot \mathbf{d}}$
$\mathbf{H}^{I n c}=\mathbf{d} \times \mathbf{A e}^{\mathrm{i} k \sqrt{\epsilon_{0} \mu_{0}} \mathbf{x} \cdot \mathbf{d}}$

datum

$$
\begin{aligned}
\mathbf{J} & =\mathrm{i} k^{2}\left(\epsilon_{0}-\epsilon\right) \mathbf{E}^{I n c}, \\
\mathbf{K} & =\mathrm{i} k^{2}\left(\mu-\mu_{0}\right) \mathbf{H}^{I n c} .
\end{aligned}
$$

Scattered field

E

H

BVP solution

Total field
$\mathbf{E}+\mathbf{E}^{\text {Inc }}$
$\mathbf{H}+\mathbf{H}^{\text {Inc }}$

physical field

Goal and motivation

If ϵ, μ are sufficiently regular then the problem is well-posed.
From Fredholm theory we have

$$
\left\|\binom{\mathbf{E}}{\mathbf{H}}\right\|_{\Omega_{i / o}} \leq C\left\|\binom{\mathbf{J}}{\mathbf{K}}\right\|_{\Omega_{i / o}}
$$

Goal: find out how $C=C(k, \epsilon, \mu)$ depends on k, ϵ and μ.
Why? In FEM \& BEM analysis and in UQ for time-harmonic problems, explicit parameter dependence allows to control:

- Quasi-optimality \& pollution effect
- Gmres iteration numbers
- Matrix compression
- hp-FEM \& BEM (Melenk-Sauter)
- Shape differentiation \& uncertainty quantification

Who cares?

Lafontaine, Spence, Wunsch, arXiv 2019:

(Helmholtz)

The following is a non-exhaustive list of papers on the fiequency-explicit convergence analysis of numerical methods for solving the Helmholtz equation where a central role is played by either the non-trapping resolvent estimate (1.5), or its analogue (with the same k-dependence) for the commonly-used approximation of the exterior problem where the exterior domain \mathcal{O}_{+}is truncated and an impedance boundary condition is imposed:

- conforming FEMs (including continuous interior-penalty methods) [72, Proposition 2.1], [74, Proposition 8.1.4], [56, Lemma 2.1], [77, Lemma 3.5], [78, Assumptions 4.8 and 4.18], [45, §2.1], [110, Theorem 3.1], [113, §3.1], [44, §3.2.1], [40, Remark 3.2], [41, Remark 3.1], [29, Assumption 1], [30, Definition 2], [55, Theorem 3.2], [50, Lemma 6.7], [14, Equation 4],
- least squares methods [33, Assumption A1], [10, Remark 1.2], [64, Assumption 1 and equation after Equation 5.37],
- DG methods based on piece-wise polynomials [46, Theorem 2.2], [47, Theorem 2.1], [39, Assumption 3], [48, §3], [62, Assumption A (Equation 4.5)], [76, Equation 4.4], [35, Remark 3.2], [32, Equation 2.4], [84, Equation 4.3], [112, Remark 3.1], [94, Theorem 2.2],
- plane-wave/Trefftz-DG methods [3, Theorem 1], [59, Equation 3.5], [60, Theorem 2.2], [2, Lemma 4.1], [61, Proposition 2.1],
- multiscale finite-element methods [51, Equation 2.3], [13, §1.2], [88, Assumption 5.3], [8, Theorem 1], [87, Assumption 3.8], [31, Assumption 1],
- integral-equation methods [71, Equation 3.24], [75, Equation 4.4], [24, Chapter 5], [53, Theorem 3.2], [111, Remark 7.5], [43, Theorem 2], [49, Theorem 3.2], [52, Assumption 3.2],

In addition, the following papers focus on proving bounds on the solution of Helmholtz boundary-value problems (with these bounds often called "stability estimates") motivated by applications in numerical analysis: [36], [57], [26], [11], [7], [70], [98], [28], [6], [9], [27], [93], [54], [55] [83], [50], Of these papers, all but [70], [6], [27], [11] are in nontrapping situations, [70], [6], [27] are in parabolic trapping scenarios, and [11] proves the exponential growth (1.7) under elliptic trapping.

What about Helmholtz?

Simplest heterogeneous Helmholtz problem: \quad find $u \in H_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ s.t.

$$
\begin{aligned}
& \Delta u+k^{2} n u=f \text { in } \mathbb{R}^{d} \\
& \text { +Sommerfeld radiaation } c .
\end{aligned} \quad f \in L^{2}\left(\mathbb{R}^{d}\right), \quad n=\left\{\begin{array}{cc}
n_{i} & \text { constant in } \Omega_{i}, \\
1 & \text { in } \Omega_{0} .
\end{array}\right.
$$

- If $0<n_{i}<1, \Omega_{i}$ star-shaped
$\Omega_{i} \cup \operatorname{supp} f \subset B_{R}$

$$
\|\nabla u\|_{L^{2}\left(B_{R}\right)}^{2}+k^{2}\|\sqrt{n} u\|_{L^{2}\left(B_{R}\right)}^{2} \leq\left[4 R^{2}+\frac{1}{n_{i}}\left(2 R+\frac{d-1}{k}\right)^{2}\right]\|f\|_{L^{2}\left(B_{R}\right)}^{2}
$$

Fully explicit, k-independent, shape-robust estimate. (For $d=2$ it implies bounds for Maxwell TE/TM modes.)

- If $n_{i}>1, \Omega_{i}$ strictly convex \& C^{∞} :
 superalgebraic blow up in k, quasi-resonances, ray trapping, creeping waves...

Dependence on parameters is complicated! Monotonicity of $n \&$ shape of Ω_{i} are crucial.

Wavenumber-explicit bounds: a bit of history

- Morawetz 1960s/70s:
introduced main tools (multipliers)
- Melenk 1995: 1st k-explicit bound for Helmholtz, bdd dom.
- Chandler-Wilde, Monk 2008: unbounded domains
- Hiptmair, Moiola, Perugia 2011:

Maxwell, bdd dom.
homogeneous coeff.
heterogeneous coeff.

- Moiola, Spence 2019:

Helmholtz \& piecewise-constant n

- Graham, Pembery, Spence 2019:
- Verfürth 2019:

Helmholtz \& general coeff.
Maxwell \& impedance
Plenty of other related contributions exist!
Barucq, Chaumont-Frelet, Feng, Hetmaniuk, lorton, Peterseim, Sauter, TORRES, Wieners\&WOHLMUTH, (your name here), ...

Our goal: extend (Graham, Pembery, Spence 2019) to Maxwell eq.s.

Bound \#1: transmission problem

Single homogeneous scatterer:

$$
\epsilon=\left\{\begin{array}{ll}
\epsilon_{i} & \text { in } \Omega_{i} \\
\epsilon_{0} & \text { in } \Omega_{o}
\end{array}, \quad \mu=\left\{\begin{array}{ll}
\mu_{i} & \text { in } \Omega_{i} \\
\mu_{0} & \text { in } \Omega_{o}
\end{array} \quad 0<\epsilon_{i}, \epsilon_{0}, \mu_{i}, \mu_{0}\right. \text { constant. }\right.
$$

If $\epsilon_{i} \leq \epsilon_{0}, \mu_{i} \leq \mu_{0}, \Omega_{i}$ star-shaped, $\Omega_{i} \cup \operatorname{supp} \mathbf{J} \cup \operatorname{supp} \mathbf{K} \subset B_{R}$, then

$$
\epsilon_{i}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{i}\|\mathbf{H}\|_{B_{R}}^{2} \leq 4 R^{2}\left(\frac{\epsilon_{0}}{\epsilon_{i}}+\frac{\mu_{0}}{\mu_{i}}\right)\left(\epsilon_{0}\|\mathbf{K}\|_{B_{R}}^{2}+\mu_{0}\|\boldsymbol{J}\|_{B_{R}}^{2}\right) .
$$

Equivalent to wavenumber-independent $H\left(\operatorname{curl} ; B_{R}\right)$ bound for \mathbf{E}.
If ϵ_{i} is (constant) SPD matrix, same holds if $\max \operatorname{eig}\left(\epsilon_{i}\right) \leq \epsilon_{0}$ and with ϵ_{i} substituted by min eig $\left(\epsilon_{i}\right)$ in the bound.

Bound \#2: more general ϵ, μ

Assume $\epsilon, \mu \in W^{1, \infty}\left(\Omega_{i} ;\right.$ SPD $), \quad \Omega_{i}$ Lipschitz,

- Ω_{i} star-shaped
- $\left\|\epsilon_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \epsilon_{0},\left\|\mu_{i}\right\|_{L^{\infty}\left(\partial \Omega_{i}\right)} \leq \mu_{0}$, i.e. jumps are "upwards" on $\partial \Omega_{i}$
- $\epsilon_{*}:=\operatorname{essinf}_{\mathbf{x} \in \Omega_{i}}(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)>0, \mu_{*}:=\operatorname{ess}_{\inf }^{\mathbf{x} \in \Omega_{i}}(\mu+(\mathbf{x} \cdot \nabla) \mu)>0$
"weak monotonicity" in radial direction, avoid trapping of rays
- "extra regularity" ($\mathbf{E}, \mathbf{H} \in H^{1}\left(\Omega_{i} \cup \Omega_{o}\right)^{3}$ or $\epsilon, \mu \in C^{1}\left(\Omega_{i}\right)$ or $W^{1, \infty}\left(\mathbb{R}^{3}\right)$)

Then we have explicit wavenumber-independent bound:

$$
\begin{aligned}
& \epsilon_{*}\|\mathbf{E}\|_{B_{R}}^{2}+\mu_{*}\|\mathbf{H}\|_{B_{R}}^{2} \\
& \leq 4 R^{2}\left(\frac{\|\epsilon\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\epsilon_{*}}+\frac{\epsilon_{0} \mu_{0}}{\mu_{*}}\right)\|\mathbf{K}\|_{B_{R}}^{2}+4 R^{2}\left(\frac{\|\mu\|_{L^{\infty}\left(B_{R}\right)}^{2}}{\mu_{*}}+\frac{\epsilon_{0} \mu_{0}}{\epsilon_{*}}\right)\|\boldsymbol{J}\|_{B_{R}}^{2} .
\end{aligned}
$$

Expect (from Helmholtz analogy) superalgebraic blow up in k if any of the first 3 assumptions is lifted.

Similar results when \mathbb{R}^{3} is truncated with impedance BCs.

How our bound was obtained

First consider smooth case $\mathbf{E}, \mathbf{H} \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.
(i) Multiply the 2 PDEs by the "test fields" (Morawetz multipliers)

$$
\begin{array}{rlll}
(\epsilon \overline{\mathbf{E}} \times \mathbf{x}+R \sqrt{\epsilon \mu \overline{\mathbf{H}})} & \& & (\mu \overline{\mathbf{H}} \times \mathbf{x}-R \sqrt{\epsilon \mu \overline{\mathbf{E}})} & \text { in } B_{R} \supset \Omega_{i}, \\
\left(\epsilon_{0} \overline{\mathbf{E}} \times \mathbf{x}+r \sqrt{\left.\epsilon_{0} \mu_{0} \overline{\mathbf{H}}\right)}\right. & \& & \left(\mu_{0} \overline{\mathbf{H}} \times \mathbf{x}-r \sqrt{\epsilon_{0} \mu_{0}} \overline{\mathbf{E}}\right) & \text { in } \mathbb{R}^{3} \backslash B_{R},
\end{array}
$$

(ii) integrate by parts in $\quad \Omega_{i}, \quad B_{R} \backslash \overline{\Omega_{i}}$ and $\mathbb{R}^{3} \backslash B_{R}$,
(iii) sum 3 contributions, (iv) take \Re eal part, (v) have fun!

$$
\begin{aligned}
& \int_{B_{R}} \overline{\mathbf{E}} \cdot \underbrace{(\epsilon+(\mathbf{x} \cdot \nabla) \epsilon)}_{\geq \epsilon_{*} \text { by assumpt. }} \mathbf{E}+\overline{\mathbf{H}} \cdot \underbrace{(\mu+(\mathbf{x} \cdot \nabla) \mu)}_{\geq \mu_{*} \text { by assumpt. }} \mathbf{H} \\
& \text { Using PDEs \& } \\
& \nabla \cdot[\epsilon \mathbf{E}]=\nabla \cdot[\mu \mathbf{H}]=0 \\
& =2 \int_{B_{R}} \Re\left\{\mathbf{K} \cdot\left(\epsilon \overline{\mathbf{E}} \times \mathbf{x}+\sqrt{\epsilon_{0} \mu_{0}} R \overline{\mathbf{H}}\right)+\mathbf{J} \cdot\left(\mu \overline{\mathbf{H}} \times \mathbf{x}-\sqrt{\epsilon_{0} \mu_{0}} R \overline{\mathbf{E}}\right)\right\}
\end{aligned}
$$

Conclude by Cauchy-Schwarz.

Rough coefficients, regularity and density

Proof in previous slide only uses elementary results if $\mathbf{E}, \mathbf{H} \in C^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$.
For general case we need density of inclusion

$$
C^{\infty}(\bar{D})^{3} \subset\left\{\mathbf{v} \in H(\operatorname{curl} ; D), \nabla \cdot[A \mathbf{v}] \in L^{2}(D), A \mathbf{v} \cdot \hat{\mathbf{n}} \in L^{2}(\partial D), \mathbf{v}_{T} \in L_{T}^{2}(\partial D)\right\}
$$

for $A=\epsilon \& A=\mu, \quad D$ Lipschitz bdd.
If $\mathrm{A} \in \mathrm{C}^{1}\left(\Omega_{i} ; S P D\right)$, this density is non-trivial but follows from regularity results for layer potentials on manifolds (MITREA, TAYLOR 1999).

- Equivalent step for Helmholtz was much simpler.
- Constant scalar ϵ \& μ : density proved in Costabel, Dauge 1998.
- If $\mathbf{E}, \mathbf{H} \in H_{\text {loc }}^{1}\left(\mathbb{R}^{3} ; \mathbb{C}^{3}\right)$ then no density is needed. E.g. ensured if $\epsilon, \mu \in W^{1, \infty}\left(\mathbb{R}^{3} ; S P D\right)$ (no jumps).
- What about $A \in W^{1, \infty}\left(\Omega_{i} ; S P D\right)$?

Summary

Time-harmonic Maxwell eq.s in \mathbb{R}^{3} with heterogeneous inclusion:

- fully explicit bounds on $\|\mathbf{E}\|_{H\left(\text { curl, } B_{R}\right)}$ if ϵ, μ "radially growing"
- also for impedance BVPs in star-shaped domains
- extends Helmholtz results from (Graham, Pembery, Spence 2019)

Some open questions:

- resonance-free strip in complex k plane?
- presence of quasi-resonances blow up for "wrong" coefficients?
- rougher ($\left.W^{1, \infty}\left(\Omega_{i} ; S P D\right), L^{\infty}\right)$ coefficients?
- relation with shape-differentiation and $U Q$?

Preprint coming soon...

Thank you!

