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Acoustic wave scattering by a planar screen
Acoustic waves in free space governed by wave eq. ∂

2U
∂t2 −∆U = 0.

In time-harmonic regime, assume U (x, t)=<{u(x)e−ikt} and look for u.
u satisfies Helmholtz equation ∆u + k2u = 0, with wavenumber k > 0.

Scattering: incoming wave u i hits obstacle Γ and generates field u.

Γ bounded open subset of {x ∈ Rn+1 : xn+1 = 0} ∼= Rn , n = 1,2

u = −u i or
∂u/∂n = −∂u i/∂n

Γ

x1

x2

x3 D := Rn+1 \ {Γ× {0}}
∆u + k2u = 0

u i(x) = eikd·x

u satisfies Sommerfeld radiation condition (SRC) at infinity
(i.e. ∂ru − iku = o

(
r−(n−1)/2

)
uniformly as r = |x| → ∞).
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Scattering by Lipschitz and rough screens

Incident field is plane wave u i(x) = eikd·x, |d| = 1. utot = u + u i

Classical problem when Γ is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong,
Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, Urzúa-Torres, . . . )

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ?
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Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Fractal antennas are a popular topic in engineering:
Wideband/multiband, compact, cheap, metamaterials, cloaking. . .
Not yet analysed by mathematicians.

4
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Other applications

Scattering by ice crystals
in atmospheric physics
e.g. C. Westbrook (Reading)

Fractal apertures in laser optics
e.g. J. Christian (Salford)
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Scattering by fractal screens

· · ·

Lots of interesting mathematical questions:

I How to formulate well-posed BVPs?
(What is the right function space setting? How to impose BCs?)

I How do prefractal solutions converge to fractal solutions?
I How can we accurately compute the scattered field?

I If the fractal has empty interior, does it scatter waves at all?
I How does the fractal (Hausdorff) dimension affect things?
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Can you hear a Cantor dust?

For 0 < α < 1/2
let Cα ⊂ [0,1] denote the
standard Cantor set:

1

α

Let C2
α := Cα × Cα ⊂ R2 denote the associated “Cantor dust”:

C2
α is uncountable, closed, with int(C2

α) = ∅; in fact m(C2
α) = 0.

Question: Is the scattered field zero or non-zero for the 3D Dirichlet
scattering problem with Γ = C2

α?
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Part I

BVPs & BIEs



Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

Γ

u = −u i or
∂u/∂n = −∂u i/∂n

x1

x2

x3 (∆ + k2)u = 0, SRC

I Seek BVP solutions in W 1
loc(Rn+1 \ Γ)

I Represent solutions in terms of jumps of boundary traces on Γ

I These jumps live in some (Γ-dependent) subspaces of H±1/2(Rn)

I The jumps satisfy certain boundary integral equations
I The associated boundary integral operators are coercive,

thus invertible, between appropriate spaces
(Ha-Duong, Chandler-Wilde/Hewett)
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Sobolev spaces on Γ ⊂ Rn

BIEs require us to work in fractional (Bessel) Sobolev spaces on Γ ⊂ Rn .
For s ∈ R let

Hs(Rn) =
{

u ∈ S∗(Rn) : ‖u‖2Hs(Rn) :=

∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ <∞
}
.

For Γ ⊂ Rn open and F ⊂ Rn closed define [MCLEAN]

Hs(Γ) := {u|Γ : u ∈ Hs(Rn)} restriction

H̃s(Γ) := C∞0 (Γ)
Hs(Rn)

closure

Hs
F := {u ∈ Hs(Rn) : supp u ⊂ F} support

“Global” and “local” spaces:

H̃s(Γ) ⊂ Hs
Γ︸ ︷︷ ︸

“0-trace”

⊂ Hs(Rn) ⊂ D∗(Rn)
|Γ−−−−−−−−−→

restriction oper.
Hs(Γ) ⊂ D∗(Γ).
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(1 + |ξ|2)s|û(ξ)|2 dξ <∞
}
.

For Γ ⊂ Rn open and F ⊂ Rn closed define [MCLEAN]

Hs(Γ) := {u|Γ : u ∈ Hs(Rn)} restriction

H̃s(Γ) := C∞0 (Γ)
Hs(Rn)

closure

Hs
F := {u ∈ Hs(Rn) : supp u ⊂ F} support

“Global” and “local” spaces:

H̃s(Γ) ⊂ Hs
Γ︸ ︷︷ ︸

“0-trace”

⊂ Hs(Rn) ⊂ D∗(Rn)
|Γ−−−−−−−−−→

restriction oper.
Hs(Γ) ⊂ D∗(Γ).

10



Sobolev spaces on Γ ⊂ Rn

BIEs require us to work in fractional (Bessel) Sobolev spaces on Γ ⊂ Rn .
For s ∈ R let

Hs(Rn) =
{

u ∈ S∗(Rn) : ‖u‖2Hs(Rn) :=

∫
Rn

(1 + |ξ|2)s|û(ξ)|2 dξ <∞
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Properties of Sobolev spaces on Γ ⊂ Rn

When Γ is Lipschitz it holds that
I H̃s(Γ) = (H−s(Γ))∗ with equal norms
I s ∈ N⇒ ‖u‖2Hs(Ω)∼

∑
|α|≤s

∫
Ω
|∂αu|2

I H̃s(Γ) = Hs
Γ

(∼= Hs
00(Γ), s ≥ 0)

I H±1/2
∂Γ = {0}

I {Hs(Γ)}s∈R and {H̃s(Γ)}s∈R
are interpolation scales.

For general non-Lipschitz Γ

I X

I ×

I ×

I ×

I ×

This has implications for the scattering problem!

There exist many works on Sobolev (Besov,. . . ) spaces on rough sets;
most use intrinsic definitions on (e.g.) d-sets.
Analogous to W s(Γ), based on Lp(Γ,Hd).
Related to spaces in Rn by traces. See: Jonsson–Wallin, Strichartz.

Our spaces are different, more suited for integral equations and BEM.
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Dirichlet BVP (Lipschitz open Γ ⊂ Rn)
Problem D
Given gD ∈ H1/2(Γ) (e.g. gD =−u i |Γ), find u ∈ C2 (D)∩W 1

loc(D) such that

(∆ + k2)u = 0 in D = Rn+1 \ Γ,

u = gD on Γ,

and u satisfies the Sommerfeld radiation condition.

Γ ⊂ Rn

D ⊂ Rn+1

Theorem (cf. Stephan and Wendland ’84, Stephan ’87)
If Γ is Lipschitz then D has a unique solution for all gD ∈ H1/2(Γ).

BIE: S [∂nu] = −gD representation: u = −S [∂nu]
single-layer

potential (S)
operator (S):

S : H̃−1/2(Γ)→C2(D) ∩W 1
loc(D) Sφ(x) :=

∫
Γ

Φ(x,y)φ(y) ds(y), x ∈ D

S : H̃−1/2(Γ)→H1/2(Γ) Sφ(x) := γ±Sφ|Γ(x) x ∈ Γ

S invertible, Φ(x,y) := eik|x−y|/4π|x− y| (in 3D)
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Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

I By Helmholtz eq.: [∂nu] ∈ H−1/2
Γ

and [u] ∈ H1/2
Γ

. By BCs:

(γ+u)|Γ = gD = (γ−u)|Γ ⇒ [u]|Γ = 0 ⇒ [u] ∈ H1/2
∂Γ ⊂ H1/2

Γ
.

If ∃0 6= φ ∈ H1/2
∂Γ then Dφ satisfies homogeneous problem.

(D = double layer potential.)

I If H̃−1/2(Γ) 6= H−1/2
Γ

then ∃0 6= φ ∈ H−1/2
Γ

\ H̃−1/2(Γ) with Sφ = 0

(S extended to S : H−1/2
Γ

→ H1/2(Γ), continuous but not injective)

Then Sφ satisfies homogeneous problem.

We need to modify D to deal with this.
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(γ+u)|Γ = gD = (γ−u)|Γ ⇒ [u]|Γ = 0 ⇒ [u] ∈ H1/2
∂Γ ⊂ H1/2

Γ
.

If ∃0 6= φ ∈ H1/2
∂Γ then Dφ satisfies homogeneous problem.

(D = double layer potential.)

I If H̃−1/2(Γ) 6= H−1/2
Γ

then ∃0 6= φ ∈ H−1/2
Γ

\ H̃−1/2(Γ) with Sφ = 0

(S extended to S : H−1/2
Γ

→ H1/2(Γ), continuous but not injective)

Then Sφ satisfies homogeneous problem.

We need to modify D to deal with this.
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Dirichlet BVP (arbitrary open Γ)

Problem D̃
Given gD ∈ H1/2(Γ) (e.g. gD =−u i |Γ), find u ∈ C2 (D)∩W 1

loc(D) such that

(∆ + k2)u = 0 in D,

(γ±u)|Γ = gD,

[u] = 0, (D′)[
∂u
∂n

]
∈ H̃−1/2(Γ), (D′′)

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde & Hewett 2013)

For any bounded open Γ, D̃ has a unique solution for all gD ∈ H1/2(Γ).

If H1/2
∂Γ = {0} then D′ is superfluous.

If H̃−1/2(Γ) = H−1/2
Γ

then D′′ is superfluous. (E.g. if Γ is C0.)

Two key questions: (i) when is Hs
∂Γ = {0}? (ii) when is H̃s(Γ) = Hs

Γ
?
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Part II

Two Sobolev space questions



Key question #1: nullity

Given a compact set K ⊂ Rn with empty interior (e.g. K = ∂Γ),
for which s ∈ R is Hs

K 6= {0}?

Γ

∂Γ

Terminology:
Hs

K = {0} ⇐⇒ @ non-zero elements of Hs supported inside K .
We call such a set K “s-null”.

Other terminology exists: “(−s)-polar” (Maz’ya, Littman), “set of
uniqueness for Hs” (Maz’ya, Adams/Hedberg).
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Nullity threshold

For every compact K ⊂ Rn with int(K) = ∅,
∃ sK ∈ [−n/2,n/2], called the nullity threshold of K ,
such that Hs

K = {0} for s > sK and Hs
K 6= {0} fors < sK .

s−n/2 0 sK n/2

Hs
K = {0}

i.e. K cannot support Hs distr.

Hs
K 6= {0}

i.e. K supports Hs distributions

Theorem (H & M 2017)
If m(K) = 0 then

sK =
dimH(K)− n

2
≤ 0

Theorem (Polking 1972)
∃ compact K with int(K) = ∅
and m(K) > 0 for which
Hn/2

K 6= {0}, so that sK = n/2.

Connection with dimH comes from standard potential theory results
(Maz’ya 2011, Adams & Hedberg 1996 etc.)

Nullity theory ∼complete for m(K) = 0, open problems for m(K) > 0.
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Key question #2: identity of 0-trace spaces

Given an open set Γ ⊂ Rn , when is H̃s(Γ) = Hs
Γ
?

Equivalent to density of C∞0 (Γ) in {u ∈ Hs(Rn) : supp u ⊂ Γ}.

Classical result (e.g. McLean)

Let Γ ⊂ Rn be C0. Then H̃s(Γ) = Hs
Γ
.

1st class of sets: “regular except at a few points”, e.g. prefractal

Theorem (C-W, H & M 2017)
Let n ≥ 2, Γ ⊂ Rn open and C0 except at finite P ⊂ ∂Γ.
Then H̃s(Γ) = Hs

Γ
for |s| ≤ 1.

I For n = 1 the same holds for |s| ≤ 1/2.
I Can take countable P ⊂ ∂Γ with finitely many limit points in every

bounded subset of ∂Γ.

Proof uses sequence of special cutoffs for s = 1, duality, interpolation.
17
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Examples of non-C0 sets with H̃s(Γ) = Hs
Γ
, |s| ≤ 1

E.g. union of disjoint C0 open sets, whose closures intersect only in P.

Sierpinski triangle prefractals, (unbounded) checkerboard,
double brick, inner and outer (double) curved cusps, spiral,

Fraenkel’s “rooms and passages”.
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Constructing counterexamples

Consider another class of sets:
“nice domain minus small holes”.

E.g. when int(Γ) is smooth.

Theorem (C-W, H & M 2017)

If int(Γ) is C0 then H̃s(Γ) = Hs
Γ
⇐⇒ int(Γ) \ Γ is (−s)-null.

Corollary
For every n ∈ N, there exists a bounded open set Γ ⊂ Rn such that,

H̃s(Γ) $ Hs
Γ
, ∀s ≥ −n/2

Proof: take a ball and remove a Polking set (not s-null for any s ≤ n/2)

(Can also have H̃s(Γ) $ {u ∈ Hs : u = 0 a.e. in Γc} $ Hs
Γ
∀s > 0.)
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Part III

Formulations on general screens



Prefractal convergence

Theorem (C-W, H & M 2017)
Consider a bounded sequence of nested open screens Γ1 ⊂ Γ2 ⊂ · · ·
For each j let uj denote the solution of problem D̃ for Γj.
Let Γ :=

⋃
j∈N Γj and let u denote the solution of problem D̃ for Γ.

Then uj → u as j →∞ (in W 1
loc(D)).

Proof:
H̃s(Γ1) ⊂ H̃s(Γ2) ⊂ · · · and H̃s( ⋃

j∈N
Γj
)

=
⋃
j∈N

H̃s(Γj).

Then write BIEs in variational form and apply Céa’s Lemma.

What if we want to use Γ1 ⊃ Γ2 ⊃ · · · → Γ? e.g. Cantor dust
Need framework for closed screens.
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What about general screens?
For an open screen Γ, we imposed the BC by restriction to Γ:

(γ±u)|Γ = gD

and viewed S as an operator S : H̃−1/2(Γ)→ H1/2(Γ) ∼= (H̃−1/2(Γ))∗.

But since H1/2(Rn) ⊃ (H1/2
Γc )⊥

|Γ−−−−−−−→
isomorphism

H1/2(Γ)

we could equivalently impose the BC by orthogonal projection:

P
(H1/2

Γc )⊥
(γ±u) = gD

and view S as an operator S : H̃−1/2(Γ)→ (H1/2
Γc )⊥ ∼= (H̃−1/2(Γ))∗.

This viewpoint suggests a way of writing down BVP formulations for
general screens (even with int(Γ) = ∅):
I replace H̃−1/2(Γ) by some V− ⊂ H−1/2(Rn)

I characterise (V−)∗ as a subspace V +
∗ ⊂ H1/2(Rn)

I impose BC by orthogonal projection onto V +
∗

I view S as an operator S : V− → V +
∗

21
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Dirichlet BVP for general screens
Let Γ be an arbitrary bounded subset of Rn (not necessarily open).
Let V− be any closed subspace of H−1/2(Rn) satisfying

H̃−1/2(int(Γ)) ⊂ V− ⊂ H−1/2
Γ

,

and define V +
∗
∼= (V−)∗ by V +

∗ := ((V−)a)⊥ ⊂ H1/2(Rn).
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Γ

,

and define V +
∗
∼= (V−)∗ by V +

∗ := ((V−)a)⊥ ⊂ H1/2(Rn).

Here we are using the following fact:

Let H ,H be Hilbert spaces with H∗ ∼= H (unit. isom.).
(E.g. H = H−1/2(Rn), H = H1/2(Rn).)
If V ⊂ H is a closed subspace, V ∗ ∼= (V a,H)⊥,H (with inherited duality
pairing)
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∗
u i),
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SRC at infinity.
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u i),

find u ∈ C2 (D) ∩W 1
loc(D) such that

(∆ + k2)u = 0 in D,

PV+
∗
γ±u = gD,

[u] = 0,

[∂nu] ∈ V−,
SRC at infinity.

Theorem (C-W & H 2016)
Problem D(V−) is well-posed
for any choice of V−.

Operator S : V− → V +
∗

inherits coercivity!
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Which formulation to use?
For any bounded Γ, each choice H̃−1/2(int(Γ)) ⊂ V− ⊂ H−1/2

Γ

gives its own well-posed formulation D(V−).

Theorem (C-W & H 2018)

If H̃−1/2(int(Γ)) = H−1/2
Γ

there is only one such formulation.

If H̃−1/2(int(Γ)) 6= H−1/2
Γ

∃ infinitely many formulations with 6= solutions!

To select “physically correct” solut., apply limiting geometry principle:

• Γ1 ⊂ Γ2 ⊂ · · · open and “nice”
(e.g. Lipschitz)
• Γ :=

⋃
j Γj open (gray part),

→ natural choice is
V− = H̃−1/2(Γ).

• Γ1 ⊃ Γ2 ⊃ · · ·closed and “nice”
(e.g. closure of Lipschitz)
• Γ :=

⋂
j Γj closed (black part),

→ natural choice is
V− = H−1/2

Γ .
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What if prefractals are not nested?
What if prefractals Γj are neither increasing nor decreasing? Γj

6⊂
6⊃Γj+1

Key tool is Mosco convergence (Mosco 1969):

Vj,V closed subspaces of Hilbert space H , j ∈ N, then Vj
M−−→ V if:

I ∀v ∈ V , j ∈ N,∃vj ∈ Vj s.t. vj→v (strong approximability)
I ∀(jm) subsequence of N, vjm ∈ Vjm for m ∈ N, vjm⇀v, then v ∈ V

(weak closure)

Think: H = H−1/2(Rn), Vj = H̃−1/2(Γj), H̃−1/2(int(Γ)) ⊂ V ⊂ H−1/2
Γ

Theorem (C-W, H & M, 2018)

If Vj
M−−→ V ⊂H−1/2(Rn) then solution of D(Vj) converges to sol.n of D(V )

Holds for square snowflake above with V = H̃−1/2(int(Γ)) = H−1/2
Γ
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When is u = 0?

Theorem (C-W & H 2018)

Let Γ be closed with empty interior and let V− = H−1/2
Γ .

I If dimHΓ < n − 1 then u = 0 for every incident direction d.
I If dimHΓ > n − 1 then u 6= 0 for a.e. incident direction d.

So both the Sierpinski triangle (dimH = log 3/ log 2) and pentaflake
(dimH = log 6/ log((3 +

√
5)/2)) generate a non-zero scattered field:
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Back to the Cantor dust
Let C2

α := Cα × Cα ⊂ R2 denote the “Cantor dust” (0 < α < 1/2):

1 α

Question: Is the scattered field u zero or non-zero for the 3D Dirich-
let scattering problem with Γ = C2

α?

dimH(C2
α) =

log(4)

log(1/α)

Answer:
u = 0, if 0 < α ≤ 1/4;
u 6= 0, in general, if 1/4 < α < 1/2.

(u = 0 for all α for Neumann BCs)
26
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Part IV

Numerical approximation



Boundary element method (BEM)

For each prefractal Γj, the BIE S[∂u/∂n] = −gD can be solved using a
standard BEM space, e.g. piecewise constants on a mesh of width hj.
Let wj denote the Galerkin BEM solution on Γj.
Let lj = αj be the width of each component of Γj (4j of them).

Under certain assumptions on hj, we prove BEM convergence

‖u −wj‖H−1/2(Rn) → 0.

Follows from Mosco convergence of BEM spaces.
This requires approximability (∀v ∈ H−1/2

Γ ∃vj ∈ H̃−1/2(Γj), vj → v):
proved with mollification, L2 projection, partition of unity, . . .
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Convergence results for the Cantor dust

Theorem (C-W, H & M 2018)

Suppose ∃ −1/2 < t < 0 such that H t
Γ is dense in H−1/2

Γ .
Then ∃ µ = µ(t) > 0 such that if hj/lj = O(e−µj) then wj → u as j →∞.

Certainly not sharp!
I hj/lj = O(e−µj) is a severe restriction

I Density assumption H t
Γ ⊂ H−1/2

Γ for some t > −1/2 not yet verified

We can do better if we replace Γj by “fattened” versions:
Γ̃j = {x : dist(x ,Γj) < εlj} for some 0 < ε < min{α, 1

2 − α}.

Theorem (C-W, H & M 2018)
If hj = o(lj) then w̃j → u as j →∞.

We require condition weaker than hj = o(lj) if H t
Γ is dense in H−1/2

Γ .

For simplicity, I’ll show results on prefractals for #DOF fixed but large.
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Numerical results: Cantor dust α = 1/3 (u 6= 0)

k = 25, 4096 DOFs, prefractal level 1
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Numerical results: Cantor dust α = 1/3 (u 6= 0)

k = 25, 4096 DOFs, prefractal level 2
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Numerical results: Cantor dust α = 1/3 (u 6= 0)

k = 25, 4096 DOFs, prefractal level 3
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Numerical results: Cantor dust α = 1/3 (u 6= 0)

k = 25, 4096 DOFs, prefractal level 6

29



Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 1
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Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 2
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Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 3
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Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 4
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Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 5
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Numerical results: Cantor dust α = 0.1 (u = 0)

k = 25, 4096 DOFs, prefractal level 6
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Convergence of BEM solution norms: Cantor dust

Norms of the solution on the prefractals converge:

I to a positive constant values for α = 1/3 (left),
I to 0 for α = 1/10 (right).
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 0, 2209 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 1, 2187 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 2, 2304 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 3, 2187 DOFs

32



Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 4, 2916 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 5, 2187 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 6, 2916 DOFs
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Numerical results: Sierpinski triangle

(Pr. levels 0 and 1 are not colour-scaled)k = 45, prefractal level 7, 2187 DOFs
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Convergence of BEM solutions: Sierpinski triangle

Right:
‖wj −w7‖L2(BOX)

‖w7‖L2(BOX)

,
‖wj −w7‖L2(FarField)

‖w7‖L2(FarField)

.

(Prefractal level 3 is when density maxima are located and all
wavelength-size prefractal features are resolved: big error reduction!)
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Other shapes

/ Sierpinski carpet.

4 “Square snowflake”,
limit of non-monotonic prefractals.
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Apertures

Field through bounded apertures in unbounded Neumann screens
computed via Babinet’s principle.

n = 1, Cantor set α = 1/3, prefractal level 12:
field through 0-measure holes!

Koch snowflake-shaped aperture.
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Experimental functional analysis!

Question: for Γ the open Koch snowflake, is H̃±1/2(Γ) = H±1/2
Γ

?

We can approximate Γ from inside and outside with polygons Γ±j :

Γ−1 ⊂ Γ−2 ⊂ Γ−3
open

⊂ · · · ⊂
⋃
j∈N

Γ−j = Γ ⊂ Γ =
⋂
j∈N

Γ+
j ⊂ · · · ⊂ Γ+

3 ⊂ Γ+
2 ⊂ Γ+

1
closed

.

For a scattering BVP, u−j → u− ∈ H̃−1/2(Γ), u+
j → u+ ∈ H−1/2

Γ
,

u± solution of BVPs in Γ and in Γ.

We study numerically if u− ?
= u+, i.e. if inner and outer limits coincide.
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Real part of fields on inner and outer prefractals

Γ−0 Γ−1 Γ−2 Γ−3 Γ−4

Γ+
0 Γ+

1 Γ+
2 Γ+

3

k = 61, d = (0, 1√
2
, 1√

2
)>, 3576 to 10344 DOFs, different colour scales.

Now I compare w−j against w+
j−1 and w+

j .
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Inner and outer snowflake approximations

Blue lines are ‖w−j −w+
l ‖H−1/2(R2), converging fast to 0!

Evidence for H̃±1/2(Γ) = H±1/2
Γ

?

We can now prove H̃s(Γ) = Hs
Γ
∀s ∈ R for a class of snowflakes!

(Caetano + H + M, 2018)
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Evidence for H̃±1/2(Γ) = H±1/2
Γ

?

We can now prove H̃s(Γ) = Hs
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(Caetano + H + M, 2018)
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Open questions

I How best to do numerical analysis in the joint limit of prefractal
level and mesh refinement?

I Rates of convergence?
I Regularity theory for the fractal solution?
I Relation with “intrinsic” spaces?
I Approximation on fractals!
I What about curved screens?
I What about the Maxwell case?

Other PDEs? (Laplace, reaction–diffusion already covered.)
I . . .

Thank you!
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