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Acoustic wave scafttering by a planar screen

Acoustic waves in free space governed by wave eq. %Z—té’ - AU =0.

In fime-harmonic regime, assume U(x, t) =R{u(x)e 1 and look for u.
u satisfies Helmholtz equation Au + k?u = 0, with wavenumber i > 0.

Scattering: incoming wave u! hits obstacle I and generates field w.

I" bounded open subset of {x € R : x,,; =0} 2R*, n=1,2

Au+kK2u=0
X3 D :=R"\ {T x {0}}

ilkd-x

ul(x) =e

u safisfies Sommerfeld radiation condition (SRC) af infinity
(i.e. ru — iku = o (r~("=1/2) uniformly as r = x| — co).



Scattering by Lipschitz and rough screens

Incident field is plane wave ui(x) = 4%, |d| = 1. u
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Scattering by Lipschitz and rough screens

Incident field is plane wave u!(x) = e*4%, |d| = 1. ut = u+ ut
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Classical problem when I is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong,
Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, UrzGa-Torres, .. .)
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Scattering by Lipschitz and rough screens
tot — 1y 4yt

Incident field is plane wave u!(x) = e*4%, |d| = 1.
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Classical problem when T is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong
Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, UrzGa-Torres, .. .)

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) I'?

///////////
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Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Fractal antennas are a popular topic in engineering:

Wideband/multiband, compact, cheap, metamaterials, cloaking. . .

Not yet analysed by mathematicians.


http://www.antenna-theory.com/antennas/fractal.php

Other applications

Scattering by ice crystals
in atmospheric physics
e.g. C. Westbrook (Reading)

Fractal apertures in laser optics
e.g. J. Christian (Salford)




Scattering by fractal screens
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Lots of inferesting mathematical questions:

>

» How to formulate well-posed BVPs?
(What is the right function space setting? How to impose BCs?)

How do prefractal solutions converge to fractal solutions?
How can we accurately compute the scattered field?

vy

v

If the fractal has empty interior, does it scatter waves at all?
How does the fractal (Hausdorff) dimension affect things?

v



ForO<a<1/2
let C, C [0, 1] denote the
standard Cantor set: -

= |}H
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Can you hear a Cantor dust?
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C2 is uncountable, closed, with int(C2) = §; in fact m(C2) = 0.




Can you hear a Cantor dust?

1
ForO<a< 1/2 —_——
let C, C [0, 1] denote the o
standard Cantor seft: =

[

Let C2 .= C, x C, C R? denote the associated “Cantor dust”:
H H:.: ..
HE HE

C2 is uncountable, closed, with int(C2) = §; in fact m(C2) = 0.

Question: Is the scattered field zero or non-zero for the 3D Dirichlet
scattering problem with T' = C2?
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Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

(A + Kk2)u =0, SRC
/x2

X3

r
u=-uor
u/on = —-ou'/

»

xi

» Seek BVP solutions in W, (R™""!\ T')

» Represent solutions in terms of jumps of boundary tfraces on I’

» These jumps live in some (T-dependent) subspaces of H*+1/2(R™)
» The jumps satisfy certain boundary integral equations

» The associated boundary integral operators are coercive,
thus invertible, between appropriate spaces
(Ha-Duong, Chandler-Wilde/Hewett)
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Fors e R let

R = {u e 8 R ¢ [l = [ (14 16R)T(€) dé < oo},
ForT' c R™ open and F C R" closed define (MCLEAN)

H*(T) :={u|r: ue H*(R")} restriction

HS(R™)

H5(T) := C(T) closure

Hp :={u € H°(R") : suppu C F} support



Sobolev spaceson I’ ¢ R"

BIEs require us to work in fractional (Bessel) Sobolev spaces on I' ¢ R™,

Forsc R let

1R = {ue 'R - [ulfomey = [ (14 1€R)1€) dé < oo},

ForT' c R™ open and F C R" closed define

H(T) := {u|r : u € H(R")}
() =cem &)

Hp :={u € H°(R") : suppu C F}

“Global” and “local” spaces:
H(T) € HS € HS(R") C D*(R") —— "
—_—— restriction oper.
“0-trace”

(MCLEAN)

restriction
closure

support

HS(T) ¢ D*(ID).



Properties of Sobolev spaceson I' ¢ R™

When T is Lipschitz it holds that
» H5(T') = (H*(I"))* with equal norms
> SEN= [[ullfo) ~ X ag<s Jo 0% ul?
> HS(T)=HS (= H3,(I), s >0)
> Hyp'* = {0}

» {H5()}ser and {H5(T)}ser
are interpolation scales.
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are interpolation scales.
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Properties of Sobolev spaceson I' ¢ R™

When T is Lipschitz it holds that For general non-Lipschitz T’
» HST) = (H-5(I'))* with equalnorms ~ » v/

> s€N= [[ulfg)~ D ja)<s Jo 07Ul > X ol
. gwm P P
> H()=HX (= Hj(I),s>0) > X 0 -
x Ty
+1/2
> H(’)F/ = {0} > X ?U@,Ngm ng%ré
> {H5(T)}ser and {H3(T')}ser > X e

are interpolation scales.

This has implications for the scattering problem!

There exist many works on Sobolev (Besov.. . .) spaces on rough sefts;
most use infrinsic definitions on (e.g.) d-sets.

Analogous to W*(T"), based on LP(T', Hq).

Related to spaces in R™ by traces. See: Jonsson-Wallin, Strichartz.

Our spaces are different, more suited for integral equations and BEM.



Dirichlet BVP (Lipschitz open I' ¢ R™)

Problem D
Given gp € HY/2(T') (e.g. go = —ul|p). find u € C? (D)NW,..(D) such that

(A+1K*)u=0 in D =R"I\T, D cR™]
= nT

and u satisfies the Sommerfeld radiation condition.
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Dirichlet BVP (Lipschitz open I' ¢ R™)

Problem D
Given gp € HY/2(T') (e.g. go = —ul|p). find u € C? (D)N W} (D) such that

(A+ K u=0 inD=R"!\T, D c R!

and u satisfies the Sormmerfeld radiation condition.

Theorem (cf. Stephan and Wendland ‘84, Stephan ‘87)
IfT is Lipschitz then D has a unique solution for all go € HY/2(T').
single-layer

BIE: { S[onu]l = —gp  representation: { u= —8[9,u]  potential (5)
operator (S):

S:H V() CHD) N Wi (D) So(x) = / d(x.y)é(y)ds(y), xeD

S: H Y2(I)—»HY?(I) Sp(x) := vt S¢|p(x) xel
S invertible, d(x,y) = eV /arx —y|  (in3D)
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What if I is not Lipschitz?
Still have existence, but in general have non-uniqueness:

» By Helmholtzeq.:  [9,u] € H-'/> and [u] € HY'®. By BCs:

wlr=go=( Wl = [Wr=0 = [ueH)

If 30 +# ¢ € H)/* then D¢ satisfies homogeneous problem.

(D = double layer potential.)

c H/?.

> If FI-1/2(1) # H- '/ then 30 # ¢ € HZ /2 \ H-V/2(I') with S = 0

(S extended to S : H-'/* — H'/2(I"), continuous but not injective)

Then S¢ safisfies homogeneous problem.



Failure of BVP D for non-Lipschitz I"

What if I is not Lipschitz?
Still have existence, but in general have non-uniqueness:

» By Helmholtzeq.:  [9,u] € H-'/> and [u] € HY'®. By BCs:

wlr=go=( Wl = [Wr=0 = [ueH)

If 30 +# ¢ € H)/* then D¢ satisfies homogeneous problem.
(D = double layer potential.)

> If FI-1/2(1) # H- '/ then 30 # ¢ € HZ /2 \ H-V/2(I') with S = 0

(S extended to S : H-'/* — H'/2(I"), continuous but not injective)

Then S¢ safisfies homogeneous problem.
We need to modify D to deal with this.



Dirichlet BVP (arbitrary open I')

Problem D
Given gp € HY/2(T') (e.g. go=-ul|p). find u € C? (D)NW,}.(D) such that

(A+Kk)u=0 inD,

(’yiu)h—‘ = 9b,
[u] =0, (D)
u ~_1 "
G| €HT2@, (@)

and u satisfies the Sormmerfeld radiation condition.
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Given gp € HY/2(T') (e.g. go=-ul|p). find u € C? (D)NW,}.(D) such that

(A+Kk)u=0 inD,
(vFu)|r = go,
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Dirichlet BVP (arbitrary open I')

Problem D
Given gp € HY/2(T') (e.g. go=-ul|p). find u € C? (D)NW,}.(D) such that

(A+Kk)u=0 inD,
(vFu)|r = go,
[u] =0, (D)
u

an e HV/2(I), (D”)

and u satisfies the Sormmerfeld radiation condition.
Theorem (Chandler-Wilde & Hewett 2013)

For any bounded openT, D has a unique solution for all g5 € H'/2(T).

If Hy(* = {0} then D’ is superfluous.

If H-Y/2(T) = H /2 then D" is superfluous. (E.g.ifTis C°.)
Two key quesTlons () whenis H. = {0}? (i) when is H5(T) = HZ?
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Given a compact set K ¢ R™ with empty interior (e.g. K = o),
for which s € R is Hg # {0}?

or



Key question #1: nullity

Given a compact set K ¢ R™ with empty interior (e.g. K = o),
for which s € R is Hg # {0}?

or

Terminology:

HE = {0} += # non-zero elements of H® supported inside K.
We call such a set K “s-null”.

Other terminology exists: *(—s)-polar” (Maz'ya, Littman), “set of
unigueness for H*" (Maz'ya, Adams/Hedberg).



Nullity threshold

For every compact K ¢ R™ with int(K) = 0,
3 sk € [-n/2,n/2], called the nullity threshold of K,
such that Hi = {0} for s > sx and H # {0} fors < sk.

Hg # {0} Hg = {0}
i.e. K supports H® distributions i.e. K cannot support H* distr.
< > « >
% f —>
-n/2 0 SK n/2 s



Nullity threshold

For every compact K ¢ R™ with int(K) = 0,
3 sk € [-n/2,n/2], called the nullity threshold of K,
such that Hi = {0} for s > sx and H # {0} fors < sk.

Hg # {0} Hg = {0}
i.e. K supports H® distributions i.e. K cannot support H* distr.
< > « >
% % f —>
-n/2 0 SK n/2 s
Theorem (H & M 2017) Theorem (Polking 1972)
If m(K) = 0 then 3 compact K with int(K) =
dimpy(K) — n and m(K) > 0 for which
Sg=——F——<0 HY? —
2 K~ # {0}, so that sk = n/2.

Connection with dimy comes from standard potential theory results
(Maz'ya 2011, Adams & Hedberg 1996 etc.)

Nullity theory ~complete for m(K) = 0, open problems for m(K) > O.
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Key question #2: identity of O-frace spaces

Given an open set I' ¢ R™, when is H5(I') = HZ?
Equivalent to density of C°(T') in {u € HS(R") : suppu C T'}.

Classical result (e.g. McLean)
Let I' ¢ R" be C°. Then HS(T') = HS.

1st class of sets: “regular except at a few points”, e.g. prefractal A

Theorem (C-W, H & M 2017)

Letn>2,T c R" open and C° except at finite P C oT.
Then H*(T') = HZ for |s| < 1.

» Forn=1the same holds for |s| < 1/2.

» Can take countable P c aT with finitely many limit points in every
bounded subset of I,

Proof uses sequence of special cutoffs for s = 1, dudality, interpolation.



Examples of non-C° sets with FIS(F) = Hz,

E.g. union of disjoint C° open sets, whose closures intersect only in P.

A L 4 .:
AA LA 44

LB

Sierpinski friangle prefractals, (unbounded) checkerboard,
double brick, inner and outer (double) curved cusps, spiral,
Fraenkel’s “rooms and passages”.
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Consider another class of sefs:
“nice domain minus small holes”.

E.g. when int(T") is smooth.




Constructing counterexamples

Consider another class of sefs:
“nice domain minus small holes”.

E.g. when int(T") is smooth.

Theorem (C-W, H & M 2017)

Ifint(T) is C° then H(I') = HE <= int(T) \ T is (—s)-null




Constructing counterexamples

Consider another class of sefs:
“nice domain minus small holes”.

E.g. when int(T") is smooth.

Theorem (C-W, H & M 2017)
Ifint(T) is C° then .ﬁ%F):I§§¢:>indf)\FB(—s}nuM

Corollary
For every n € N, there exists a bounded open sef' C R" such that,
HS(D) S HZ, Vs> —-n/2

Proof: take a ball and remove a Polking set (not s-null for any s < n/2)

(Canalsohave HS(T)S{ucH*:u=0a.e.inT} S HS Vs> 0)
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Prefractal convergence

20



Prefractal convergence

H N .. ..
HE HE

H B :: -
HE HE

Theorem (C-W, H & M 2017)

Consider a bounded sequence of nested open screensT'y C I'y C - --
For each j let u; denote the solution of problem D forT);.

Let " := ey Iy and let u denote the solution of problem DforT.

Then u; — u asj — oo (in W, .(D)).
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Prefractal convergence

B N .: .-
HE HE

H B :: -
HE HE

Theorem (C-W, H & M 2017)

Consider a bounded sequence of nested open screensT'y C I'y C - --
For each j let u; denote the solution of problem D forT);.

Let " := ey Iy and let u denote the solution of problem DforT.

Then u; — u asj — oo (in W, .(D)).

What if we wanttouseI'; DI'g D -+ —T'? e.g. Cantor dust
Need framework for closed screens.

20



What about general screens?
For an open screen T', we imposed the BC by restriction to T

(v uw)lr =9go

and viewed S as an operator  S: H-1/2(I') — HY/2(I') =~ (H-Y/2(I"))*.

21
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What about general screens?
For an open screen T', we imposed the BC by restriction to T
(v wlr =go
and viewed S as an operator  S: H-1/2(I') — HY/2(I') =~ (H-Y/2(I"))*.

Butsnce  H'2(R™) > (Hi*)* —— H'(T)
isomorphism

we could equivalently impose the BC by orthogonal projection:
Pz (7F10) = go

and view S as an operator S: H-V/2(I') — (HM*)* =~ (H-1/2(I"))*,

This viewpoint suggests a way of writing down BVP formulations for
general screens (even with int(T") = 0):

» replace H-1/2(I') by some V-~ ¢ H-1/2(R")

» characterise (V~)* as a subspace V- ¢ H/2(R")
» impose BC by orthogonal projection onto V-

» view S as an operatorS: V- — VI

21



Let T be an arbitrary bounded subset of R™ (not necessarily open).
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Dirichlet BVP for general screens

Let T be an arbitrary bounded subset of R™ (not necessarily open).
Let V-~ be any closed subspace of H-1/2(R") satisfying

H~'2(int(I)) c vV~ ¢ H-'/2,

and define Vi = (V-)* by Vi := ((V7)%)+ c H/2(RM).
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Dirichlet BVP for general screens

Let I be an arbitrary bounded subset of R™ (not necessarily open).
Let V-~ be any closed subspace of H-1/2(R") satisfying

H~'2(int(I)) c vV~ ¢ H-'/2,
and define Vi = (V-)* by Vi := ((V7)%)+ c H/2(RM).
Here we are using the following fact:
Let H, H be Hilbert spaces with H* = # (unit. isom.).
(E9.H=H'2R"), H =H'/>R"))

If V. His a closed subspace, V* = (V&H)LH (with inherited duality
pairing)
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Dirichlet BVP for general screens

Let I be an arbitrary bounded subset of R™ (not necessarily open).
Let V-~ be any closed subspace of H-1/2(R") satisfying

H~'2(int(I)) c vV~ ¢ H-'/2,
and define Vi = (V-)* by Vi := ((V7)%)+ c H/2(RM).

Problem D(V™)

Givengp € V. (e.g. gp = —P,+ud),
find u € C? (D) N W.(D) such that
(A+Kk>)u=0 inD,
PV:r’Y:tu = gD7

[u] =0,
[Onu] € V7,
SRC at infinity.
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Dirichlet BVP for general screens

Let I be an arbitrary bounded subset of R™ (not necessarily open).
Let V-~ be any closed subspace of H-1/2(R") satisfying

H~'2(int(I)) c vV~ ¢ H-'/2,
and define Vi = (V-)* by Vi := ((V7)%)+ c H/2(RM).

Problem D(V™)

Givengp € V' (e.9. go = —Py+ud),
find u € C? (D) N W (D) such that | Theorem (C-W &1 2016)

9 . Problem D(V~) is well-posed
(A+k)u=0 inD, for any choice of V.

ij'Yiu =dJpb,
[u] =0,

[Onu] € V7,
SRC at infinity.

Operator S: V™ — V.F
inherits coercivity!
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For any bounded I', each choice  H~'/2(int(I)) ¢ V- ¢ H'/?
gives its own well-posed formulation D(V ™).
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Which formulation to use?

For any bounded I', each choice H-'2(int(l')) ¢ V- C H_
gives its own well-posed formulation D(V ™).

Theorem (C-W & H 2018)

~1/2

~1/2

IFH-1/2(int(T")) = H_ "/ there is only one such formulation.
If H=1/2(int(T)) # H;/ % 3 infinitely many formulations with # solutions!
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Which formulation to use?

For any bounded I', each choice H-'2(int(l')) ¢ V- C H_
gives its own well-posed formulatfion D(V ™).

Theorem (C-W & H 2018)

~1/2

-1/2

IFH-1/2(int(T")) = H_ "/~ there is only one such formulation.
If H=1/2(int(T")) # H;/ 2 3 infinitely many formulations with # solutions!

To select “physically correct” solut., apply limiting geometry principle:
H N .. .
EE EN
H N .. ..
EE EN
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Which formulation to use?

For any bounded I', each choice H-'2(int(l')) ¢ V- C H_
gives its own well-posed formulatfion D(V ™).

Theorem (C-W & H 2018)

~1/2

-1/2

If H=/2(int(T")) = H-
If H=1/2(int(T")) # H;/ 2 3 infinitely many formulations with # solutions!

there is only one such formulation.

To select “physically correct” solut., apply limiting geometry principle:
H N .. .
EE EN
H N .. ..
EE EN

e’y CI'y; C - - open and “nice”
(e.g. Lipschitz)
o I':=J;I; open (gray part),
— natural choice is
V- =H12(D).
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Which formulation to use?

For any bounded I', each choice H-'2(int(l')) ¢ V- C H_
gives its own well-posed formulatfion D(V ™).

Theorem (C-W & H 2018)

~1/2

-1/2

If H=/2(int(T")) = H-
If H=1/2(int(T")) # H;/ 2 3 infinitely many formulations with # solutions!

there is only one such formulation.

To select “physically correct” solut., apply limiting geometry principle:
H N .. .
EE EN
H N .. ..
EE EN

o'y CI'y C--- openand “nice”||eT'; DTy O---closed and “nice”

(e.g. Lipschitz) (e.g. closure of Lipschitz)
ol := Uj I'; open (gray part), o' := ﬂ I'; closed (black part),
— natural choice is — no’rurol ch0|ce is

V- =H1/2(D). V- =H. 2
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What if prefractals are not nested?

What if prefractals I'; are neither increasing nor decreasing? FJ%FJH

I 4
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What if prefractals are not nested?

What if prefractals I'; are neither increasing nor decreasing? FJ%FJH

I 4

Key tool is Mosco convergence (Mosco 1969):

V;, V closed subspaces of Hilbert space H, j € N, then V; Mvif:
» Yoe V,jeN,Ju e Vst v—v (strong approximability)
» V(jm) subsequence of N, v;,, € Vj, form € N, v, —~v, thenv e V
(weak closure)

Think: H=H~"2(R"),  V;=H"Y(Iy), H'2(nt(I)) cVcH"?
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What if prefractals are not nested?

What if prefractals I'; are neither increasing nor decreasing? FJ%FJH

I 4

Key tool is Mosco convergence (Mosco 1969):

V;, V closed subspaces of Hilbert space H, j € N, then V; Mvif:
» Yoe V,jeN,Ju e Vst v—v (strong approximability)

» V(jm) subsequence of N, v;,, € V;, forme N, v, —~v,thenve V
(weak closure)

Think: H = H-V2(R"),  V;=H"Y2(Iy), H Y2(int(l)) c V.c H;'?
Theorem (C-W, H & M, 2018)
If V; M, v c H-V/2(R") then solution of D(V;) converges to sol.n of D(V)

Holds for square snowflake above with V = H~1/2(int(I")) = H-'/?

24



When is u = 0?

Theorem (C-W & H 2018)
-1/2

LetT be closed with empty interior and let V= = H.
» Ifdimyl’ < n— 1 then u = O for every incident direction d.
» [fdimyl’ > n— 1 then u # O for a.e. incident direction d.
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When is u = 0?

Theorem (C-W & H 2018)

LetT be closed with empty interior and let V= = H. 172,
» Ifdimyl’ < n— 1 then u = O for every incident direction d.
» [fdimyl’ > n— 1 then u # O for a.e. incident direction d.

So both the Sierpinski triangle (dimy = log 3/1og 2) and pentaflake

(dimy = log6/log((3 + v/5)/2)) generate a non-zero scattered field:

25



Back to the Cantor dust

Let C?2 := C, x C, C R2 denote the “Cantor dust” (0 < a < 1/2):

+————> <>

«

Question: Is the scattered field u zero or non-zero for the 3D Dirich-
let scattering problem with T' = C2?

264



Back to the Cantor dust

Let C?2 := C, x C, C R2 denote the “Cantor dust” (0 < a < 1/2):
H H.: ..
H N HE
H H:.. -
H N HE

4—>H

Question: Is the scattered field u zero or non-zero for the 3D Dirich-
let scattering problem with T' = C2?

Answer:
=0,f0<a<1/4;
u#0,ingeneral,if 1/4 < a < 1/2.

(u = 0O for all o for Neumann BCs)
264



Part IV



Boundary element method (BEM)
. . HE HE

HE H N
. . HE H N

HE HE

For each prefractal I';, the BIE S[ou/on] = —gp can be solved using a
standard BEM space, e.g. piecewise constants on a mesh of width h;.

Let w; denote the Galerkin BEM solution on T';.
Let | = o/ be the width of each component of T; (4/ of them).
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Boundary element method (BEM)
. . HE HE

HE H N
. . HE H N

HE HE

For each prefractal I';, the BIE S[ou/on] = —gp can be solved using a
standard BEM space, e.g. piecewise constants on a mesh of width h;.

Let w; denote the Galerkin BEM solution on T';.
Let | = o/ be the width of each component of T; (4/ of them).

Under certain assumptions on h;, we prove BEM convergence

|u— willg-1/2@n) — 0.
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Boundary element method (BEM)

For each prefractal I';, the BIE S[ou/on] = —gp can be solved using a
standard BEM space, e.g. piecewise constants on a mesh of width h;.

Let w; denote the Galerkin BEM solution on T';.
Let | = o/ be the width of each component of T; (4/ of them).

Under certain assumptions on h;, we prove BEM convergence
|u— willg-1/2@n) — 0.

Follows fromn Mosco convergence of BEM spaces.
This requires approximalbility (Vv € Hr_l/zﬂvj e H'/2(T1}), v — v):
proved with mollification, L? projection, partition of unity, ...

27



Suppose 3 —1/2 < t < 0 such that H is dense in H. 12,
Then 3 p = u(t) > 0 such that if hj/l = O(e~#) then w; — u asj — co.



Convergence results for the Cantor dust

Theorem (C-W, H & M 2018)
Suppose 3 —1/2 < t < 0 such that H.. is dense in Hy />,
Then 3 p = u(t) > 0 such that if hj/l = O(e~#) then w; — u asj — co.
Certainly not sharp!
» h;/l; = O(e ") is a severe restriction

» Density assumption HE C H;l/z for some t > —1/2 not yet verified
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Convergence results for the Cantor dust

Theorem (C-W, H & M 2018)
Suppose 3 —1/2 < t < 0 such that H.. is dense in Hy />,
Then 3 p = u(t) > 0 such that if hj/l = O(e~#) then w; — u asj — co.
Certainly not sharp!
» h;/l; = O(e ") is a severe restriction

» Density assumption HE C H;l/z for some t > —1/2 not yet verified

We can do better if we replace I'; by “faftened” versions:
I; = {x: dist(x,I}) < el;} for some 0 < ¢ < min{a, 3 — a}.
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Convergence results for the Cantor dust

Theorem (C-W, H & M 2018)

Suppose 3 —1/2 < t < 0 such that H.. is dense in Hy />,
Then 3 p = u(t) > 0 such that if hj/l = O(e~#) then w; — u asj — co.

Certainly not sharp!
» h;/l; = O(e ") is a severe restriction

» Density assumption HE C H;l/z for some t > —1/2 not yet verified

We can do better if we replace I'; by “faftened” versions:
I; = {x:dist(x,I}) < el;} for some 0 < & < min{a,  — a}.
Theorem (C-W, H & M 2018)

If hj = o(l;) then w; — u asj — oc.

We require condition weaker than h; = o(l;) if Hf. is dense in Hy /2.
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Convergence results for the Cantor dust

Theorem (C-W, H & M 2018)

Suppose 3 —1/2 < t < 0 such that H.. is dense in Hy />,
Then 3 p = u(t) > 0 such that if hj/l = O(e~#) then w; — u asj — co.

Certainly not sharp!
» h;/l; = O(e ") is a severe restriction
» Density assumption HE C H;l/z for some t > —1/2 not yet verified

We can do better if we replace I'; by “faftened” versions:
I; = {x: dist(x,I}) < el;} for some 0 < ¢ < min{a, 3 — a}.

Theorem (C-W, H & M 2018)
If hj = o(l;) then w; — u asj — oo.
We require condition weaker than h; = o(l;) if Hf. is dense in Hy /2.

For simplicity, I'll show results on prefractals for #DOF fixed but large.
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs, prefractallevel 1
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs, prefractallevel 2
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs, prefractallevel 3
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs,
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs,

Real part total field
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Numerical results: Cantor dust a = 1/3 (u # 0)

k=25, 4096 DOFs,

Real part total field
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 1
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 2
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 3
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 4
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 5
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Numerical results: Cantor dust a« = 0.1 (u = 0)

k=25, 4096 DOFs, prefractallevel 6
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Convergence of BEM solution norms: Cantor dust

Cantor 2+1D Norms: alpha=0.1, k = 25,

Cantor 2+1D Norms: alpha=0.33, k = 25,
FractLev = 1 to 6, DOFs = 4096 to 4096

FractLev = 1 to 6, DOFs = 4096 to 4096

10°

[l 2o,
|IFarField| 25,

%
101 1073

1 2 3 4 5 6 1 2 3 4 5 6
Prefractal level Prefractal level

Norms of the solution on the prefractals converge:

» fo a positive constant values for a = 1/3 (left),
» fo O for a = 1/10 (right).



Numerical results: Sierpinski friangle

Ik =45, prefractallevel 0, 2209 DOFs
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Numerical results: Sierpinski friangle

Ik =45, prefractallevel 1, 2187 DOFs
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Numerical results: Sierpinski triangle

k — 45[ preerCTal |eVe| 2[ 2304 DOFS (Pr. levels 0 and 1 are not colour-scaled)
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Numerical results: Sierpinski triangle

k — 45[ preerCTal |eVe| 3[ 2'| 87 DOFS (Pr. levels 0 and 1 are not colour-scaled)

Magpnitude far field z>0

.
Real part total field o8 Real part scattered field
02 20
v ] -
04 01 16
,
;
0
-0.3 4
Magnitude density |[du/dn]|
Magnitude total field Magnitude scattered field
" A A
. A A
os IVYVYVY
" A A
o - A A A A
o7 o2 A A A A
0 . IYYVYVYVVYYY




Numerical results: Sierpinski triangle

k — 45[ prefI’GCTCﬂ |eVe| 4[ 29" 6 DOFS (Pr. levels 0 and 1 are not colour-scaled)
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Numerical results: Sierpinski triangle

k — 45[ prefI’GCTCﬂ |eVe| 5[ 2'| 87 DOFS (Pr. levels 0 and 1 are not colour-scaled)
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Numerical results: Sierpinski triangle

k — 45[ prefI’GCTCﬂ |eVe| 6[ 29" 6 DOFS (Pr. levels 0 and 1 are not colour-scaled)
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Numerical results: Sierpinski triangle

Ik =45, prefractallevel 7, 2187 DOFs

Real part total field

Magnitude total field

Real part scattered field
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(Pr. levels 0 and 1 are not colour-scaled)
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Convergence of BEM solutions: Sierpinski friangle

FractLev = 0 to 7, DOFs = 2209 to 2187 ey FractLev = 0 to 7, DOFs = 2209 to 2187

10%
—3¥— L2 rel.err. in far field
P
' v 7 \"2 v a4
P i L e e
B
B—8 8 — & £3—— 4

101+

—o— [l[0w/On]l| 2ry

—&— [[9u/0n]|l vy

10w/ On]l] -1 (Si)

=¥ [l zmox)

57— |FarField| s 10F
10% & E

o ¥ ¥ ¥ ¥ ¥
10 0 1 2 3 4 5 6 7 1 2 3 4 5
Prefractal level Prefractal Level
Right: |w; — wrl|L2(Box) |lwy — w72 (Farmieta)
' ’
w7 || L2 (Box) w7 |2 (Farrieta)

(Prefractal level 3 is when density maxima are located and alll
wavelength-size prefractal features are resolved: big error reduction!)
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Other shapes

< Sierpinski carpet.

Real part scattered field

Maghitude scattered field

A “Square snowflake”,
limit of non-monotonic prefractals.

24



Apertures

Field through bounded apertures in unbounded Neumann screens
computed via Babinet’s principle.

Real part te i Magnitude total field

n =1, Cantor set a = 1/3, prefractal level 12:
field through 0-measure holes!
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Apertures

Field through bounded apertures in unbounded Neumann screens
computed via Babinet’s principle.

Real part total fiel Magnitude total field
- - — — Real part total field

-

n =1, Cantor set a = 1/3, prefractal level 12:
field through 0-measure holes!

Koch snowflake-shaped aperture.
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Question: for I the open Koch snowflake, is H/2(I') = H;ﬂ/ 29

24



Experimental functional analysis!

Question: for I the open Koch snowflake, is H*1/2(I) = H-'/??

We can approximate I' from inside and outside with polygons Fj.i:

T T - TP cTo N7t + Tt ot
ryclyclryc--c|yry=rci=(\rfc..-crjcry cry.
open jeN jeN Closed
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Question: for I the open Koch snowflake, is H*1/2(I) = H-'/??

We can approximate I' from inside and outside with polygons Fj.i:
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Experimental functional analysis!

Question: for I the open Koch snowflake, is H*1/2(I) = H-'/??

We can approximate I' from inside and outside with polygons Fj.i:

T T - TP cTo N7t + Tt ot
ryclyclryc--c|yry=rci=(\rfc..-crjcry cry.
open jeN jeN Closed

AEER
® % % %

For a scc’r’renng BVP u~ —u~ e HV2(I),
soluhon of BVPsinT" and in

*
.

—ut € Ho 12,

W
T,

We study numerically if u= = u™, i.e. if inner and outer limits coincide.



RE==
== =

k=61, d=

)
0, f f 3576 to 10344 DOFs, different colour scales.

Now | compare w;~ against wj‘_l and wj+.
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Inner and outer snowflake approximations

Blue lines are |[w;” — w/||7-1/2(z2), converging fast to 0!
Evidence for H*1/2(I') = H='/??

k=0,d=[0,0,0]
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Inner and outer snowflake approximations

Blue lines are |[w;” — w/||7-1/2(z2), converging fast to 0!
Evidence for H*1/2(I') = H='/??
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We can now prove H(T') = HZ Vs € R for a class of snowflakes!

(Caoetano + H+ M, 2018)
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Open questions

v

vVvyVvyVvyyvyy

How best to do numerical analysis in the joint limit of prefractal
level and mesh refinement?

Rates of convergence?

Regularity theory for the fractal solution?
Relation with “infrinsic” spaces?
Approximation on fractals!

What about curved screens?

What about the Maxwell case?
Other PDEs? (Laplace, reaction-diffusion already covered.)

v
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Open questions

v

vVvyVvyVvyyvyy

How best to do numerical analysis in the joint limit of prefractal
level and mesh refinement?

Rates of convergence?

Regularity theory for the fractal solution?
Relation with “infrinsic” spaces?
Approximation on fractals!

What about curved screens?

What about the Maxwell case?
Other PDEs? (Laplace, reaction-diffusion already covered.)

v

Thank you!
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