Scattering by fractal screens: functional analysis and computation

Andrea Moiola
Dipartimento di Matematica, Università di Pavia

Joint work with
S.N. Chandler-Wilde (Reading), D.P. Hewett (UCL) and A. Caetano (Aveiro)

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.
Scattering: incoming wave u^{i} hits obstacle Γ and generates field u.

Acoustic wave scattering by a planar screen

Acoustic waves in free space governed by wave eq. $\frac{\partial^{2} U}{\partial t^{2}}-\Delta U=0$.
In time-harmonic regime, assume $U(\mathbf{x}, t)=\Re\left\{u(\mathbf{x}) \mathrm{e}^{-\mathrm{i} k t}\right\}$ and look for u. u satisfies Helmholtz equation $\Delta u+k^{2} u=0$, with wavenumber $k>0$.
Scattering: incoming wave u^{i} hits obstacle Γ and generates field u.
Γ bounded open subset of $\left\{\mathbf{x} \in \mathbb{R}^{n+1}: x_{n+1}=0\right\} \cong \mathbb{R}^{n}, n=1,2$

u satisfies Sommerfeld radiation condition (SRC) at infinity (i.e. $\partial_{r} u-i k u=o\left(r^{-(n-1) / 2}\right)$ uniformly as $\left.r=|\mathbf{x}| \rightarrow \infty\right)$.

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

$$
u^{t o t}=u+u^{i}
$$

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} k \mathbf{d} \cdot \mathbf{x}},|\mathbf{d}|=1$.

$$
u^{t o t}=u+u^{i}
$$

Classical problem when Γ is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong, Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, Urzúa-Torres, ...)

Scattering by Lipschitz and rough screens

 Incident field is plane wave $u^{i}(\mathbf{x})=\mathrm{e}^{\mathrm{i} \mathbf{k d} \cdot \mathbf{x}},|\mathbf{d}|=1$.$$
u^{t o t}=u+u^{i}
$$

Classical problem when Γ is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong, Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, Urzúa-Torres, . . .)
What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Г?

Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)
Fractal antennas are a popular topic in engineering:
Wideband/multiband, compact, cheap, metamaterials, cloaking. . . Not yet analysed by mathematicians.

Other applications

Scattering by ice crystals in atmospheric physics e.g. C. Westbrook (Reading)

Fractal apertures in laser optics e.g. J. Christian (Salford)

Scattering by fractal screens

Lots of interesting mathematical questions:

- How to formulate well-posed BVPs?
(What is the right function space setting? How to impose BCs?)
- How do prefractal solutions converge to fractal solutions?
- How can we accurately compute the scattered field?
- If the fractal has empty interior, does it scatter waves at all?
- How does the fractal (Hausdorff) dimension affect things?

Can you hear a Cantor dust?

For $0<\alpha<1 / 2$
let $C_{\alpha} \subset[0,1]$ denote the standard Cantor set:

Can you hear a Cantor dust?

For $0<\alpha<1 / 2$ let $C_{\alpha} \subset[0,1]$ denote the standard Cantor set:

Let $C_{\alpha}^{2}:=C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^{2}$ denote the associated "Cantor dust":

C_{α}^{2} is uncountable, closed, with $\operatorname{int}\left(C_{\alpha}^{2}\right)=\emptyset$; in fact $m\left(C_{\alpha}^{2}\right)=0$.

Can you hear a Cantor dust?

$$
\text { For } 0<\alpha<1 / 2
$$

let $C_{\alpha} \subset[0,1]$ denote the standard Cantor set:

Let $C_{\alpha}^{2}:=C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^{2}$ denote the associated "Cantor dust":

C_{α}^{2} is uncountable, closed, with int $\left(C_{\alpha}^{2}\right)=\emptyset$; in fact $m\left(C_{\alpha}^{2}\right)=0$.
Question: Is the scattered field zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma=C_{\alpha}^{2}$?

Bibliography

I will discuss the answers we tried to give here:
(1) SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015.
(2) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017.
(3) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to BIEs on fractal screens,

IEOT, 2017.
(4) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018.
(5) SNCW, DPH, AM, Scattering by fractal screens and apertures, in preparation.
but many questions are still open!

Bibliography

I will discuss the answers we tried to give here:
(1) SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015. \triangleright Scattering by open screens
(2) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017.
(3) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to BIEs on fractal screens,

IEOT, 2017.
\triangleright Sobolev spaces
(4) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018. \triangleright Scattering by general screens
(5) SNCW, DPH, AM, Scattering by fractal screens and apertures, in preparation.
\triangleright BEM, convergence
but many questions are still open!

Part I

BVPs \& BIEs

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

- Seek BVP solutions in $W_{\text {loc }}^{1}\left(\mathbb{R}^{n+1} \backslash \bar{\Gamma}\right)$

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

- Seek BVP solutions in $W_{\text {loc }}^{1}\left(\mathbb{R}^{n+1} \backslash \bar{\Gamma}\right)$
- Represent solutions in terms of jumps of boundary traces on Γ

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

- Seek BVP solutions in $W_{\text {loc }}^{1}\left(\mathbb{R}^{n+1} \backslash \bar{\Gamma}\right)$
- Represent solutions in terms of jumps of boundary traces on Γ
- These jumps live in some (Γ-dependent) subspaces of $H^{ \pm 1 / 2}\left(\mathbb{R}^{n}\right)$

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

- Seek BVP solutions in $W_{\text {loc }}^{1}\left(\mathbb{R}^{n+1} \backslash \bar{\Gamma}\right)$
- Represent solutions in terms of jumps of boundary traces on Γ
- These jumps live in some (Γ-dependent) subspaces of $H^{ \pm 1 / 2}\left(\mathbb{R}^{n}\right)$
- The jumps satisfy certain boundary integral equations

Boundary integral equations (BIEs)

BIEs provide a natural analytical and computational framework.

- Seek BVP solutions in $W_{\text {loc }}^{1}\left(\mathbb{R}^{n+1} \backslash \bar{\Gamma}\right)$
- Represent solutions in terms of jumps of boundary traces on Γ
- These jumps live in some (Γ-dependent) subspaces of $H^{ \pm 1 / 2}\left(\mathbb{R}^{n}\right)$
- The jumps satisfy certain boundary integral equations
- The associated boundary integral operators are coercive, thus invertible, between appropriate spaces (Ha-Duong, Chandler-Wilde/Hewett)

Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$. For $s \in \mathbb{R}$ let

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}:=\int_{\mathbb{R}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\} .
$$

Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$. For $s \in \mathbb{R}$ let

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}:=\int_{\mathbb{R}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\} .
$$

For $\Gamma \subset \mathbb{R}^{n}$ open and $F \subset \mathbb{R}^{n}$ closed define

$$
\begin{array}{rlrl}
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n}\right)\right\} & \text { restriction } \\
\widetilde{H}^{s}(\Gamma) & :=\overline{C_{0}^{\infty}(\Gamma)} H^{s}\left(\mathbb{R}^{n}\right) & \text { closure } \\
H_{F}^{s} & :=\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset F\right\} & & \text { support }
\end{array}
$$

Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$. For $s \in \mathbb{R}$ let

$$
H^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right):\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}^{2}:=\int_{\mathbb{R}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\hat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \boldsymbol{\xi}<\infty\right\} .
$$

For $\Gamma \subset \mathbb{R}^{n}$ open and $F \subset \mathbb{R}^{n}$ closed define

$$
\begin{array}{rlrl}
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n}\right)\right\} & & \text { restriction } \\
\widetilde{H}^{s}(\Gamma) & :={\overline{C_{0}^{\infty}(\Gamma)} H^{s}\left(\mathbb{R}^{n}\right)} & \text { closure } \\
H_{F}^{s} & :=\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset F\right\} & & \text { support }
\end{array}
$$

"Global" and "local" spaces:

$$
\underbrace{\widetilde{H}^{s}(\Gamma) \subset H_{\bar{\Gamma}}^{s}}_{\text {" } 0 \text {--trace" }} \subset H^{s}\left(\mathbb{R}^{n}\right) \subset \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \quad \underset{\text { restriction oper. }}{\mid} \quad H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma) \text {. }
$$

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

When Γ is Lipschitz it holds that

- $\widetilde{H}^{s}(\Gamma)=\left(H^{-s}(\Gamma)\right)^{*}$ with equal norms
- $s \in \mathbb{N} \Rightarrow\|u\|_{H^{s}(\Omega)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Omega}\left|\partial^{\alpha} u\right|^{2}$
- $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \quad\left(\cong H_{00}^{s}(\Gamma), s \geq 0\right)$
- $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$
- $\left\{H^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ and $\left\{\widetilde{H}^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ are interpolation scales.

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

When Γ is Lipschitz it holds that

- $\widetilde{H}^{s}(\Gamma)=\left(H^{-s}(\Gamma)\right)^{*}$ with equal norms
- $\boldsymbol{s} \in \mathbb{N} \Rightarrow\|u\|_{H^{s}(\Omega)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Omega}\left|\partial^{\alpha} u\right|^{2}$
- $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \quad\left(\cong H_{00}^{s}(\Gamma), s \geq 0\right)$
- $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$
- $\left\{H^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ and $\left\{\widetilde{H}^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ are interpolation scales.

For general non-Lipschitz Γ

- \checkmark
- \times
- \times
- \times
- \times

This has implications for the scattering problem!

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^{n}$

When Γ is Lipschitz it holds that

- $\widetilde{H}^{s}(\Gamma)=\left(H^{-s}(\Gamma)\right)^{*}$ with equal norms
- $\boldsymbol{s} \in \mathbb{N} \Rightarrow\|u\|_{H^{s}(\Omega)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Omega}\left|\partial^{\alpha} u\right|^{2}$
- $\tilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \quad\left(\cong H_{00}^{s}(\Gamma), s \geq 0\right)$
- $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$
- $\left\{H^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ and $\left\{\widetilde{H}^{s}(\Gamma)\right\}_{s \in \mathbb{R}}$ are interpolation scales.

For general non-Lipschitz Γ

- \checkmark
- \times
- \times
- \times
- \times

This has implications for the scattering problem!
There exist many works on Sobolev (Besov,...) spaces on rough sets; most use intrinsic definitions on (e.g.) d-sets.
Analogous to $W^{s}(\Gamma)$, based on $L^{p}\left(\Gamma, \mathcal{H}_{d}\right)$.
Related to spaces in \mathbb{R}^{n} by traces. See: Jonsson-Wallin, Strichartz.
Our spaces are different, more suited for integral equations and BEM.

Dirichlet BVP (Lipschitz open $\Gamma \subset \mathbb{R}^{n}$)

Problem D

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{aligned}
\left(\Delta+k^{2}\right) u & =0 & & \text { in } D=\mathbb{R}^{n+1} \backslash \bar{\Gamma}, \\
u & =g_{\mathrm{D}} & & \text { on } \Gamma,
\end{aligned}
$$

and u satisfies the Sommerfeld radiation condition.

Dirichlet BVP (Lipschitz open $\left.\Gamma \subset \mathbb{R}^{n}\right)$

Problem D

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{aligned}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D=\mathbb{R}^{n+1} \backslash \bar{\Gamma}, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}},
\end{aligned}
$$

and u satisfies the Sommerfeld radiation condition.

Dirichlet BVP (Lipschitz open $\left.\Gamma \subset \mathbb{R}^{n}\right)$

Problem D

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{aligned}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D=\mathbb{R}^{n+1} \backslash \bar{\Gamma}, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}},
\end{aligned}
$$

and u satisfies the Sommerfeld radiation condition.
Theorem (cf. Stephan and Wendland '84, Stephan '87) If Γ is Lipschitz then \mathbf{D} has a unique solution for all $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$.

Dirichlet BVP (Lipschitz open $\left.\Gamma \subset \mathbb{R}^{n}\right)$

Problem D

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{aligned}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D=\mathbb{R}^{n+1} \backslash \bar{\Gamma}, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}},
\end{aligned}
$$

and u satisfies the Sommerfeld radiation condition.

Theorem (cf. Stephan and Wendland '84, Stephan '87)

 If Γ is Lipschitz then \mathbf{D} has a unique solution for all $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$.BIE: $\quad S\left[\partial_{n} u\right]=-g_{D}$ representation: $u=-\mathcal{S}\left[\partial_{n} u\right]$
$\mathcal{S}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow C^{2}(D) \cap W_{l o c}^{1}(D) \quad \mathcal{S} \phi(\mathbf{x}):=\int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \phi(\mathbf{y}) \mathrm{d} s(\mathbf{y}), \quad \mathbf{x} \in D$
S : $\widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$

$$
\mathcal{S} \phi(\mathbf{x}):=\left.\gamma^{ \pm} \mathcal{S} \phi\right|_{\Gamma}(\mathbf{x}) \quad \mathbf{x} \in \Gamma
$$

S invertible,

$$
\Phi(\mathbf{x}, \mathbf{y}):=\mathrm{e}^{\mathrm{i} k|\mathbf{x}-\mathbf{y}|} / 4 \pi|\mathbf{x}-\mathbf{y}| \quad \text { (in 3D) }
$$

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

- By Helmholtz eq.: $\left[\partial_{n} u\right] \in H_{\bar{\Gamma}}^{-1 / 2}$ and $[u] \in H_{\bar{\Gamma}}^{1 / 2}$.

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

- By Helmholtz eq.: $\left[\partial_{n} u\right] \in H_{\bar{\Gamma}}^{-1 / 2}$ and $[u] \in H_{\bar{\Gamma}}^{1 / 2}$. By BCs:

$$
\left.\left(\gamma^{+} u\right)\right|_{\Gamma}=g_{D}=\left.\left.\left(\gamma^{-} u\right)\right|_{\Gamma} \quad \Rightarrow \quad[u]\right|_{\Gamma}=0 \quad \Rightarrow \quad[u] \in H_{\partial \Gamma}^{1 / 2} \subset H_{\bar{\Gamma}}^{1 / 2}
$$

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

- By Helmholtz eq.: $\left[\partial_{n} u\right] \in H_{\bar{\Gamma}}^{-1 / 2}$ and $[u] \in H_{\bar{\Gamma}}^{1 / 2}$. By BCs:

$$
\left.\left(\gamma^{+} u\right)\right|_{\Gamma}=g_{D}=\left.\left.\left(\gamma^{-} u\right)\right|_{\Gamma} \quad \Rightarrow \quad[u]\right|_{\Gamma}=0 \quad \Rightarrow \quad[u] \in H_{\partial \Gamma}^{1 / 2} \subset H_{\bar{\Gamma}}^{1 / 2}
$$

If $\exists \mathrm{O} \neq \phi \in H_{\partial \Gamma}^{1 / 2}$ then $\mathcal{D} \phi$ satisfies homogeneous problem.
($\mathcal{D}=$ double layer potential.)

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

- By Helmholtz eq.: $\left[\partial_{n} u\right] \in H_{\bar{\Gamma}}^{-1 / 2}$ and $[u] \in H_{\bar{\Gamma}}^{1 / 2} . \quad$ By BCs:

$$
\left.\left(\gamma^{+} u\right)\right|_{\Gamma}=g_{D}=\left.\left.\left(\gamma^{-} u\right)\right|_{\Gamma} \quad \Rightarrow \quad[u]\right|_{\Gamma}=0 \quad \Rightarrow \quad[u] \in H_{\partial \Gamma}^{1 / 2} \subset H_{\bar{\Gamma}}^{1 / 2}
$$

If $\exists 0 \neq \phi \in H_{\partial \Gamma}^{1 / 2}$ then $\mathcal{D} \phi$ satisfies homogeneous problem.
($\mathcal{D}=$ double layer potential.)

- If $\widetilde{H}^{-1 / 2}(\Gamma) \neq H_{\bar{\Gamma}}^{-1 / 2}$ then $\exists 0 \neq \phi \in H_{\bar{\Gamma}}^{-1 / 2} \backslash \widetilde{H}^{-1 / 2}(\Gamma)$ with $\mathrm{S} \phi=0$ (S extended to $S: H_{\bar{\Gamma}}^{-1 / 2} \rightarrow H^{1 / 2}(\Gamma)$, continuous but not injective) Then $\mathcal{S} \phi$ satisfies homogeneous problem.

Failure of BVP D for non-Lipschitz Γ

What if Γ is not Lipschitz?
Still have existence, but in general have non-uniqueness:

- By Helmholtz eq.: $\left[\partial_{n} u\right] \in H_{\bar{\Gamma}}^{-1 / 2}$ and $[u] \in H_{\bar{\Gamma}}^{1 / 2}$. By BCs:

$$
\left.\left(\gamma^{+} u\right)\right|_{\Gamma}=g_{D}=\left.\left.\left(\gamma^{-} u\right)\right|_{\Gamma} \quad \Rightarrow \quad[u]\right|_{\Gamma}=0 \quad \Rightarrow \quad[u] \in H_{\partial \Gamma}^{1 / 2} \subset H_{\bar{\Gamma}}^{1 / 2}
$$

If $\exists 0 \neq \phi \in H_{\partial \Gamma}^{1 / 2}$ then $\mathcal{D} \phi$ satisfies homogeneous problem.
($\mathcal{D}=$ double layer potential.)

- If $\widetilde{H}^{-1 / 2}(\Gamma) \neq H_{\bar{\Gamma}}^{-1 / 2}$ then $\exists 0 \neq \phi \in H_{\bar{\Gamma}}^{-1 / 2} \backslash \tilde{H}^{-1 / 2}(\Gamma)$ with $\mathrm{S} \phi=0$ (S extended to $S: H_{\bar{\Gamma}}^{-1 / 2} \rightarrow H^{1 / 2}(\Gamma)$, continuous but not injective) Then $\mathcal{S} \phi$ satisfies homogeneous problem.
We need to modify \mathbf{D} to deal with this.

Dirichlet BVP (arbitrary open Γ)

Problem $\widetilde{\mathbf{D}}$

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{align*}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}}, \\
{[u] } & =0, \\
{\left[\frac{\partial u}{\partial n}\right] } & \in \widetilde{H}^{-1 / 2}(\Gamma),
\end{align*}
$$

and u satisfies the Sommerfeld radiation condition.

Dirichlet BVP (arbitrary open Г)

Problem $\widetilde{\text { D }}$

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{align*}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}}, \\
{[u] } & =0, \\
{\left[\frac{\partial u}{\partial n}\right] } & \in \widetilde{H}^{-1 / 2}(\Gamma),
\end{align*}
$$

and u satisfies the Sommerfeld radiation condition.
Theorem (Chandler-Wilde \& Hewett 2013)
For any bounded open $\Gamma, \widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$.

Dirichlet BVP (arbitrary open Г)

Problem $\widetilde{\text { D }}$

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{align*}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}}, \\
{[u] } & =0, \\
{\left[\frac{\partial u}{\partial n}\right] } & \in \widetilde{H}^{-1 / 2}(\Gamma),
\end{align*}
$$

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde \& Hewett 2013)

For any bounded open $\Gamma, \widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$. If $H_{\partial \Gamma}^{1 / 2}=\{0\} \quad$ then \mathbf{D}^{\prime} is superfluous. If $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ then $\mathbf{D}^{\prime \prime}$ is superfluous.

Dirichlet BVP (arbitrary open Г)

Problem $\tilde{\mathbf{D}}$

Given $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$ (e.g. $g_{\mathrm{D}}=-\left.u^{i}\right|_{\Gamma}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{align*}
\left(\Delta+k^{2}\right) u & =0 \quad \text { in } D, \\
\left.\left(\gamma^{ \pm} u\right)\right|_{\Gamma} & =g_{\mathrm{D}}, \\
{[u] } & =0, \\
{\left[\frac{\partial u}{\partial n}\right] } & \in \widetilde{H}^{-1 / 2}(\Gamma),
\end{align*}
$$

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde \& Hewett 2013)

For any bounded open $\Gamma, \widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathrm{D}} \in H^{1 / 2}(\Gamma)$.
If $H_{\partial \Gamma}^{1 / 2}=\{0\} \quad$ then \mathbf{D}^{\prime} is superfluous. If $\widetilde{H}^{-1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{-1 / 2}$ then $\mathbf{D}^{\prime \prime}$ is superfluous. (E.g. if Γ is C^{0}.) Two key questions: (i) when is $H_{\partial \Gamma}^{s}=\{0\}$? (ii) when is $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s}$?

Part II

Two Sobolev space questions

Key question \#1: nullity

Given a compact set $K \subset \mathbb{R}^{n}$ with empty interior (e.g. $K=\partial \Gamma$), for which $s \in \mathbb{R}$ is $H_{K}^{s} \neq\{0\}$?

Key question \#1: nullity

Given a compact set $K \subset \mathbb{R}^{n}$ with empty interior (e.g. $K=\partial \Gamma$), for which $s \in \mathbb{R}$ is $H_{K}^{s} \neq\{0\}$?

Terminology:

$H_{K}^{s}=\{0\} \Longleftrightarrow \nexists$ non-zero elements of H^{s} supported inside K. We call such a set K " s-null".

Other terminology exists: " ($-\boldsymbol{s}$)-polar" (Maz'ya, Littman), "set of uniqueness for $H^{s^{\prime \prime}}$ (Maz'ya, Adams/Hedberg).

Nullity threshold

For every compact $K \subset \mathbb{R}^{n}$ with $\operatorname{int}(K)=\emptyset$,
$\exists s_{K} \in[-n / 2, n / 2]$, called the nullity threshold of K, such that $H_{K}^{s}=\{0\}$ for $s>s_{K}$ and $H_{K}^{s} \neq\{0\}$ for $s<s_{K}$.

$$
H_{K}^{s} \neq\{0\}
$$

$$
H_{K}^{s}=\{0\}
$$

i.e. K supports H^{s} distributions i.e. K cannot support H^{s} distr.

Nullity threshold

For every compact $K \subset \mathbb{R}^{n}$ with $\operatorname{int}(K)=\emptyset$,
$\exists s_{K} \in[-n / 2, n / 2]$, called the nullity threshold of K, such that $H_{K}^{s}=\{0\}$ for $s>s_{K}$ and $H_{K}^{s} \neq\{0\}$ for $s<s_{K}$.

$$
H_{K}^{S} \neq\{0\}
$$

i.e. K supports H^{s} distributions
i.e. K cannot support H^{s} distr.

Theorem (H \& M 2017)

If $m(K)=0$ then

$$
s_{K}=\frac{\operatorname{dim}_{H}(K)-n}{2} \leq 0
$$

Theorem (Polking 1972)

\exists compact K with $\operatorname{int}(K)=\emptyset$ and $m(K)>0$ for which $H_{K}^{n / 2} \neq\{0\}$, so that $s_{K}=n / 2$.

Connection with dim_{H} comes from standard potential theory results (Maz'ya 2011, Adams \& Hedberg 1996 etc.)
Nullity theory \sim complete for $m(K)=0$, open problems for $m(K)>0$.

Key question \#2: identity of 0-trace spaces

$$
\text { Given an open set } \Gamma \subset \mathbb{R}^{n} \text {, when is } \widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} ?
$$

Equivalent to density of $C_{0}^{\infty}(\Gamma)$ in $\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Gamma}\right\}$.

Key question \#2: identity of 0-trace spaces

$$
\text { Given an open set } \Gamma \subset \mathbb{R}^{n} \text {, when is } \tilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} ?
$$

Equivalent to density of $C_{0}^{\infty}(\Gamma)$ in $\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset \bar{\Gamma}\right\}$.
Classical result (e.g. McLean)
Let $\Gamma \subset \mathbb{R}^{n}$ be C^{0}. Then $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$.

Key question \#2: identity of 0-trace spaces

$$
\text { Given an open set } \Gamma \subset \mathbb{R}^{n} \text {, when is } \tilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \text { ? }
$$

Equivalent to density of $C_{0}^{\infty}(\Gamma)$ in $\left\{u \in H^{s}\left(\mathbb{R}^{n}\right)\right.$: $\left.\operatorname{supp} u \subset \bar{\Gamma}\right\}$.
Classical result (e.g. McLean)
Let $\Gamma \subset \mathbb{R}^{n}$ be C^{0}. Then $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$.
1st class of sets: "regular except at a few points", e.g. prefractal A

Theorem (C-W, H \& M 2017)

Let $n \geq 2, \Gamma \subset \mathbb{R}^{n}$ open and C^{0} except at finite $P \subset \partial \Gamma$. Then $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$ for $|s| \leq 1$.

- For $n=1$ the same holds for $|s| \leq 1 / 2$.
- Can take countable $P \subset \partial \Gamma$ with finitely many limit points in every bounded subset of $\partial \Gamma$.
Proof uses sequence of special cutoffs for $s=1$, duality, interpolation.

Examples of non- C^{0} sets with $\widetilde{H}^{s}(\Gamma)=H_{\Gamma^{\prime}}^{s},|s| \leq 1$

E.g. union of disjoint C^{0} open sets, whose closures intersect only in P.

Sierpinski triangle prefractals, (unbounded) checkerboard, double brick, inner and outer (double) curved cusps, spiral, Fraenkel's "rooms and passages".

Constructing counterexamples

Consider another class of sets:
"nice domain minus small holes".
E.g. when int $(\bar{\Gamma})$ is smooth.

: : :	: :	\# :	\# \#
: : :	: : :	: :	: :
:: ::	:: ::	: :	: :
: : :	: : :	: :	: :
: \%	: \%	\# \#	\# \#
\# :	\# :	\# \#	\# \#
: \%	: \%	\# \#	\# \#
\# :	\# :	\# \#	\# \#

Constructing counterexamples

Consider another class of sets:
"nice domain minus small holes".

: :	: :	\# :	\# :
: : :	: : :	\#: :	: :
:: :	:: :	\#:	: : :
:: ::	:: ::	\# :	: :
\# \#	\# \%	\# \#	\# \#
\# \%	\# \#	\# \#	\# \#
\# :	: \%	\# \#	\# \#
\# \%	\# \#	\# \#	\# \#

Theorem (C-W, H \& M 2017)
If $\operatorname{int}(\bar{\Gamma})$ is C^{0} then $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} \Longleftrightarrow \operatorname{int}(\bar{\Gamma}) \backslash \Gamma$ is $(-s)$-null.

Constructing counterexamples

Consider another class of sets:
"nice domain minus small holes".
E.g. when $\operatorname{int}(\bar{\Gamma})$ is smooth.

: : :	: :	\# :	\# \#
: : :	: : :	: :	: :
:: :	: : :	: : :	\#: :
: : :	: : :	: :	\# :
: \%	: \%	\# \#	\# \#
\# :	\# :	\# \#	\# \#
: \%	: \%	\# \#	\# \#
\# :	\# :	\# \#	\# \#

Theorem (C-W, H \& M 2017)

If $\operatorname{int}(\bar{\Gamma})$ is C^{0} then $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} \Longleftrightarrow \operatorname{int}(\bar{\Gamma}) \backslash \Gamma$ is $(-s)$-null.

Corollary

For every $n \in \mathbb{N}$, there exists a bounded open set $\Gamma \subset \mathbb{R}^{n}$ such that,

$$
\widetilde{H}^{s}(\Gamma) \varsubsetneqq H_{\bar{\Gamma}}^{s}, \quad \forall s \geq-n / 2
$$

Proof: take a ball and remove a Polking set (not s-null for any $s \leq n / 2$)
(Can also have $\widetilde{H}^{s}(\Gamma) \varsubsetneqq\left\{u \in H^{s}: u=0\right.$ a.e. in $\left.\Gamma^{c}\right\} \varsubsetneqq H_{\Gamma}^{s} \quad \forall s>0$.)

Part III

Formulations on general screens

Prefractal convergence

Prefractal convergence

Theorem (C-W, H \& M 2017)

Consider a bounded sequence of nested open screens $\Gamma_{1} \subset \Gamma_{2} \subset \cdots$ For each j let u_{j} denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ_{j}. Let $\Gamma:=\bigcup_{j \in \mathbb{N}} \Gamma_{j}$ and let u denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ. Then $u_{j} \rightarrow u$ as $j \rightarrow \infty$ (in $W_{l o c}^{1}(D)$).

Prefractal convergence

Theorem (C-W, H \& M 2017)
Consider a bounded sequence of nested open screens $\Gamma_{1} \subset \Gamma_{2} \subset \ldots$ For each j let u_{j} denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ_{j}. Let $\Gamma:=\bigcup_{j \in \mathbb{N}} \Gamma_{j}$ and let u denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ. Then $u_{j} \rightarrow u$ as $j \rightarrow \infty$ (in $W_{l o c}^{1}(D)$).

Proof:

$$
\widetilde{H}^{s}\left(\Gamma_{1}\right) \subset \widetilde{H}^{s}\left(\Gamma_{2}\right) \subset \cdots \quad \text { and } \quad \widetilde{H}^{s}\left(\bigcup_{j \in \mathbb{N}} \Gamma_{j}\right)=\overline{\bigcup_{j \in \mathbb{N}} \widetilde{H}^{s}\left(\Gamma_{j}\right)} .
$$

Then write BIEs in variational form and apply Céa's Lemma.

Prefractal convergence

Theorem (C-W, H \& M 2017)

Consider a bounded sequence of nested open screens $\Gamma_{1} \subset \Gamma_{2} \subset \cdots$ For each j let u_{j} denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ_{j}. Let $\Gamma:=\bigcup_{j \in \mathbb{N}} \Gamma_{j}$ and let u denote the solution of problem $\widetilde{\boldsymbol{D}}$ for Γ. Then $u_{j} \rightarrow u$ as $j \rightarrow \infty$ (in $W_{l o c}^{1}(D)$).
Proof:

$$
\widetilde{H}^{s}\left(\Gamma_{1}\right) \subset \widetilde{H}^{s}\left(\Gamma_{2}\right) \subset \cdots \quad \text { and } \quad \widetilde{H}^{s}\left(\bigcup_{j \in \mathbb{N}} \Gamma_{j}\right)=\overline{\bigcup_{j \in \mathbb{N}} \widetilde{H}^{s}\left(\Gamma_{j}\right)} .
$$

Then write BIEs in variational form and apply Céa's Lemma.
What if we want to use $\Gamma_{1} \supset \Gamma_{2} \supset \cdots \rightarrow \Gamma$?
e.g. Cantor dust Need framework for closed screens.

What about general screens?

For an open screen Γ, we imposed the $B C$ by restriction to Γ :

$$
\left.\left(\gamma^{ \pm} \boldsymbol{u}\right)\right|_{\Gamma}=g_{\triangleright}
$$

and viewed S as an operator

$$
S: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma) \cong\left(\widetilde{H}^{-1 / 2}(\Gamma)\right)^{*} .
$$

What about general screens?

For an open screen Γ, we imposed the $B C$ by restriction to Γ :

$$
\left.\left(\gamma^{ \pm} \boldsymbol{u}\right)\right|_{\Gamma}=g_{\mathrm{D}}
$$

and viewed S as an operator

$$
S: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma) \cong\left(\widetilde{H}^{-1 / 2}(\Gamma)\right)^{*} .
$$

But since $\quad H^{1 / 2}\left(\mathbb{R}^{n}\right) \supset\left(H_{\Gamma^{c}}^{1 / 2}\right)^{\perp} \xrightarrow[\text { isomorphism }]{\mid \Gamma} H^{1 / 2}(\Gamma)$
we could equivalently impose the BC by orthogonal projection:

$$
P_{\left(H_{\mathrm{Cc}}^{1 / 2}\right)^{\perp}}\left(\gamma^{ \pm} u\right)=g_{\mathrm{D}}
$$

and view S as an operator

$$
\mathrm{S}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow\left(H_{\Gamma^{c}}^{1 / 2}\right)^{\perp} \cong\left(\widetilde{H}^{-1 / 2}(\Gamma)\right)^{*}
$$

What about general screens?

For an open screen Γ, we imposed the $B C$ by restriction to Γ :

$$
\left.\left(\gamma^{ \pm} \boldsymbol{u}\right)\right|_{\Gamma}=g_{\mathrm{D}}
$$

and viewed S as an operator

$$
S: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma) \cong\left(\widetilde{H}^{-1 / 2}(\Gamma)\right)^{*} .
$$

But since $\quad H^{1 / 2}\left(\mathbb{R}^{n}\right) \quad \supset \quad\left(H_{\Gamma^{c}}^{1 / 2}\right)^{\perp} \xrightarrow[\text { isomorphism }]{\mid \Gamma} H^{1 / 2}(\Gamma)$
we could equivalently impose the BC by orthogonal projection:

$$
P_{\left(H_{\mathrm{Cc}}^{1 / 2}\right)^{\perp}}\left(\gamma^{ \pm} u\right)=g_{\mathrm{D}}
$$

and view S as an operator

$$
\mathrm{S}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow\left(H_{\Gamma^{c}}^{1 / 2}\right)^{\perp} \cong\left(\widetilde{H}^{-1 / 2}(\Gamma)\right)^{*}
$$

This viewpoint suggests a way of writing down BVP formulations for general screens (even with $\operatorname{int}(\Gamma)=\emptyset$):

- replace $\widetilde{H}^{-1 / 2}(\Gamma)$ by some $V^{-} \subset H^{-1 / 2}\left(\mathbb{R}^{n}\right)$
- characterise $\left(V^{-}\right)^{*}$ as a subspace $V_{*}^{+} \subset H^{1 / 2}\left(\mathbb{R}^{n}\right)$
- impose BC by orthogonal projection onto V_{*}^{+}
- view S as an operator $\mathrm{S}: V^{-} \rightarrow V_{*}^{+}$

Dirichlet BVP for general screens

Let Γ be an arbitrary bounded subset of \mathbb{R}^{n} (not necessarily open).

Dirichlet BVP for general screens

Let Γ be an arbitrary bounded subset of \mathbb{R}^{n} (not necessarily open). Let V^{-}be any closed subspace of $H^{-1 / 2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\tilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}
$$

and define $V_{*}^{+} \cong\left(V^{-}\right)^{*}$ by $V_{*}^{+}:=\left(\left(V^{-}\right)^{a}\right)^{\perp} \subset H^{1 / 2}\left(\mathbb{R}^{n}\right)$.

Dirichlet BVP for general screens

Let Γ be an arbitrary bounded subset of \mathbb{R}^{n} (not necessarily open). Let V^{-}be any closed subspace of $H^{-1 / 2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}
$$

and define $V_{*}^{+} \cong\left(V^{-}\right)^{*}$ by $V_{*}^{+}:=\left(\left(V^{-}\right)^{a}\right)^{\perp} \subset H^{1 / 2}\left(\mathbb{R}^{n}\right)$.
Here we are using the following fact:
Let H, \mathcal{H} be Hilbert spaces with $H^{*} \cong \mathcal{H}$ (unit. isom.).
(E.g. $H=H^{-1 / 2}\left(\mathbb{R}^{n}\right), \mathcal{H}=H^{1 / 2}\left(\mathbb{R}^{n}\right)$.)

If $V \subset H$ is a closed subspace, $V^{*} \cong\left(V^{a, \mathcal{H}}\right)^{\perp, \mathcal{H}}$ (with inherited duality pairing)

Dirichlet BVP for general screens

Let Γ be an arbitrary bounded subset of \mathbb{R}^{n} (not necessarily open). Let V^{-}be any closed subspace of $H^{-1 / 2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}
$$

and define $V_{*}^{+} \cong\left(V^{-}\right)^{*}$ by $V_{*}^{+}:=\left(\left(V^{-}\right)^{a}\right)^{\perp} \subset H^{1 / 2}\left(\mathbb{R}^{n}\right)$.

Problem $\mathbf{D}\left(V^{-}\right)$

Given $g_{\mathrm{D}} \in V_{*}^{+}$(e.g. $g_{\mathrm{D}}=-P_{V_{*}^{+}} u^{i}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

$$
\begin{aligned}
& \left(\Delta+k^{2}\right) u=0 \quad \text { in } D, \\
& P_{V_{*}^{+}} \gamma^{ \pm} u=g_{\mathrm{D}}, \\
& {[u]=0,} \\
& {\left[\partial_{n} u\right] \in V^{-},} \\
& \text {SRC at infinity. }
\end{aligned}
$$

Dirichlet BVP for general screens

Let Γ be an arbitrary bounded subset of \mathbb{R}^{n} (not necessarily open). Let V^{-}be any closed subspace of $H^{-1 / 2}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}
$$

and define $V_{*}^{+} \cong\left(V^{-}\right)^{*}$ by $V_{*}^{+}:=\left(\left(V^{-}\right)^{a}\right)^{\perp} \subset H^{1 / 2}\left(\mathbb{R}^{n}\right)$.

Problem $\mathbf{D}\left(V^{-}\right)$

Given $g_{\mathrm{D}} \in V_{*}^{+}$(e.g. $g_{\mathrm{D}}=-P_{V_{*}^{+}} u^{i}$), find $u \in C^{2}(D) \cap W_{\text {loc }}^{1}(D)$ such that

Theorem (C-W \& H 2016)
Problem $\mathbf{D}\left(V^{-}\right)$is well-posed for any choice of V^{-}.

Operator $\mathrm{S}: V^{-} \rightarrow V_{*}^{+}$ inherits coercivity!

$$
\begin{aligned}
& \left(\Delta+k^{2}\right) u=0 \quad \text { in } D, \\
& P_{V_{*}^{+}}{ }^{ \pm} u=g_{\mathrm{D}}, \\
& {[u]=0,} \\
& {\left[\partial_{n} u\right] \in V^{-},} \\
& \text {SRC at infinity. }
\end{aligned}
$$

Which formulation to use?

For any bounded Γ, each choice $\quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}$ gives its own well-posed formulation $\mathbf{D}\left(V^{-}\right)$.

Which formulation to use?

For any bounded Γ, each choice $\quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}$ gives its own well-posed formulation $\mathbf{D}\left(V^{-}\right)$.

Theorem (C-W \& H 2018)

If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma))=H_{\bar{\Gamma}}^{-1 / 2}$ there is only one such formulation.
If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \neq H_{\bar{\Gamma}}^{-1 / 2} \exists$ infinitely many formulations with \neq solutions!

Which formulation to use?

For any bounded Γ, each choice $\quad \tilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}$ gives its own well-posed formulation $\mathbf{D}\left(V^{-}\right)$.
Theorem (C-W \& H 2018)
If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma))=H_{\bar{\Gamma}}^{-1 / 2}$ there is only one such formulation. If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \neq H_{\bar{\Gamma}}^{-1 / 2} \exists$ infinitely many formulations with \neq solutions! To select "physically correct" solut., apply limiting geometry principle:

:: :	: : :	:: ::	: : :
:: :	: :	:: ::	:: :
: : $:$: : :	: : :	:: :
:: ::	:: :	:: ::	:: ::
:: :	: :	:: :	:: ::
:: :	: : :	:: ::	: : :
:: ::	:: :	:: ::	:: ::
:: :	: :	:: ::	: :

Which formulation to use?

For any bounded Γ, each choice $\quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}$ gives its own well-posed formulation $\mathbf{D}\left(V^{-}\right)$.
Theorem (C-W \& H 2018)
If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma))=H_{\bar{\Gamma}}^{-1 / 2}$ there is only one such formulation. If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \neq H_{\bar{\Gamma}}^{-1 / 2} \exists$ infinitely many formulations with \neq solutions!

To select "physically correct" solut., apply limiting geometry principle:

:: :	: : :	:: ::	: : :
:: :	: :	:: ::	:: :
: : $:$: : :	: : :	:: :
:: ::	:: :	:: ::	:: ::
:: :	: :	:: :	:: ::
:: :	: : :	:: ::	: : :
:: ::	:: :	:: ::	:: ::
:: :	: :	:: ::	: :

- $\Gamma_{1} \subset \Gamma_{2} \subset \cdots$ open and "nice" \mid (e.g. Lipschitz)
- $\Gamma:=\bigcup_{j} \Gamma_{j}$ open (gray part),
\rightarrow natural choice is

$$
V^{-}=\widetilde{H}^{-1 / 2}(\Gamma) .
$$

Which formulation to use?

For any bounded Γ, each choice $\quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V^{-} \subset H_{\bar{\Gamma}}^{-1 / 2}$ gives its own well-posed formulation $\mathbf{D}\left(V^{-}\right)$.

Theorem (C-W \& H 2018)

If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma))=H_{\bar{\Gamma}}^{-1 / 2}$ there is only one such formulation. If $\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \neq H_{\bar{\Gamma}}^{-1 / 2} \exists$ infinitely many formulations with \neq solutions!

To select "physically correct" solut., apply limiting geometry principle:

:: ::	:: :	:: :	:: :
:: ::	: :	:: :	: : :
: : :	: : :	: : $:$: : :
:: ::	:: :	:: ::	:: :
:: ::	: :	:: :	: : :
:: ::	: :	:: :	: : :
:: ::	:: :	:: ::	:: :
:: ::	: :	:: :	:: :

- $\Gamma_{1} \subset \Gamma_{2} \subset \cdots$ open and "nice" $\| \bullet \Gamma_{1} \supset \Gamma_{2} \supset \cdots$ closed and "nice" (e.g. Lipschitz)
- $\Gamma:=\bigcup_{j} \Gamma_{j}$ open (gray part),
\rightarrow natural choice is

$$
V^{-}=\widetilde{H}^{-1 / 2}(\Gamma)
$$

(e.g. closure of Lipschitz)

- $\Gamma:=\bigcap_{j} \Gamma_{j}$ closed (black part),
\rightarrow natural choice is

$$
V^{-}=H_{\Gamma}^{-1 / 2}
$$

What if prefractals are not nested?

What if prefractals Γ_{j} are neither increasing nor decreasing? $\Gamma_{j \neq}^{\not \subset} \Gamma_{j+1}$

What if prefractals are not nested?

What if prefractals Γ_{j} are neither increasing nor decreasing? $\Gamma_{j} \not{ }_{\nexists} \Gamma_{j+1}$

Key tool is Mosco convergence (Mosco 1969):
V_{j}, V closed subspaces of Hilbert space $H, j \in \mathbb{N}$, then $V_{j} \xrightarrow{\mathcal{M}} V$ if:

- $\forall v \in V, j \in \mathbb{N}, \exists v_{j} \in V_{j}$ s.t. $v_{j} \rightarrow v \quad$ (strong approximability)
- $\forall\left(j_{m}\right)$ subsequence of $\mathbb{N}, v_{j_{m}} \in V_{j_{m}}$ for $m \in \mathbb{N}, v_{j_{m}} \rightharpoonup v$, then $v \in V$
(weak closure)
Think: $H=H^{-1 / 2}\left(\mathbb{R}^{n}\right), \quad V_{j}=\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right), \quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V \subset H_{\bar{\Gamma}}^{-1 / 2}$

What if prefractals are not nested?

What if prefractals Γ_{j} are neither increasing nor decreasing? $\Gamma_{j \not \supset}^{\not \partial} \Gamma_{j+1}$

Key tool is Mosco convergence (Mosco 1969):
V_{j}, V closed subspaces of Hilbert space $H, j \in \mathbb{N}$, then $V_{j} \xrightarrow{\mathcal{M}} V$ if:

- $\forall v \in V, j \in \mathbb{N}, \exists v_{j} \in V_{j}$ s.t. $v_{j} \rightarrow v$
(strong approximability)
- $\forall\left(j_{m}\right)$ subsequence of $\mathbb{N}, v_{j_{m}} \in V_{j_{m}}$ for $m \in \mathbb{N}, v_{j_{m}} \rightharpoonup v$, then $v \in V$ (weak closure)
Think: $H=H^{-1 / 2}\left(\mathbb{R}^{n}\right), \quad V_{j}=\widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right), \quad \widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma)) \subset V \subset H_{\bar{\Gamma}}^{-1 / 2}$
Theorem (C-W, H \& M, 2018)
If $V_{j} \xrightarrow{\mathcal{M}} V \subset H^{-1 / 2}\left(\mathbb{R}^{n}\right)$ then solution of $\mathbf{D}\left(V_{j}\right)$ converges to sol.n of $\mathbf{D}(V)$ Holds for square snowflake above with $V=\widetilde{H}^{-1 / 2}(\operatorname{int}(\Gamma))=H_{\bar{\Gamma}}^{-1 / 2}$

When is $u=0$?

Theorem (C-W \& H 2018)

Let Γ be closed with empty interior and let $V^{-}=H_{\Gamma}^{-1 / 2}$.

- If $\operatorname{dim}_{\mathrm{H}} \Gamma<n-1$ then $u=0$ for every incident direction \mathbf{d}.
- If $\operatorname{dim}_{\mathrm{H}} \Gamma>n-1$ then $u \neq 0$ for a.e. incident direction \mathbf{d}.

When is $u=0$?

Theorem (C-W \& H 2018)

Let Γ be closed with empty interior and let $V^{-}=H_{\Gamma}^{-1 / 2}$.

- If $\operatorname{dim}_{H} \Gamma<n-1$ then $u=0$ for every incident direction d.
- If $\operatorname{dim}_{H} \Gamma>n-1$ then $u \neq 0$ for a.e. incident direction d.

So both the Sierpinski triangle $\left(\operatorname{dim}_{H}=\log 3 / \log 2\right)$ and pentaflake $\left(\operatorname{dim}_{H}=\log 6 / \log ((3+\sqrt{5}) / 2)\right)$ generate a non-zero scattered field:

Back to the Cantor dust

Let $C_{\alpha}^{2}:=C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^{2}$ denote the "Cantor dust" ($0<\alpha<1 / 2$):

:: :: : : :
:: :: :: ::
:! :!
:: : $: ~: ~$
$\begin{array}{ll}\text { ■■ ■■ } & :::: ~::: ~ \\ \text { ■■ ■■ } & ::: \\ \text { ■ }::\end{array}$
:: :: :: ::

:: ::
:: : $: ~: ~$
:
::
:: :: $: \mathbf{:}$
:: ::
::

Question: Is the scattered field u zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma=C_{\alpha}^{2}$?

Back to the Cantor dust

Let $C_{\alpha}^{2}:=C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^{2}$ denote the "Cantor dust" ($0<\alpha<1 / 2$):

:: :: :: :
:: :: :: ::
: : : : : :

$$
\begin{array}{ll}
\text { i: :: } & \text { : : : } \\
\text { :: :: } \\
\text { :: }::
\end{array}
$$

Question: Is the scattered field u zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma=C_{\alpha}^{2}$?

$$
\operatorname{dim}_{\mathrm{H}}\left(C_{\alpha}^{2}\right)=\frac{\log (4)}{\log (1 / \alpha)}
$$

Answer:
$u=0$, if $0<\alpha \leq 1 / 4$;
$u \neq 0$, in general, if $1 / 4<\alpha<1 / 2$.
($u=0$ for all α for Neumann BCs)

Part IV

Numerical approximation

Boundary element method (BEM)

For each prefractal Γ_{j}, the $\mathrm{BIE} \mathrm{S}[\partial u / \partial n]=-g_{\mathrm{D}}$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_{j}. Let w_{j} denote the Galerkin BEM solution on Γ_{j}. Let $l_{j}=\alpha^{j}$ be the width of each component of Γ_{j} (4^{j} of them).

Boundary element method (BEM)

For each prefractal Γ_{j}, the $\mathrm{BIE} \mathrm{S}[\partial u / \partial n]=-g_{\mathrm{D}}$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_{j}. Let w_{j} denote the Galerkin BEM solution on Γ_{j}. Let $l_{j}=\alpha^{j}$ be the width of each component of Γ_{j} (4^{j} of them).

Under certain assumptions on h_{j}, we prove BEM convergence

$$
\left\|u-w_{j}\right\|_{H^{-1 / 2}\left(\mathbb{R}^{n}\right)} \rightarrow 0
$$

Boundary element method (BEM)

For each prefractal Γ_{j}, the $\mathrm{BIE} \mathrm{S}[\partial u / \partial n]=-g_{\mathrm{D}}$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_{j}. Let w_{j} denote the Galerkin BEM solution on Γ_{j}. Let $l_{j}=\alpha^{j}$ be the width of each component of Γ_{j} (4^{j} of them).

Under certain assumptions on h_{j}, we prove BEM convergence

$$
\left\|u-w_{j}\right\|_{H^{-1 / 2}\left(\mathbb{R}^{n}\right)} \rightarrow 0
$$

Follows from Mosco convergence of BEM spaces.
This requires approximability $\left(\forall v \in H_{\Gamma}^{-1 / 2} \exists v_{j} \in \widetilde{H}^{-1 / 2}\left(\Gamma_{j}\right), v_{j} \rightarrow v\right)$: proved with mollification, L^{2} projection, partition of unity, ...

Convergence results for the Cantor dust

Theorem (C-W, H \& M 2018)

Suppose $\exists-1 / 2<t<0$ such that H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$. Then $\exists \mu=\mu(t)>0$ such that if $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ then $w_{j} \rightarrow u$ as $j \rightarrow \infty$.

Convergence results for the Cantor dust

Theorem (C-W, H \& M 2018)

Suppose $\exists-1 / 2<t<0$ such that H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$. Then $\exists \mu=\mu(t)>0$ such that if $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ then $w_{j} \rightarrow u$ as $j \rightarrow \infty$.

Certainly not sharp!

- $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ is a severe restriction
- Density assumption $H_{\Gamma}^{t} \subset H_{\Gamma}^{-1 / 2}$ for some $t>-1 / 2$ not yet verified

Convergence results for the Cantor dust

Theorem (C-W, H \& M 2018)

Suppose $\exists-1 / 2<t<0$ such that H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$. Then $\exists \mu=\mu(t)>0$ such that if $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ then $w_{j} \rightarrow u$ as $j \rightarrow \infty$.

Certainly not sharp!

- $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ is a severe restriction
- Density assumption $H_{\Gamma}^{t} \subset H_{\Gamma}^{-1 / 2}$ for some $t>-1 / 2$ not yet verified

We can do better if we replace Γ_{j} by "fattened" versions: $\tilde{\Gamma}_{j}=\left\{x: \operatorname{dist}\left(x, \Gamma_{j}\right)<\varepsilon l_{j}\right\}$ for some $0<\varepsilon<\min \left\{\alpha, \frac{1}{2}-\alpha\right\}$.

Convergence results for the Cantor dust

Theorem (C-W, H \& M 2018)

Suppose $\exists-1 / 2<t<0$ such that H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$. Then $\exists \mu=\mu(t)>0$ such that if $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ then $w_{j} \rightarrow u$ as $j \rightarrow \infty$.

Certainly not sharp!

- $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ is a severe restriction
- Density assumption $H_{\Gamma}^{t} \subset H_{\Gamma}^{-1 / 2}$ for some $t>-1 / 2$ not yet verified

We can do better if we replace Γ_{j} by "fattened" versions: $\tilde{\Gamma}_{j}=\left\{x: \operatorname{dist}\left(x, \Gamma_{j}\right)<\varepsilon l_{j}\right\}$ for some $0<\varepsilon<\min \left\{\alpha, \frac{1}{2}-\alpha\right\}$.

Theorem (C-W, H \& M 2018)

If $h_{j}=o\left(l_{j}\right)$ then $\tilde{w}_{j} \rightarrow u$ as $j \rightarrow \infty$.
We require condition weaker than $h_{j}=o\left(l_{j}\right)$ if H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$.

Convergence results for the Cantor dust

Theorem (C-W, H \& M 2018)

Suppose $\exists-1 / 2<t<0$ such that H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$. Then $\exists \mu=\mu(t)>0$ such that if $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ then $w_{j} \rightarrow u$ as $j \rightarrow \infty$.

Certainly not sharp!

- $h_{j} / l_{j}=O\left(\mathrm{e}^{-\mu j}\right)$ is a severe restriction
- Density assumption $H_{\Gamma}^{t} \subset H_{\Gamma}^{-1 / 2}$ for some $t>-1 / 2$ not yet verified

We can do better if we replace Γ_{j} by "fattened" versions: $\tilde{\Gamma}_{j}=\left\{x: \operatorname{dist}\left(x, \Gamma_{j}\right)<\varepsilon l_{j}\right\}$ for some $0<\varepsilon<\min \left\{\alpha, \frac{1}{2}-\alpha\right\}$.

Theorem (C-W, H \& M 2018)

If $h_{j}=o\left(l_{j}\right)$ then $\tilde{w}_{j} \rightarrow u$ as $j \rightarrow \infty$.
We require condition weaker than $h_{j}=o\left(l_{j}\right)$ if H_{Γ}^{t} is dense in $H_{\Gamma}^{-1 / 2}$.
For simplicity, I'll show results on prefractals for \#DOF fixed but large.

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25, \quad 4096$ DOFs, prefractal level 1

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25,4096$ DOFs, prefractal level 2

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25,4096$ DOFs, prefractal level 3

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25,4096$ DOFs, prefractal level 4

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25,4096$ DOFs, prefractal level 5

Numerical results: Cantor dust $\alpha=1 / 3(u \neq 0)$

$k=25,4096$ DOFs, prefractal level 6

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25, \quad 4096$ DOFs, prefractal level 1

Magnitude density [[du/dn]|
\square

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25,4096$ DOFs, prefractal level 2

Magnitude density |[du/dn]|

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25,4096$ DOFs, prefractal level 3

Magnitude density |[du/dn]|

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25,4096$ DOFs, prefractal level 4

Magnitude density |[du/dn]|

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25,4096$ DOFs, prefractal level 5

Magnitude density |[du/dn]|

Numerical results: Cantor dust $\alpha=0.1(u=0)$

$k=25,4096$ DOFs, prefractal level 6

Magnitude density |[du/dn]|
$\times 10^{6}$
$-3.14:$
-3.14
-3.138
3.136
3.136
-3.136
-3.13 .
3.13:
3.13
3.12ε
3.128
$3.12 t$
3.126
3.124
3.126

Convergence of BEM solution norms: Cantor dust

Norms of the solution on the prefractals converge:

- to a positive constant values for $\alpha=1 / 3$ (left),
- to 0 for $\alpha=1 / 10$ (right).

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 0, 2209 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 1, 2187 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 2, 2304 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 3, 2187 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 4, 2916 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 5, 2187 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 6, 2916 DOFs

Numerical results: Sierpinski triangle

$k=45, \quad$ prefractal level 7, 2187 DOFs

Convergence of BEM solutions: Sierpinski triangle

Right: $\frac{\left\|w_{j}-w_{7}\right\|_{L^{2}(\text { BOX })}}{\left\|w_{7}\right\|_{L^{2}(B O X)}}, \quad \frac{\left\|w_{j}-w_{7}\right\|_{L^{2}(\text { FarField })}}{\left\|w_{7}\right\|_{L^{2}(\text { FarField })}}$.
(Prefractal level 3 is when density maxima are located and all wavelength-size prefractal features are resolved: big error reduction!)

Other shapes

\triangleleft Sierpinski carpet.

Real part scattered field

\triangle "Square snowflake", limit of non-monotonic prefractals.

Apertures

Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

$n=1$, Cantor set $\alpha=1 / 3$, prefractal level 12: field through 0-measure holes!

Apertures

Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

$n=1$, Cantor set $\alpha=1 / 3$, prefractal level 12: field through 0-measure holes!

Koch snowflake-shaped aperture.

Experimental functional analysis!

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2} ?$

Experimental functional analysis!

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2} ?$
We can approximate Γ from inside and outside with polygons $\Gamma_{j}^{ \pm}$:

$$
\Gamma_{1}^{-} \subset \underset{\text { open }}{\Gamma_{2}^{-} \subset \Gamma_{3}^{-} \subset \cdots \subset \bigcup_{j \in \mathbb{N}} \Gamma_{j}^{-}=\Gamma \subset \bar{\Gamma}=\bigcap_{j \in \mathbb{N}} \Gamma_{j}^{+} \subset \cdots \subset \Gamma_{3}^{+} \subset \Gamma_{2}^{+} \subset \Gamma_{1}^{+} . . . \text {.losed }}
$$

Experimental functional analysis!

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2}$?
We can approximate Γ from inside and outside with polygons $\Gamma_{j}^{ \pm}$:

$$
\Gamma_{1}^{-} \subset \underset{\text { open }}{\Gamma_{2}^{-} \subset \Gamma_{3}^{-} \subset \cdots \subset \bigcup_{j \in \mathbb{N}} \Gamma_{j}^{-}=\Gamma \subset \bar{\Gamma}=\bigcap_{j \in \mathbb{N}} \Gamma_{j}^{+} \subset \cdots \subset \Gamma_{3}^{+} \subset \Gamma_{2}^{+} \subset \Gamma_{1}^{+} . . . \text {closed } . ~}
$$

For a scattering BVP, $u_{j}^{-} \rightarrow u^{-} \in \widetilde{H}^{-1 / 2}(\Gamma), \quad u_{j}^{+} \rightarrow u^{+} \in H_{\bar{\Gamma}}^{-1 / 2}$, $u^{ \pm}$solution of BVPs in Γ and in $\bar{\Gamma}$.

Experimental functional analysis!

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2}$?
We can approximate Γ from inside and outside with polygons $\Gamma_{j}^{ \pm}$:

$$
\Gamma_{1}^{-} \subset \underset{\text { open }}{\Gamma_{2}^{-} \subset \Gamma_{3}^{-} \subset \cdots \subset \bigcup_{j \in \mathbb{N}} \Gamma_{j}^{-}=\Gamma \subset \bar{\Gamma}=\bigcap_{j \in \mathbb{N}} \Gamma_{j}^{+} \subset \cdots \subset \Gamma_{3}^{+} \subset \Gamma_{2}^{+} \subset \Gamma_{1}^{+} . . . \text {closed } . ~}
$$

For a scattering BVP, $u_{j}^{-} \rightarrow u^{-} \in \widetilde{H}^{-1 / 2}(\Gamma), \quad u_{j}^{+} \rightarrow u^{+} \in H_{\bar{\Gamma}}^{-1 / 2}$, $u^{ \pm}$solution of BVPs in Γ and in $\bar{\Gamma}$.

We study numerically if $u^{-} \stackrel{?}{=} u^{+}$, i.e. if inner and outer limits coincide.

Real part of fields on inner and outer prefractals

$k=61, \mathbf{d}=\left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\top}, 3576$ to 10344 DOFs, different colour scales.
Now I compare w_{j}^{-}against w_{j-1}^{+}and w_{j}^{+}.

Inner and outer snowflake approximations

Blue lines are $\left\|w_{j}^{-}-w_{l}^{+}\right\|_{H^{-1 / 2}\left(\mathbb{R}^{2}\right)}$, converging fast to 0 ! Evidence for $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2}$?

Inner and outer snowflake approximations

Blue lines are $\left\|w_{j}^{-}-w_{l}^{+}\right\|_{H^{-1 / 2}\left(\mathbb{R}^{2}\right)}$, converging fast to 0 ! Evidence for $\widetilde{H}^{ \pm 1 / 2}(\Gamma)=H_{\bar{\Gamma}}^{ \pm 1 / 2}$?

We can now prove $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \forall s \in \mathbb{R}$ for a class of snowflakes!

Open questions

- How best to do numerical analysis in the joint limit of prefractal level and mesh refinement?
- Rates of convergence?
- Regularity theory for the fractal solution?
- Relation with "intrinsic" spaces?
- Approximation on fractals!
- What about curved screens?
- What about the Maxwell case? Other PDEs?
(Laplace, reaction-diffusion already covered.)

Open questions

- How best to do numerical analysis in the joint limit of prefractal level and mesh refinement?
- Rates of convergence?
- Regularity theory for the fractal solution?
- Relation with "intrinsic" spaces?
- Approximation on fractals!
- What about curved screens?
- What about the Maxwell case? Other PDEs?
(Laplace, reaction-diffusion already covered.)

Thank you!

