20 JUNE 2018, BOLOGNA

Scattering by fractal screens: functional analysis and computation

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI PAVIA

Joint work with

S.N. Chandler-Wilde (Reading), D.P. Hewett (UCL) and A. Caetano (Aveiro)

Acoustic waves in free space governed by wave eq. $\frac{\partial^2 U}{\partial t^2} - \Delta U = 0$.

Acoustic waves in free space governed by wave eq. $\frac{\partial^2 U}{\partial t^2} - \Delta U = 0.$

In time-harmonic regime, assume $U(\mathbf{x}, t) = \Re\{u(\mathbf{x})e^{-ikt}\}\$ and look for u. u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Acoustic waves in free space governed by wave eq. $\frac{\partial^2 U}{\partial t^2} - \Delta U = 0.$

In time-harmonic regime, assume $U(\mathbf{x}, t) = \Re\{u(\mathbf{x})e^{-ikt}\}\$ and look for u. u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Scattering: incoming wave u^i hits obstacle Γ and generates field u.

Acoustic waves in free space governed by wave eq. $\frac{\partial^2 U}{\partial t^2} - \Delta U = 0.$

In time-harmonic regime, assume $U(\mathbf{x}, t) = \Re\{u(\mathbf{x})e^{-ikt}\}\$ and look for u. u satisfies Helmholtz equation $\Delta u + k^2 u = 0$, with wavenumber k > 0.

Scattering: incoming wave u^i hits obstacle Γ and generates field u.

 Γ bounded open subset of $\{\mathbf{x} \in \mathbb{R}^{n+1} : x_{n+1} = 0\} \cong \mathbb{R}^n$, n = 1, 2

u satisfies Sommerfeld radiation condition (SRC) at infinity (i.e. $\partial_r u - iku = o(r^{-(n-1)/2})$ uniformly as $r = |\mathbf{x}| \to \infty$).

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^i(\mathbf{x}) = e^{ik\mathbf{d}\cdot\mathbf{x}}$, $|\mathbf{d}| = 1$.

0.6

$$u^{tot} = u + u^i$$

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^i(\mathbf{x}) = e^{ik\mathbf{d}\cdot\mathbf{x}}$, $|\mathbf{d}| = 1$.

$$u^{tot} = u + u^i$$

Classical problem when Γ is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong, Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, Urzúa-Torres, ...)

Scattering by Lipschitz and rough screens

Incident field is plane wave $u^i(\mathbf{x}) = e^{ik\mathbf{d}\cdot\mathbf{x}}$, $|\mathbf{d}| = 1$.

$$u^{tot} = u + u^i$$

Classical problem when Γ is Lipschitz (Buffa, Christiansen, Costabel, Ha-Duong, Hiptmair, Holm, Jerez-Hanckes, Maischak, Stephan, Wendland, Urzúa-Torres, ...)

What happens for arbitrary (rougher than Lipschitz, e.g. fractal) Γ ?

Fractal antennas

(Figures from http://www.antenna-theory.com/antennas/fractal.php)

Fractal antennas are a popular topic in engineering: Wideband/multiband, compact, cheap, metamaterials, cloaking... Not yet analysed by mathematicians.

Other applications

Scattering by ice crystals in atmospheric physics e.g. C. Westbrook (Reading)

Fractal apertures in laser optics e.g. J. Christian (Salford)

Lots of interesting mathematical questions:

- How to formulate well-posed BVPs?
 (What is the right function space setting? How to impose BCs?)
- ► How do prefractal solutions converge to fractal solutions?
- ▶ How can we accurately compute the scattered field?
- If the fractal has empty interior, does it scatter waves at all?
- ► How does the fractal (Hausdorff) dimension affect things?

Can you hear a Cantor dust?

For $0 < \alpha < 1/2$ let $C_{\alpha} \subset [0, 1]$ denote the standard Cantor set:

Can you hear a Cantor dust?

For $0 < \alpha < 1/2$ let $C_{\alpha} \subset [0, 1]$ denote the standard Cantor set:

Let $C^2_{\alpha} := C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^2$ denote the associated "Cantor dust":

 C_{α}^2 is uncountable, closed, with $int(C_{\alpha}^2) = \emptyset$; in fact $m(C_{\alpha}^2) = 0$.

Can you hear a Cantor dust?

For $0 < \alpha < 1/2$ let $C_{\alpha} \subset [0, 1]$ denote the standard Cantor set:

Let $C^2_{lpha}:=C_{lpha} imes C_{lpha}\subset \mathbb{R}^2$ denote the associated "Cantor dust":

 C_{α}^2 is uncountable, closed, with $int(C_{\alpha}^2) = \emptyset$; in fact $m(C_{\alpha}^2) = 0$.

<u>Question</u>: Is the scattered field zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma = C_{\alpha}^2$?

Bibliography

. . .

I will discuss the answers we tried to give here:

- (1) SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015.
- (2) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017.
- (3) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^n with application to BIEs on fractal screens, IEOT, 2017.
- (4) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018.
- (5) SNCW, DPH, AM, Scattering by fractal screens and apertures, in preparation.

but many questions are still open!

Bibliography

I will discuss the answers we tried to give here:

- (1) SNCW, DPH, Wavenumber-explicit continuity and coercivity estimates in acoustic scattering by planar screens, IEOT, 2015.
 ▷ Scattering by open screens
- (2) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, An. and Appl., 2017.
- (3) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of ℝⁿ with application to BIEs on fractal screens, IEOT, 2017.
 ▶ Sobolev spaces
- (4) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, SIAM J. Math. Anal., 2018.
 ▷ Scattering by general screens
- (5) SNCW, DPH, AM, Scattering by fractal screens and apertures, in preparation.

BEM, convergence

but many questions are still open!

Part I

BVPs & BIEs

BIEs provide a natural analytical and computational framework.

• Seek BVP solutions in $W^1_{loc}(\mathbb{R}^{n+1} \setminus \overline{\Gamma})$

- Seek BVP solutions in $W^1_{loc}(\mathbb{R}^{n+1} \setminus \overline{\Gamma})$
- Represent solutions in terms of jumps of boundary traces on Γ

- Seek BVP solutions in $W^1_{loc}(\mathbb{R}^{n+1} \setminus \overline{\Gamma})$
- Represent solutions in terms of jumps of boundary traces on Γ
- ▶ These jumps live in some (Γ -dependent) subspaces of $H^{\pm 1/2}(\mathbb{R}^n)$

- Seek BVP solutions in $W^1_{loc}(\mathbb{R}^{n+1} \setminus \overline{\Gamma})$
- Represent solutions in terms of jumps of boundary traces on Γ
- ► These jumps live in some (Γ -dependent) subspaces of $H^{\pm 1/2}(\mathbb{R}^n)$
- The jumps satisfy certain boundary integral equations

- Seek BVP solutions in $W^1_{loc}(\mathbb{R}^{n+1}\setminus\overline{\Gamma})$
- Represent solutions in terms of jumps of boundary traces on Γ
- ► These jumps live in some (Γ -dependent) subspaces of $H^{\pm 1/2}(\mathbb{R}^n)$
- The jumps satisfy certain boundary integral equations
- The associated boundary integral operators are coercive, thus invertible, between appropriate spaces (Ha-Duong, Chandler-Wilde/Hewett)

Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^n$. For $s \in \mathbb{R}$ let

$$H^{s}(\mathbb{R}^{n}) = \Big\{ u \in S^{*}(\mathbb{R}^{n}) : \|u\|_{H^{s}(\mathbb{R}^{n})}^{2} := \int_{\mathbb{R}^{n}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \Big\}.$$

Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^n$. For $s \in \mathbb{R}$ let

$$H^{s}(\mathbb{R}^{n}) = \Big\{ u \in \mathbb{S}^{*}(\mathbb{R}^{n}) : \ \|u\|_{H^{s}(\mathbb{R}^{n})}^{2} := \int_{\mathbb{R}^{n}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \Big\}.$$

For $\Gamma \subset \mathbb{R}^n$ open and $F \subset \mathbb{R}^n$ closed define

(MCLEAN)

$H^{s}(\Gamma):=\{u _{\Gamma}:u\in H^{s}(\mathbb{R}^{n})\}$	restriction
$\widetilde{H}^{s}(\Gamma):=\overline{C_{0}^{\infty}(\Gamma)}^{H^{s}(\mathbb{R}^{n})}$	closure
$H^{m{s}}_F:=\{u\in H^{m{s}}(\mathbb{R}^n): { m supp} u\subset F\}$	support

Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

BIEs require us to work in fractional (Bessel) Sobolev spaces on $\Gamma \subset \mathbb{R}^n$. For $s \in \mathbb{R}$ let

$$H^{s}(\mathbb{R}^{n}) = \Big\{ u \in S^{*}(\mathbb{R}^{n}) : \ \|u\|_{H^{s}(\mathbb{R}^{n})}^{2} := \int_{\mathbb{R}^{n}} (1 + |\boldsymbol{\xi}|^{2})^{s} |\hat{u}(\boldsymbol{\xi})|^{2} \, \mathrm{d}\boldsymbol{\xi} < \infty \Big\}.$$

For $\Gamma \subset \mathbb{R}^n$ open and $F \subset \mathbb{R}^n$ closed define

(MCLEAN)

$H^{\mathbf{s}}(\Gamma):=\{uert_{\Gamma}:u\in H^{\mathbf{s}}(\mathbb{R}^n)\}$	restriction
$\widetilde{H}^{s}(\Gamma):=\overline{C_{0}^{\infty}(\Gamma)}^{H^{s}(\mathbb{R}^{n})}$	closure
$H^{oldsymbol{s}}_F:=\{u\in H^{oldsymbol{s}}({\mathbb R}^n): { m supp} u\subset F\}$	support

"Global" and "local" spaces:

$$\underbrace{\widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}}}_{\text{``0-trace''}} \subset H^{s}(\mathbb{R}^{n}) \subset \mathcal{D}^{*}(\mathbb{R}^{n}) \quad \xrightarrow{|_{\Gamma}} \quad H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma).$$

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

When Γ is Lipschitz it holds that

- $\widetilde{H}^{s}(\Gamma) = (H^{-s}(\Gamma))^{*}$ with equal norms
- $\blacktriangleright \ s \in \mathbb{N} \Rightarrow \|u\|_{H^{s}(\Omega)}^{2} \sim \sum_{|\alpha| \leq s} \int_{\Omega} |\partial^{\alpha} u|^{2}$
- $\blacktriangleright \ \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \qquad (\cong H^{s}_{00}(\Gamma), s \ge 0)$
- $\blacktriangleright \ H_{\partial\Gamma}^{\pm 1/2} = \{0\}$
- ► $\{H^s(\Gamma)\}_{s\in\mathbb{R}}$ and $\{\widetilde{H}^s(\Gamma)\}_{s\in\mathbb{R}}$ are interpolation scales.

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

This has implications for the scattering problem!

Properties of Sobolev spaces on $\Gamma \subset \mathbb{R}^n$

This has implications for the scattering problem!

There exist many works on Sobolev (Besov,...) spaces on rough sets; most use intrinsic definitions on (e.g.) *d*-sets. Analogous to $W^s(\Gamma)$, based on $L^p(\Gamma, \mathcal{H}_d)$. Related to spaces in \mathbb{R}^n by traces. See: Jonsson–Wallin, Strichartz. Our spaces are different, more suited for integral equations and BEM.

Problem **D**

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$(\Delta + k^2)u = 0 \qquad \text{in } D = \mathbb{R}^{n+1} \setminus \overline{\Gamma},$$
$$u = a_{\mathsf{D}} \qquad \text{on } \Gamma.$$

and u satisfies the Sommerfeld radiation condition.

Problem **D**

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$\begin{aligned} (\Delta + \mathbf{k}^2) \mathbf{u} &= \mathbf{0} \qquad \text{in } \mathbf{D} = \mathbb{R}^{n+1} \setminus \overline{\Gamma}, \\ (\gamma^{\pm} \mathbf{u})|_{\Gamma} &= \mathbf{g}_{\mathsf{D}}, \end{aligned}$$

and u satisfies the Sommerfeld radiation condition.

Problem **D**

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$egin{aligned} & (\Delta+m{k}^2)m{u} = 0 & ext{in } D = \mathbb{R}^{n+1}\setminus\overline{\Gamma}, \ & (\gamma^{\pm}m{u})|_{\Gamma} = m{g}_{\mathsf{D}}, \end{aligned}$$

and *u* satisfies the Sommerfeld radiation condition.

Theorem (cf. Stephan and Wendland '84, Stephan '87)

If Γ is Lipschitz then **D** has a unique solution for all $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$.

Problem **D**

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$egin{aligned} & (\Delta+m{k}^2)m{u} = 0 & ext{in } D = \mathbb{R}^{n+1}\setminus\overline{\Gamma}, \ & (\gamma^{\pm}m{u})|_{\Gamma} = m{g}_{\mathsf{D}}, \end{aligned}$$

and *u* satisfies the Sommerfeld radiation condition.

Theorem (cf. Stephan and Wendland '84, Stephan '87) If Γ is Lipschitz then **D** has a unique solution for all $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$.

 $\begin{array}{lll} \text{BIE:} & \mathbb{S}[\partial_n u] = -g_{\mathbb{D}} & \text{representation:} & u = -\mathcal{S}[\partial_n u] & \text{single-layer} \\ & \text{potential } (\mathcal{S}) \\ & \text{operator } (\mathcal{S}) \\ \end{array} \\ \mathcal{S}: \widetilde{H}^{-1/2}(\Gamma) \to C^2(D) \cap W^1_{loc}(D) & \mathcal{S}\phi(\mathbf{x}) := \int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y})\phi(\mathbf{y}) \, \mathrm{d}\mathbf{s}(\mathbf{y}), & \mathbf{x} \in D \\ & \mathbb{S}: \widetilde{H}^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) & \mathbb{S}\phi(\mathbf{x}) := \gamma^{\pm} \mathcal{S}\phi|_{\Gamma}(\mathbf{x}) & \mathbf{x} \in \Gamma \\ & \mathbb{S} \text{ invertible}, & \Phi(\mathbf{x}, \mathbf{y}) := \mathrm{e}^{\mathrm{i}k|\mathbf{x}-\mathbf{y}|}/4\pi|\mathbf{x}-\mathbf{y}| & (\text{in 3D}) \end{array}$

What if Γ is **not** Lipschitz? Still have existence, but in general have **non-uniqueness**: What if Γ is **not** Lipschitz?

Still have existence, but in general have non-uniqueness:

▶ By Helmholtz eq.: $[\partial_n u] \in H_{\overline{\Gamma}}^{-1/2}$ and $[u] \in H_{\overline{\Gamma}}^{1/2}$.

What if Γ is **not** Lipschitz? Still have existence, but in general have **non-uniqueness**:

▶ By Helmholtz eq.: $[\partial_n u] \in H_{\overline{\Gamma}}^{-1/2}$ and $[u] \in H_{\overline{\Gamma}}^{1/2}$. By BCs:

$$(\gamma^+ u)|_{\Gamma} = g_D = (\gamma^- u)|_{\Gamma} \quad \Rightarrow \quad [u]|_{\Gamma} = 0 \quad \Rightarrow \quad [u] \in H^{1/2}_{\partial \Gamma} \subset H^{1/2}_{\overline{\Gamma}}.$$
What if Γ is **not** Lipschitz? Still have existence, but in general have **non-uniqueness**:

▶ By Helmholtz eq.: $[\partial_n u] \in H_{\overline{\Gamma}}^{-1/2}$ and $[u] \in H_{\overline{\Gamma}}^{1/2}$. By BCs:

$$(\gamma^+ u)|_{\Gamma} = g_D = (\gamma^- u)|_{\Gamma} \quad \Rightarrow \quad [u]|_{\Gamma} = 0 \quad \Rightarrow \quad [u] \in H^{1/2}_{\partial \Gamma} \subset H^{1/2}_{\overline{\Gamma}}.$$

If $\exists 0 \neq \phi \in H^{1/2}_{\partial \Gamma}$ then $\mathcal{D}\phi$ satisfies homogeneous problem. (\mathcal{D} = double layer potential.) What if Γ is **not** Lipschitz? Still have existence, but in general have **non-uniqueness**:

▶ By Helmholtz eq.: $[\partial_n u] \in H_{\overline{\Gamma}}^{-1/2}$ and $[u] \in H_{\overline{\Gamma}}^{1/2}$. By BCs:

$$(\gamma^+ u)|_{\Gamma} = g_D = (\gamma^- u)|_{\Gamma} \quad \Rightarrow \quad [u]|_{\Gamma} = 0 \quad \Rightarrow \quad [u] \in H^{1/2}_{\partial \Gamma} \subset H^{1/2}_{\overline{\Gamma}}.$$

If $\exists 0 \neq \phi \in H^{1/2}_{\partial \Gamma}$ then $\mathcal{D}\phi$ satisfies homogeneous problem. (\mathcal{D} = double layer potential.)

► If $\widetilde{H}^{-1/2}(\Gamma) \neq H_{\overline{\Gamma}}^{-1/2}$ then $\exists 0 \neq \phi \in H_{\overline{\Gamma}}^{-1/2} \setminus \widetilde{H}^{-1/2}(\Gamma)$ with $S\phi = 0$ (S extended to $S : H_{\overline{\Gamma}}^{-1/2} \to H^{1/2}(\Gamma)$, continuous but not injective) Then $S\phi$ satisfies homogeneous problem. What if Γ is **not** Lipschitz? Still have existence, but in general have **non-uniqueness**:

▶ By Helmholtz eq.: $[\partial_n u] \in H_{\overline{\Gamma}}^{-1/2}$ and $[u] \in H_{\overline{\Gamma}}^{1/2}$. By BCs:

$$(\gamma^+ u)|_{\Gamma} = g_D = (\gamma^- u)|_{\Gamma} \quad \Rightarrow \quad [u]|_{\Gamma} = 0 \quad \Rightarrow \quad [u] \in H^{1/2}_{\partial \Gamma} \subset H^{1/2}_{\overline{\Gamma}}.$$

If $\exists 0 \neq \phi \in H^{1/2}_{\partial \Gamma}$ then $\mathcal{D}\phi$ satisfies homogeneous problem. (\mathcal{D} = double layer potential.)

▶ If $\widetilde{H}^{-1/2}(\Gamma) \neq H_{\overline{\Gamma}}^{-1/2}$ then $\exists 0 \neq \phi \in H_{\overline{\Gamma}}^{-1/2} \setminus \widetilde{H}^{-1/2}(\Gamma)$ with $S\phi = 0$ (S extended to S : $H_{\overline{\Gamma}}^{-1/2} \to H^{1/2}(\Gamma)$, continuous but not injective) Then $S\phi$ satisfies homogeneous problem.

We need to modify **D** to deal with this.

Problem $\tilde{\mathbf{D}}$

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\text{loc}}(D)$ such that

$$\begin{split} (\Delta + \boldsymbol{k}^2) \boldsymbol{u} &= 0 \quad \text{ in } \boldsymbol{D}, \\ (\gamma^{\pm} \boldsymbol{u})|_{\Gamma} &= \boldsymbol{g}_{\mathsf{D}}, \\ & [\boldsymbol{u}] &= 0, \qquad (\mathbf{D}') \\ & \left[\frac{\partial \boldsymbol{u}}{\partial n} \right] \in \widetilde{H}^{-1/2}(\Gamma), \qquad (\mathbf{D}'') \end{split}$$

and u satisfies the Sommerfeld radiation condition.

Problem $\widetilde{\mathbf{D}}$

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$egin{aligned} &\Delta+k^2)u=0 & ext{in } D, \ &(\gamma^{\pm}u)|_{\Gamma}=g_{\mathsf{D}}, \ &[u]=0, & (\mathsf{D}') \ &\left[rac{\partial u}{\partial n}
ight]\in \widetilde{H}^{-1/2}(\Gamma), & (\mathsf{D}'') \end{aligned}$$

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde & Hewett 2013)

For any bounded open Γ , $\widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$.

Problem $\widetilde{\mathbf{D}}$

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$\begin{split} \Delta + k^2) u &= 0 \quad \text{in } D, \\ (\gamma^{\pm} u)|_{\Gamma} &= g_{\mathsf{D}}, \\ [u] &= 0, \qquad (\mathsf{D}') \\ \left[\frac{\partial u}{\partial n} \right] \in \widetilde{H}^{-1/2}(\Gamma), \qquad (\mathsf{D}'') \end{split}$$

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde & Hewett 2013)

For any bounded open Γ , $\widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$.

If $H_{\partial\Gamma}^{1/2} = \{0\}$ then **D**' is superfluous.

If $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ then **D**" is superfluous. (E.g. if Γ is C^0 .)

Problem $\widetilde{\mathbf{D}}$

Given $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$ (e.g. $g_{\mathsf{D}} = -u^i|_{\Gamma}$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$\begin{split} \Delta + k^2) u &= 0 \quad \text{in } D, \\ (\gamma^{\pm} u)|_{\Gamma} &= g_{\mathsf{D}}, \\ [u] &= 0, \qquad (\mathsf{D}') \\ \left[\frac{\partial u}{\partial n} \right] \in \widetilde{H}^{-1/2}(\Gamma), \qquad (\mathsf{D}'') \end{split}$$

and u satisfies the Sommerfeld radiation condition.

Theorem (Chandler-Wilde & Hewett 2013)

For any bounded open Γ , $\widetilde{\mathbf{D}}$ has a unique solution for all $g_{\mathsf{D}} \in H^{1/2}(\Gamma)$.

If $H_{\partial\Gamma}^{1/2} = \{0\}$ then **D**' is superfluous. If $\widetilde{H}^{-1/2}(\Gamma) = H_{\overline{\Gamma}}^{-1/2}$ then **D**'' is superfluous. (E.g. if Γ is C^0 .) Two key questions: (i) when is $H_{\partial\Gamma}^s = \{0\}$? (ii) when is $\widetilde{H}^s(\Gamma) = H_{\overline{\Gamma}}^s$?

Part II

Two Sobolev space questions

Key question #1: nullity

Given a compact set $K \subset \mathbb{R}^n$ with empty interior (e.g. $K = \partial \Gamma$), for which $s \in \mathbb{R}$ is $H_K^s \neq \{0\}$?

Key question #1: nullity

Given a compact set $K \subset \mathbb{R}^n$ with empty interior (e.g. $K = \partial \Gamma$), for which $s \in \mathbb{R}$ is $H_K^s \neq \{0\}$?

Terminology:

 $H_K^s = \{0\} \iff \nexists$ non-zero elements of H^s supported inside K. We call such a set K "s-null".

Other terminology exists: "(-s)-polar" (Maz'ya, Littman), "set of uniqueness for $H^{s''}$ (Maz'ya, Adams/Hedberg).

Nullity threshold

Nullity threshold

For every compact $K \subset \mathbb{R}^n$ with $int(K) = \emptyset$, $\exists s_{K} \in [-n/2, n/2]$, called the nullity threshold of K, such that $H_K^s = \{0\}$ for $s > s_K$ and $H_K^s \neq \{0\}$ for $s < s_K$. $H_{K}^{s} \neq \{0\}$ $H_{\kappa}^{s} = \{0\}$ i.e. K supports H^s distributions i.e. K cannot support H^s distr. -n/2n/2 s0 S_K Theorem (H & M 2017) Theorem (Polking 1972) If m(K) = 0 then $\exists \text{ compact } K \text{ with } int(K) = \emptyset$ and m(K) > 0 for which $s_K = rac{\dim_H(K) - n}{2} \leq 0$ $H_{K}^{n/2} \neq \{0\}$, so that $s_{K} = n/2$.

Connection with \dim_H comes from standard potential theory results (Maz'ya 2011, Adams & Hedberg 1996 etc.)

Nullity theory \sim complete for m(K) = 0, open problems for m(K) > 0.

Key question #2: identity of 0-trace spaces

Given an open set $\Gamma \subset \mathbb{R}^n$, when is $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$?

Equivalent to density of $C_0^{\infty}(\Gamma)$ in $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Gamma}\}$.

Key question #2: identity of 0-trace spaces

Given an open set $\Gamma \subset \mathbb{R}^n$, when is $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$?

Equivalent to density of $C_0^{\infty}(\Gamma)$ in $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Gamma}\}$.

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^n$ be C^0 . Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

Key question #2: identity of 0-trace spaces

Given an open set $\Gamma \subset \mathbb{R}^n$, when is $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$?

Equivalent to density of $C_0^{\infty}(\Gamma)$ in $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Gamma}\}$.

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^n$ be C^0 . Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

1st class of sets: "regular except at a few points", e.g. prefractal

Theorem (C-W, H & M 2017)

Let $n \geq 2, \Gamma \subset \mathbb{R}^n$ open and C^0 except at finite $P \subset \partial \Gamma$. Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$ for $|s| \leq 1$.

- For n = 1 the same holds for $|s| \le 1/2$.
- ► Can take countable $P \subset \partial \Gamma$ with finitely many limit points in every bounded subset of $\partial \Gamma$.

Proof uses sequence of special cutoffs for s = 1, duality, interpolation.

Examples of non- C^0 sets with $\widetilde{H}^s(\Gamma)=H^s_{\overline{\Gamma}}$, $|s|\leq 1$

E.g. union of disjoint C^0 open sets, whose closures intersect only in P.

Sierpinski triangle prefractals, (unbounded) checkerboard, double brick, inner and outer (double) curved cusps, spiral, Fraenkel's "rooms and passages".

Constructing counterexamples

Consider another class of sets: "nice domain minus small holes".

E.g. when $int(\overline{\Gamma})$ is smooth.

000 000		

Constructing counterexamples

Consider another class of sets: "nice domain minus small holes".

E.g. when $int(\overline{\Gamma})$ is smooth.

Theorem (C-W, H & M 2017) If $int(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff int(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null.

Constructing counterexamples

Consider another class of sets: "nice domain minus small holes".

E.g. when $int(\overline{\Gamma})$ is smooth.

Theorem (C-W, H & M 2017)

If $\operatorname{int}(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff \operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null.

Corollary

For every $n \in \mathbb{N}$, there exists a bounded open set $\Gamma \subset \mathbb{R}^n$ such that, $\widetilde{H}^s(\Gamma) \subsetneqq H^s_{\overline{\Gamma}}, \qquad \forall s \geq -n/2$

Proof: take a ball and remove a Polking set (not s-null for any $s \le n/2$) (Can also have $\widetilde{H}^s(\Gamma) \subsetneq \{u \in H^s : u = 0 \text{ a.e. in } \Gamma^c\} \subsetneq H^s_{\overline{\Gamma}} \quad \forall s > 0.$)

11 11		
:: ::		
11.11		
:: ::		
11.11		
- 11 - 11 - I		
-		

Part III

Formulations on general screens

Theorem (C-W, H & M 2017)

Consider a bounded sequence of nested open screens $\Gamma_1 \subset \Gamma_2 \subset \cdots$ For each j let \mathbf{u}_j denote the solution of problem $\widetilde{\mathbf{D}}$ for Γ_j . Let $\Gamma := \bigcup_{j \in \mathbb{N}} \Gamma_j$ and let \mathbf{u} denote the solution of problem $\widetilde{\mathbf{D}}$ for Γ . Then $\mathbf{u}_j \to \mathbf{u}$ as $j \to \infty$ (in $W^1_{loc}(D)$).

Theorem (C-W, H & M 2017)

Consider a bounded sequence of nested open screens $\Gamma_1 \subset \Gamma_2 \subset \cdots$ For each j let \mathbf{u}_j denote the solution of problem $\mathbf{\tilde{D}}$ for Γ_j . Let $\Gamma := \bigcup_{j \in \mathbb{N}} \Gamma_j$ and let \mathbf{u} denote the solution of problem $\mathbf{\tilde{D}}$ for Γ . Then $\mathbf{u}_j \to \mathbf{u}$ as $j \to \infty$ (in $W_{loc}^1(D)$).

Proof:
$$\widetilde{H}^{s}(\Gamma_{1}) \subset \widetilde{H}^{s}(\Gamma_{2}) \subset \cdots$$
 and $\widetilde{H}^{s}(\bigcup_{j \in \mathbb{N}} \Gamma_{j}) = \overline{\bigcup_{j \in \mathbb{N}} \widetilde{H}^{s}(\Gamma_{j})}.$

Then write BIEs in variational form and apply Céa's Lemma.

Theorem (C-W, H & M 2017)

Consider a bounded sequence of nested open screens $\Gamma_1 \subset \Gamma_2 \subset \cdots$ For each j let u_j denote the solution of problem $\tilde{\mathbf{D}}$ for Γ_j . Let $\Gamma := \bigcup_{j \in \mathbb{N}} \Gamma_j$ and let u denote the solution of problem $\tilde{\mathbf{D}}$ for Γ . Then $u_j \to u$ as $j \to \infty$ (in $W_{loc}^1(D)$).

Proof:
$$\widetilde{H}^{s}(\Gamma_{1}) \subset \widetilde{H}^{s}(\Gamma_{2}) \subset \cdots$$
 and $\widetilde{H}^{s}(\bigcup_{j \in \mathbb{N}} \Gamma_{j}) = \overline{\bigcup_{j \in \mathbb{N}} \widetilde{H}^{s}(\Gamma_{j})}.$

Then write BIEs in variational form and apply Céa's Lemma.

What if we want to use $\Gamma_1 \supset \Gamma_2 \supset \cdots \rightarrow \Gamma$? e.g. Cantor dust Need framework for closed screens.

What about general screens?

For an open screen Γ , we imposed the BC by restriction to Γ :

$$(\gamma^{\pm}u)|_{\Gamma}=g_{\mathsf{D}}$$

and viewed S as an operator $S: \widetilde{H}^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \cong (\widetilde{H}^{-1/2}(\Gamma))^*.$

What about general screens?

For an open screen Γ , we imposed the BC by restriction to Γ :

$$(\gamma^{\pm}u)|_{\Gamma}=g_{\mathsf{D}}$$

and viewed S as an operator $\mathsf{S}: \widetilde{H}^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \cong (\widetilde{H}^{-1/2}(\Gamma))^*.$

But since $H^{1/2}(\mathbb{R}^n) \supset (H^{1/2}_{\Gamma^c})^{\perp} \xrightarrow[\text{isomorphism}]{|\Gamma|} H^{1/2}(\Gamma)$ we could equivalently impose the BC by orthogonal projection:

$$P_{(H^{1/2}_{\Gamma^c})^{\perp}}(\gamma^{\pm}u) = g_{\mathsf{D}}$$

and view S as an operator $S: \widetilde{H}^{-1/2}(\Gamma) \to (H^{1/2}_{\Gamma^c})^{\perp} \cong (\widetilde{H}^{-1/2}(\Gamma))^*.$

What about general screens?

For an open screen Γ , we imposed the BC by restriction to Γ :

$$(\gamma^{\pm}u)|_{\Gamma}=g_{\mathsf{D}}$$

and viewed S as an operator $\mathsf{S}: \widetilde{H}^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \cong (\widetilde{H}^{-1/2}(\Gamma))^*.$

But since $H^{1/2}(\mathbb{R}^n) \supset (H^{1/2}_{\Gamma^c})^{\perp} \xrightarrow[\text{isomorphism}]{|_{\Gamma}} H^{1/2}(\Gamma)$ we could equivalently impose the BC by orthogonal projection:

$$P_{(H^{1/2}_{\Gamma^c})^{\perp}}(\gamma^{\pm}u) = g_{\mathsf{D}}$$

and view S as an operator $S: \widetilde{H}^{-1/2}(\Gamma) \to (H^{1/2}_{\Gamma^c})^{\perp} \cong (\widetilde{H}^{-1/2}(\Gamma))^*.$

This viewpoint suggests a way of writing down BVP formulations for general screens (even with $int(\Gamma) = \emptyset$):

- replace $\widetilde{H}^{-1/2}(\Gamma)$ by some $V^- \subset H^{-1/2}(\mathbb{R}^n)$
- \blacktriangleright characterise $(V^-)^*$ as a subspace $V^+_* \subset H^{1/2}(\mathbb{R}^n)$
- impose BC by orthogonal projection onto V^+_*
- ▶ view S as an operator S : $V^- \rightarrow V^+_*$

Let Γ be an arbitrary bounded subset of \mathbb{R}^n (not necessarily open).

Let Γ be an arbitrary bounded subset of \mathbb{R}^n (not necessarily open). Let V^- be any closed subspace of $H^{-1/2}(\mathbb{R}^n)$ satisfying

$$\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H^{-1/2}_{\overline{\Gamma}},$$

and define $V^+_* \cong (V^-)^*$ by $V^+_* := ((V^-)^a)^\perp \subset H^{1/2}(\mathbb{R}^n).$

Let Γ be an arbitrary bounded subset of \mathbb{R}^n (not necessarily open). Let V^- be any closed subspace of $H^{-1/2}(\mathbb{R}^n)$ satisfying

$$\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H^{-1/2}_{\overline{\Gamma}},$$

and define $V^+_* \cong (V^-)^*$ by $V^+_* := ((V^-)^a)^\perp \subset H^{1/2}(\mathbb{R}^n).$

Here we are using the following fact:

Let H, \mathcal{H} be Hilbert spaces with $H^* \cong \mathcal{H}$ (unit. isom.). (E.g. $H = H^{-1/2}(\mathbb{R}^n), \mathcal{H} = H^{1/2}(\mathbb{R}^n)$.) If $V \subset H$ is a closed subspace, $V^* \cong (V^{a,\mathcal{H}})^{\perp,\mathcal{H}}$ (with inherited duality pairing)

Let Γ be an arbitrary bounded subset of \mathbb{R}^n (not necessarily open). Let V^- be any closed subspace of $H^{-1/2}(\mathbb{R}^n)$ satisfying

$$\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H^{-1/2}_{\overline{\Gamma}},$$

and define $V^+_* \cong (V^-)^*$ by $V^+_* := ((V^-)^a)^{\perp} \subset H^{1/2}(\mathbb{R}^n)$.

Problem $\mathbf{D}(V^{-})$

Given $g_{\mathsf{D}} \in V^+_*$ (e.g. $g_{\mathsf{D}} = -P_{V^+_*}u^i$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$(\Delta + k^2)u = 0$$
 in D ,
 $P_{V^+_*}\gamma^{\pm}u = g_{D},$
 $[u] = 0,$
 $[\partial_n u] \in V^-,$
SRC at infinity.

Let Γ be an arbitrary bounded subset of \mathbb{R}^n (not necessarily open). Let V^- be any closed subspace of $H^{-1/2}(\mathbb{R}^n)$ satisfying

$$\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset \mathbf{V}^{-} \subset H^{-1/2}_{\overline{\Gamma}},$$

and define $V^+_* \cong (V^-)^*$ by $V^+_* := ((V^-)^a)^{\perp} \subset H^{1/2}(\mathbb{R}^n)$.

Problem $\mathbf{D}(V^{-})$

Given $g_{\mathsf{D}} \in V^+_*$ (e.g. $g_{\mathsf{D}} = -P_{V^+_*}u^i$), find $u \in C^2(D) \cap W^1_{\mathrm{loc}}(D)$ such that

$$(\Delta + k^2)u = 0$$
 in D ,
 $P_{V_*^+}\gamma^{\pm}u = g_{D}$,
 $[u] = 0$,
 $[\partial_n u] \in V^-$,
SRC at infinity.

Theorem (C-W & H 2016)

Problem $\mathbf{D}(V^-)$ is well-posed for any choice of V^- .

Operator $S: V^- \rightarrow V^+_*$ inherits coercivity!

For any bounded Γ , each choice $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H_{\overline{\Gamma}}^{-1/2}$ gives its own well-posed formulation $\mathbf{D}(V^-)$.

For any bounded Γ , each choice $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H_{\overline{\Gamma}}^{-1/2}$ gives its own well-posed formulation $\mathbf{D}(V^-)$.

Theorem (C-W & H 2018)

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) = H_{\overline{\Gamma}}^{-1/2}$ there is only one such formulation.

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \neq H_{\overline{\Gamma}}^{-1/2} \exists$ infinitely many formulations with \neq solutions!

For any bounded Γ , each choice $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H_{\overline{\Gamma}}^{-1/2}$ gives its own well-posed formulation $\mathbf{D}(V^-)$.

Theorem (C-W & H 2018)

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) = H_{\overline{\Gamma}}^{-1/2}$ there is only one such formulation.

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \neq H_{\overline{\Gamma}}^{-1/2} \exists$ infinitely many formulations with \neq solutions!

To select "physically correct" solut., apply limiting geometry principle:

For any bounded Γ , each choice $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H_{\overline{\Gamma}}^{-1/2}$ gives its own well-posed formulation $\mathbf{D}(V^-)$.

Theorem (C-W & H 2018)

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) = H_{\overline{\Gamma}}^{-1/2}$ there is only one such formulation.

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \neq H_{\overline{\Gamma}}^{-1/2} \exists$ infinitely many formulations with \neq solutions!

To select "physically correct" solut., apply limiting geometry principle:

• $\Gamma_1 \subset \Gamma_2 \subset \cdots$ open and "nice" (e.g. Lipschitz) • $\Gamma := \bigcup_j \Gamma_j$ open (gray part), \rightarrow natural choice is $V^- = \widetilde{H}^{-1/2}(\Gamma).$
Which formulation to use?

For any bounded Γ , each choice $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V^- \subset H_{\overline{\Gamma}}^{-1/2}$ gives its own well-posed formulation $\mathbf{D}(V^-)$.

Theorem (C-W & H 2018)

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) = H_{\overline{\Gamma}}^{-1/2}$ there is only one such formulation.

If $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \neq H_{\overline{\Gamma}}^{-1/2} \exists$ infinitely many formulations with \neq solutions!

To select "physically correct" solut., apply limiting geometry principle:

• $\Gamma_1 \subset \Gamma_2 \subset \cdots$ open and "nice" (e.g. Lipschitz) • $\Gamma := \bigcup_j \Gamma_j$ open (gray part), \rightarrow natural choice is $V^- = \widetilde{H}^{-1/2}(\Gamma).$

• $\Gamma_1 \supset \Gamma_2 \supset \cdots$ closed and "nice" (e.g. closure of Lipschitz) • $\Gamma := \bigcap_j \Gamma_j$ closed (black part), \rightarrow natural choice is $V^- = H_{\Gamma}^{-1/2}$.

What if prefractals are not nested?

What if prefractals Γ_j are neither increasing nor decreasing? $\Gamma_j \not\subset \Gamma_{j \not\supset} \Gamma_{j+1}$

What if prefractals are not nested?

What if prefractals Γ_j are neither increasing nor decreasing? $\Gamma_{j\not \supseteq} \Gamma_{j+1}$

Key tool is Mosco convergence (Mosco 1969):

 V_i, V closed subspaces of Hilbert space $H, j \in \mathbb{N}$, then $V_i \xrightarrow{\mathcal{M}} V$ if:

- ► $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability)
- ► $\forall (j_m)$ subsequence of \mathbb{N} , $v_{j_m} \in V_{j_m}$ for $m \in \mathbb{N}$, $v_{j_m} \rightarrow v$, then $v \in V$ (weak closure)

Think:
$$H = H^{-1/2}(\mathbb{R}^n)$$
, $V_j = \widetilde{H}^{-1/2}(\Gamma_j)$, $\widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) \subset V \subset H_{\overline{\Gamma}}^{-1/2}$

What if prefractals are not nested?

What if prefractals Γ_j are neither increasing nor decreasing? $\Gamma_j \not\subset \Gamma_{j \not\supset} \Gamma_{j+1}$

Key tool is Mosco convergence (Mosco 1969):

 V_i, V closed subspaces of Hilbert space $H, j \in \mathbb{N}$, then $V_i \xrightarrow{\mathcal{M}} V$ if:

- ► $\forall v \in V, j \in \mathbb{N}, \exists v_j \in V_j \text{ s.t. } v_j \rightarrow v$ (strong approximability)
- ► $\forall (j_m)$ subsequence of \mathbb{N} , $v_{j_m} \in V_{j_m}$ for $m \in \mathbb{N}$, $v_{j_m} \rightharpoonup v$, then $v \in V$ (weak closure)

$$\text{Think:} \ H=H^{-1/2}(\mathbb{R}^n), \qquad V_j=\widetilde{H}^{-1/2}(\Gamma_j), \qquad \widetilde{H}^{-1/2}(\mathrm{int}(\Gamma))\subset V\subset H^{-1/2}_{\overline{\Gamma}}$$

Theorem (C-W, H & M, 2018)

If $V_j \xrightarrow{\mathcal{M}} V \subset H^{-1/2}(\mathbb{R}^n)$ then solution of $\mathbf{D}(V_j)$ converges to sol.n of $\mathbf{D}(V)$ Holds for square snowflake above with $V = \widetilde{H}^{-1/2}(\operatorname{int}(\Gamma)) = H_{\overline{\Gamma}}^{-1/2}$

Theorem (C-W & H 2018)

Let Γ be closed with empty interior and let $V^- = H_{\Gamma}^{-1/2}$.

- ► If $\dim_{\mathrm{H}} \Gamma < n-1$ then u = 0 for every incident direction **d**.
- ▶ If dim_H $\Gamma > n 1$ then $u \neq 0$ for a.e. incident direction **d**.

Theorem (C-W & H 2018)

Let Γ be closed with empty interior and let $V^- = H_{\Gamma}^{-1/2}$.

- ► If $\dim_{\mathrm{H}} \Gamma < n-1$ then u = 0 for every incident direction **d**.
- ▶ If dim_H $\Gamma > n 1$ then $u \neq 0$ for a.e. incident direction **d**.

So both the Sierpinski triangle (dim_H = log 3/ log 2) and pentaflake (dim_H = log 6/ log((3 + $\sqrt{5})/2$)) generate a non-zero scattered field:

Back to the Cantor dust

Let $C^2_{\alpha} := C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^2$ denote the "Cantor dust" ($0 < \alpha < 1/2$):

<u>Question</u>: Is the scattered field u zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma = C_{\alpha}^2$?

Back to the Cantor dust

Let $C^2_{\alpha} := C_{\alpha} \times C_{\alpha} \subset \mathbb{R}^2$ denote the "Cantor dust" ($0 < \alpha < 1/2$):

<u>Question</u>: Is the scattered field u zero or non-zero for the 3D Dirichlet scattering problem with $\Gamma = C_{\alpha}^2$?

$$\dim_{\mathrm{H}}(C^2_{lpha}) = rac{\log(4)}{\log(1/lpha)}$$

Answer:

u = 0, if $0 < \alpha \le 1/4$; $u \ne 0$, in general, if $1/4 < \alpha < 1/2$.

 $(u = 0 \text{ for all } \alpha \text{ for Neumann BCs})$

Part IV

Numerical approximation

Boundary element method (BEM)

For each prefractal Γ_j , the BIE S $[\partial u/\partial n] = -g_D$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_j . Let w_j denote the Galerkin BEM solution on Γ_j .

Let $l_j = \alpha^j$ be the width of each component of Γ_j (4^{*j*} of them).

Boundary element method (BEM)

For each prefractal Γ_j , the BIE $S[\partial u/\partial n] = -g_D$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_j . Let w_j denote the Galerkin BEM solution on Γ_j .

Let $l_j = \alpha^j$ be the width of each component of Γ_j (4^{*j*} of them).

Under certain assumptions on h_j , we prove BEM convergence

$$\|u - w_j\|_{H^{-1/2}(\mathbb{R}^n)} \to 0.$$

Boundary element method (BEM)

For each prefractal Γ_j , the BIE S $[\partial u/\partial n] = -g_D$ can be solved using a standard BEM space, e.g. piecewise constants on a mesh of width h_j . Let w_j denote the Galerkin BEM solution on Γ_j .

Let $l_j = \alpha^j$ be the width of each component of Γ_j (4^{*j*} of them).

Under certain assumptions on h_j , we prove BEM convergence

$$||u - w_j||_{H^{-1/2}(\mathbb{R}^n)} \to 0.$$

Follows from Mosco convergence of BEM spaces. This requires approximability ($\forall v \in H_{\Gamma}^{-1/2} \exists v_j \in \widetilde{H}^{-1/2}(\Gamma_j), v_j \to v$): proved with mollification, L^2 projection, partition of unity, ...

Theorem (C-W, H & M 2018)

Suppose $\exists -1/2 < t < 0$ such that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$. Then $\exists \mu = \mu(t) > 0$ such that if $h_j/l_j = O(e^{-\mu j})$ then $w_j \to u$ as $j \to \infty$.

Theorem (C-W, H & M 2018)

Suppose $\exists -1/2 < t < 0$ such that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$. Then $\exists \mu = \mu(t) > 0$ such that if $h_j/l_j = O(e^{-\mu j})$ then $w_j \to u$ as $j \to \infty$.

Certainly not sharp!

- $h_j/l_j = O(\mathrm{e}^{-\mu j})$ is a severe restriction
- ▶ Density assumption $H^t_\Gamma \subset H^{-1/2}_\Gamma$ for some t > -1/2 not yet verified

Theorem (C-W, H & M 2018)

Suppose $\exists -1/2 < t < 0$ such that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$. Then $\exists \mu = \mu(t) > 0$ such that if $h_j/l_j = O(e^{-\mu j})$ then $w_j \to u$ as $j \to \infty$.

Certainly not sharp!

- $h_j/l_j = O(\mathrm{e}^{-\mu j})$ is a severe restriction
- ▶ Density assumption $H^t_{\Gamma} \subset H^{-1/2}_{\Gamma}$ for some t > -1/2 not yet verified

We can do better if we replace Γ_j by "fattened" versions: $\tilde{\Gamma}_j = \{ x : \operatorname{dist}(x, \Gamma_j) < \varepsilon l_j \}$ for some $0 < \varepsilon < \min\{\alpha, \frac{1}{2} - \alpha\}$.

Theorem (C-W, H & M 2018)

Suppose $\exists -1/2 < t < 0$ such that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$. Then $\exists \mu = \mu(t) > 0$ such that if $h_j/l_j = O(e^{-\mu j})$ then $w_j \to u$ as $j \to \infty$.

Certainly not sharp!

- $h_j/l_j = O(\mathrm{e}^{-\mu j})$ is a severe restriction
- ▶ Density assumption $H^t_{\Gamma} \subset H^{-1/2}_{\Gamma}$ for some t > -1/2 not yet verified

We can do better if we replace Γ_j by "fattened" versions: $\tilde{\Gamma}_j = \{x : \operatorname{dist}(x, \Gamma_j) < \varepsilon l_j\}$ for some $0 < \varepsilon < \min\{\alpha, \frac{1}{2} - \alpha\}$.

Theorem (C-W, H & M 2018) If $h_i = o(l_i)$ then $\tilde{w}_i \rightarrow u \ as j \rightarrow \infty$.

We require condition weaker than $h_j = o(l_j)$ if H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$.

Theorem (C-W, H & M 2018)

Suppose $\exists -1/2 < t < 0$ such that H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$. Then $\exists \mu = \mu(t) > 0$ such that if $h_j/l_j = O(e^{-\mu j})$ then $w_j \to u$ as $j \to \infty$.

Certainly not sharp!

- $h_j/l_j = O(\mathrm{e}^{-\mu j})$ is a severe restriction
- ▶ Density assumption $H^t_{\Gamma} \subset H^{-1/2}_{\Gamma}$ for some t > -1/2 not yet verified

We can do better if we replace Γ_j by "fattened" versions: $\tilde{\Gamma}_j = \{x : \operatorname{dist}(x, \Gamma_j) < \varepsilon l_j\}$ for some $0 < \varepsilon < \min\{\alpha, \frac{1}{2} - \alpha\}$.

Theorem (C-W, H & M 2018) If $h_i = o(l_i)$ then $\tilde{w}_i \rightarrow u$ as $j \rightarrow \infty$.

We require condition weaker than $h_j = o(l_j)$ if H_{Γ}^t is dense in $H_{\Gamma}^{-1/2}$.

For simplicity, I'll show results on prefractals for #DOF fixed but large.

	Magnitude density [[du/dn]]								
		10.00		10.00					
		12.12			700				
					- 600				
	-				500				
					400				
	8			88	300				
					200				
,		0.0			100				

	 - 22		

k = 25, 4096 DOFs, prefractal level 2

0.05

-0.05

0.08

0.06

0.04

0.02

Convergence of BEM solution norms: Cantor dust

Norms of the solution on the prefractals converge:

- ▶ to a positive constant values for $\alpha = 1/3$ (left),
- ▶ to 0 for $\alpha = 1/10$ (right).

k = 45, prefractal level 0, 2209 DOFs

k = 45, prefractal level 1, 2187 DOFs

k = 45, prefractal level 2, 2304 DOFs

k = 45, prefractal level 3, 2187 DOFs

k = 45, prefractal level 4, 2916 DOFs

k = 45, prefractal level 5, 2187 DOFs

Numerical results: Sierpinski triangle

k = 45, prefractal level 6, 2916 DOFs

(Pr. levels 0 and 1 are not colour-scaled)

Numerical results: Sierpinski triangle

k = 45, prefractal level 7, 2187 DOFs

(Pr. levels 0 and 1 are not colour-scaled)

Convergence of BEM solutions: Sierpinski triangle

(Prefractal level 3 is when density maxima are located and all wavelength-size prefractal features are resolved: big error reduction!)

Other shapes

Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

n = 1, Cantor set $\alpha = 1/3$, prefractal level 12: field through 0-measure holes! Field through bounded apertures in unbounded Neumann screens computed via Babinet's principle.

n = 1, Cantor set $\alpha = 1/3$, prefractal level 12: field through 0-measure holes!

Koch snowflake-shaped aperture.

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

We can approximate Γ from inside and outside with polygons Γ_i^{\pm} :

 $\Gamma_1^- \subset \Gamma_2^- \subset \Gamma_3^- \subset \cdots \subset \bigcup_{j \in \mathbb{N}} \Gamma_j^- = \Gamma \subset \overline{\Gamma} = \bigcap_{j \in \mathbb{N}} \Gamma_j^+ \subset \cdots \subset \Gamma_3^+ \subset \Gamma_2^+ \subset \Gamma_1^+.$

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

We can approximate Γ from inside and outside with polygons Γ_i^{\pm} :

 $\Gamma_1^-\subset \Gamma_2^-\subset \Gamma_3^-\subset \cdots \subset \bigcup_{i\in \mathbb{N}}\Gamma_j^-=\Gamma\subset \overline{\Gamma}=\bigcap_{i\in \mathbb{N}}\Gamma_j^+\subset \cdots \subset \Gamma_3^+\subset \Gamma_2^+\subset \Gamma_1^+.$ i∈ℕ For a scattering BVP, $u_i^- \to u^- \in \widetilde{H}^{-1/2}(\Gamma), \quad u_i^+ \to u^+ \in H_{\overline{rr}}^{-1/2}$, u^{\pm} solution of BVPs in Γ and in $\overline{\Gamma}$.

Question: for Γ the open Koch snowflake, is $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

We can approximate Γ from inside and outside with polygons Γ_i^{\pm} :

 $\Gamma_1^-\subset \Gamma_2^-\subset \Gamma_3^-\subset \cdots \subset \bigcup_{i\in \mathbb{N}}\Gamma_j^-=\Gamma\subset \overline{\Gamma}=\bigcap_{i\in \mathbb{N}}\Gamma_j^+\subset \cdots \subset \Gamma_3^+\subset \Gamma_2^+\subset \Gamma_1^+.$ For a scattering BVP, $u_j^-
ightarrow u^- \in \widetilde{H}^{-1/2}(\Gamma), \quad u_i^+
ightarrow u^+ \in H_{\overline{rr}}^{-1/2}$, u^{\pm} solution of BVPs in Γ and in $\overline{\Gamma}$.

We study numerically if $u^{-} \stackrel{?}{=} u^{+}$, i.e. if inner and outer limits coincide.

Real part of fields on inner and outer prefractals

Inner and outer snowflake approximations

Blue lines are $\|w_j^- - w_l^+\|_{H^{-1/2}(\mathbb{R}^2)}$, converging fast to 0! Evidence for $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

Inner and outer snowflake approximations

Blue lines are $\|w_j^- - w_l^+\|_{H^{-1/2}(\mathbb{R}^2)}$, converging fast to 0! Evidence for $\widetilde{H}^{\pm 1/2}(\Gamma) = H_{\overline{\Gamma}}^{\pm 1/2}$?

(Caetano + H + M, 2018)

Open questions

- How best to do numerical analysis in the joint limit of prefractal level and mesh refinement?
- Rates of convergence?
- Regularity theory for the fractal solution?
- ▶ Relation with "intrinsic" spaces?
- Approximation on fractals!
- What about curved screens?
- What about the Maxwell case? Other PDEs? (Laplace, reaction-diffusion already covered.)

• • • •

Open questions

. . .

- How best to do numerical analysis in the joint limit of prefractal level and mesh refinement?
- Rates of convergence?
- Regularity theory for the fractal solution?
- ▶ Relation with "intrinsic" spaces?
- Approximation on fractals!
- What about curved screens?
- What about the Maxwell case? Other PDEs? (Laplace, reaction-diffusion already covered.)

