MA2VC, Vector Calculus, Assignment 1 due: 12pm on the 4th of Nov 2011 (late assignments will not be accepted)

1) (7 marks) Prove the identity:

$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = (\nabla \times \mathbf{F}) \cdot \mathbf{G} - \mathbf{F} \cdot (\nabla \times \mathbf{G})$$

2) (7 marks) Demonstrate that the above identity is satisfied for the vector fields:

$$\mathbf{F} = yz\hat{\mathbf{i}} + xz\hat{\mathbf{j}}$$

$$\mathbf{G} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

- **3a)** (2 marks) Evaluate $\mathbf{F} = \nabla \times \mathbf{A}$, where $\mathbf{A} = xz\hat{\mathbf{i}} yz\hat{\mathbf{j}}$.
- **3b)** (2 marks) Show that it is both an irrotational vector field
- $(i.e., \nabla \times \mathbf{F} = 0)$ as well as a solenoidal vector field $(i.e., \nabla \cdot \mathbf{F} = 0)$.
- **3c)** (2 marks) Determine its scalar potential ϕ (i.e., $\mathbf{F} = \nabla \phi$).