
Vector calculus MA3VC 2015–16: Assignment 1

SOLUTIONS

(Exercise 1) Consider the vector field ~F = −x3y4ı̂+ 3x2y4zk̂.

Compute the divergence and the curl of ~F.
Is ~F solenoidal, irrotational?
Is ~F conservative? If the answer is positive compute a scalar potential.
Does ~F admit a vector potential ~A? If the answer is positive compute a potential. (In this case, look for the
simplest one!)

We apply the definitions of divergence and curl:

~F = −x3y4ı̂+ 3x2y4zk̂,

divergence: ~∇ · ~F = −3x2y4 + 3x2y4 = 0 ⇒ ~F is solenoidal,

curl: ~∇× ~F = 12x2y3zı̂− 6xy4z̂− 4x3y3k̂ ⇒ ~F is not irrotational.

Since the field is not irrotational, it is not conservative and there exists no scalar potential (recall the box on
page 26).

On the other hand, the field is solenoidal, so it may admit a vector potential ~A. (Actually, ~F is solenoidal

and defined on the whole of R3, so it admits a vector potential by Remark 1.68.) The vector potential ~A has to

satisfy ~∇×~A = ~F, which, by definition (23) of curl, is equivalent to the following three conditions:

∂A3

∂y
−

∂A2

∂z
= F1 = −x3y4,

∂A1

∂z
−

∂A3

∂x
= F2 = 0,

∂A2

∂x
−

∂A1

∂y
= F3 = 3x2y4z.

There are many possible vector potentials, we look for the simplest possible. In particular we look for ~A with
only one non-zero component. From the conditions we have just written, we see that the non-zero component
must necessarily be A2, as it is the only one entering the two equations with non-zero right-hand sides. So,
setting A1 = A3 = 0, we have

−
∂A2

∂z
= −x3y4,

∂A2

∂x
= 3x2y4z.

Integrating the first equation with respect to z we have A2 = x3y4z+g(x, y) for some g independent of z. We see

immediately that A2 = x3y4z with g = 0 satisfies the second condition ∂A2

∂x
= 3x2y4z, so ~A = x3y4z̂ . Recall

that there are plenty of other correct vector potentials, your solution might differ from this one.

(Exercise 2) Let f be a smooth scalar field. Prove the following identity:

~∇ ·
(
~∇f × (~rf)

)
= 0.

Hint: use the identities of Section 1.4 and the values of the curl and the divergence of the position vector ~r.
Recall also Exercise 1.15.

(Version 1.) We use the product rules for divergence and curl (31) and (32), the curl-of-gradient identity (26),

the fact that ~∇×~r = ~0 (recall e.g. Exercise 1.60) and the properties of the triple and vector products (~u·(~u× ~w) =
~w · (~u× ~u) = ~w · ~0 = 0, by Exercise 1.15)1:

~∇ ·
(

(~∇f)× (~rf)
)

(31)
= (~∇× ~∇f)

︸ ︷︷ ︸

=~0, by (26)

·~rf − ~∇f ·
(
~∇× (~rf)

) (32)
= −~∇f ·

(
~∇f ×~r+ f ∇×~r

︸ ︷︷ ︸

=~0

) 1.15
= −~r · (~∇f)× (~∇f)

︸ ︷︷ ︸

=~0

= 0.

(Version 2.) We can also prove the identity by expanding in coordinates, however this solution is more com-
plicated and more prone to errors. Using the definition of the vector product (2), of the divergence (22), the
product rule for partial derivatives (8) and Clairault’s theorem (17):

~∇ ·
(

(~∇f)× (~rf)
)

= ~∇ ·

((∂f

∂x
ı̂+

∂f

∂y
̂+

∂f

∂z
k̂
)

× (xı̂ + y̂+ zk̂)f

)

1Alternatively, one can see that the argument of the divergence can be bracketed in equivalent way: ~∇f × (~rf) = (~∇f × ~r)f .
This leads to a slightly different proof:

~∇ ·
(
~∇f ×~rf

)
= ~∇ ·

(
(~∇f ×~r)f

) (30)
= (~∇f) ·

(
~∇f ×~r

)
+ f ~∇ ·

(
(~∇f) ×~r

)

(31)
= (~∇f) ·

(
~∇f ×~r

)
+ f

(
( ~∇× ~∇f
︸ ︷︷ ︸

=~0, by (26)

) ·~r− (~∇f) · (∇×~r
︸ ︷︷ ︸

=~0

)
)
= (~∇f) ·

(
~∇f ×~r

) Ex. 1.15
= ~r · (~∇f)× (~∇f)

︸ ︷︷ ︸

=~0

= 0.
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(2)
= ~∇ ·

((∂f

∂y
zf −

∂f

∂z
yf

)

ı̂+
(∂f

∂z
xf −

∂f

∂x
zf

)

ı̂+
(∂f

∂x
yf −

∂f

∂y
xf

)

ı̂

)

(22)
=

∂

∂x

(∂f

∂y
zf −

∂f

∂z
yf

)

+
∂

∂y

(∂f

∂z
xf −

∂f

∂x
zf

)

+
∂

∂z

(∂f

∂x
yf −

∂f

∂y
xf

)

(8)
=

∂2f

∂x∂y
zf +

∂f

∂y
z
∂f

∂x
−

∂2f

∂x∂z
yf −

∂f

∂z
y
∂f

∂x

+
∂2f

∂y∂z
xf +

∂f

∂z
x
∂f

∂y
−

∂2f

∂y∂x
zf −

∂f

∂x
z
∂f

∂y

+
∂2f

∂z∂x
yf +

∂f

∂x
y
∂f

∂z
−

∂2f

∂z∂y
xf −

∂f

∂y
x
∂f

∂z

=
( ∂2f

∂y∂z
−

∂2f

∂z∂y

)

xf +
( ∂2f

∂z∂x
−

∂2f

∂x∂z

)

yf +
( ∂2f

∂x∂y
−

∂2f

∂y∂x

)

zf
(17)
= 0.

(Exercise 3) Demonstrate the identity in Exercise 2 for the field f = sin(xy + z).

We compute all the terms in the identity:

f = sin(xy + z), ~∇f = y cos(xy + z)̂ı+ x cos(xy + z)̂+ cos(xy + z)k̂,

~rf = x sin(xy + z)̂ı+ y sin(xy + z)̂+ z sin(xy + z)k̂,

~∇f ×~rf
(2)
= sin(xy + z) cos(xy + z)

(

(xz − y)̂ı+ (x− yz)̂+ (y2 − x2)k̂
)

,

~∇ · (~∇f ×~rf)
(22)
=

(

y(xz − y) cos2(xy + z)− y(xz − y) sin2(xy + z) + z sin(xy + z) cos(xy + z)
)

+
(

x(x − yz) cos2(xy + z)− x(x − yz) sin2(xy + z)− z sin(xy + z) cos(xy + z)
)

+
(

(y2 − x2) cos2(xy + z)− (y2 − x2) sin2(xy + z)
)

= 0.

(Exercise 4 MA3VC) Define the planar vector field ~F = −2xe−x2

ı̂− ̂. Compute at least one planar curve

~a(t) = a1(t)̂ı + a2(t)̂, with t ∈ R, that is perpendicular to ~F at each point.

Hint 1: Note that ~F is conservative.
Hint 2: Recall that we have seen in Section 1.3.2 that some fields are orthogonal to some paths. Can you use
this to compute the path of ~a?
Hint 3: Once you have the path of ~a, to find the parametrisation ~a itself recall Remark 1.24 in the notes.

We easily see that ϕ = (e−x2

− y) is a scalar potential for ~F, i.e. ~F = ~∇ϕ. From Part 4 of Proposition 1.33 in

the notes, we see that the level lines of ϕ are perpendicular to ~F. (Since the fields are planar, i.e. the component
z does not play any role, the level sets are level lines, see e.g. Exercises C.1 and C.2 done in the tutorials.)

The level lines of ϕ are the sets Lλ = {~r ∈ R
2, e−x2

− y = λ} = {~r ∈ R
2, y = e−x2

− λ} for any λ ∈ R.

These are nothing else than the graphs of the real functions Gλ(x) = e−x2

− λ, i.e. all the vertical translates of
the standard Gaussian. From the second item in Remark 1.24, we see that their simplest parametrisations are

~aλ(t) = t̂ı+ (e−t2 − λ)̂ . For each value of λ ∈ R, the curve ~aλ is perpendicular to ~F at each point. The figure

shows three curves (for λ = −2, 0, 2) and the values of ~F at a few points (the thick arrows).

x

y

~a0

~a2

~a
−2

~F(~a0(3))
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A few students tried to solve Exercise 4 using differential equations. The field ~F is orthogonal to a curve ~a in
the point ~a(t) if it is orthogonal to the tangent vector to the curve. We know that the total derivative d~a

dt
(t) is

a scalar multiple of the tangent vector to Γ in the point ~a(t). Thus the orthogonality amounts to the condition
d~a(t)
dt

· ~F(~a(t)) = 0 for all t. For the given field ~F, this can be expanded as

0 =
d~a(t)

dt
· ~F(~a(t)) =

da1(t)

dt
(−2a1(t)e

−a2

1
(t))−

da2(t)

dt
.

Solving for a2 as function of a1 and using the chain rule, we have

da2(t)

dt
= −2a1(t)e

−a2

1
(t) da1(t)

dt
=

d(e−a2

1
(t))

dt
, which gives a2(t) = e−a2

1
(t) + λ.

At this point, we can choose a1(t) arbitrarily, so we fix a1(t) = t, and we obtain ~a(t) = t̂ı+ (e−t2 + λ)̂.
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