Vector calculus MA3VC 2014-15 — Assignment 1
SOLUTIONS

(Exermse 1) Compute a scalar potentzal @ for the vector field F = yz(zj+ yk) + cos 2mxi.
Is F solenoidal, irrotational? Does F allow a vector potential?
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It is easy to find that the scalar potentials of F are the scalar fields | p = o sin 2mx + §y222 4+ A |, where \ is a
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real constant:
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To verify that the scalar potential is correct, it is sufficient to check that Vgo F.

Since F is conservative, by the box in Section 1.5 or by the 1dent1ty V x (Vgo) =0, F is irrotational.

The divergence of F is not zero: V-F = —2rsin2rz + 22 + y2 #0, so F is not solenoidal. This implies that
F does not admit a vector potential, again by the box in Section 1.5 or by the identity V- (6 X ji) =0.

(Exercise 2) Let F be a vector field with scalar potential ¢, and let G be a vector field with scalar potential
Y. Prove the following identity: 2F - G = A(py) — YV -F — 506 . G.

The identity to be proved is nothing else than the product rule (32) for the Laplacian in disguise. We can either
use the known vector identities (simpler, ) or expand in partial derivatives (more complicated, 7i).*

(Version i) We use three tools:
e The definition of scalar potential, namely F = ﬁcp and G = 61/}
e Identity (22) in the notes, which gives Ap = V- (V) = V- F and Ay = V- (Vi) = V- G
e The product rule (32) for the Laplacian.
These identities together lead to
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Aer) Z (Ap)y + 2V - Vb + (A)p BV - (Vo) + 2V - Vo + V - (Vi) = (V- F)gp + 2F - G + (V - G)o.

Rearranging for oF - G immediately gives the desired result.

(Version i) If we use the expansion in components, we need to use twice the product rule for partial
derivatives (8), together with the definitions of Laplacian (20), divergence (17) and scalar potentials F = Vo,
G = V. The right-hand side of the identity can be expanded as follows:
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L A nice alternative solution I found in some of the assignments is the following (similar to i but slightly more complicated):

2F - G =F - G+F - G=Vp-G+F - Vy EV (@G)— oV -G+ V- WF) — ¢V -F= V. (oG +¢yF) —yV -F — oV -G
(26) s o & (22)

=V (¢VY+ V) — ¢V -F — oV -G Alpy) — ¥ -F — 0¥ - G.
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(Exercise 3) Demonstrate the identity in Ex. (2) for the vector field F in Ex. (1) and the scalar field 1 = 1.
We compute all the terms appearing in the identity (A can be fixed to 0):
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=5 sin 2w + §y222 + A from Exercise (1),

¥
b=y,
F = cos2mai + yz(z3 + yk),
G = V¢ = 3%,
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= —27my’sin 27z + %y sin 27 + 10y°22 4+ 6y\ + ¢°,
LHS =2F - G = 6y°2°
RHS = A(p)) —pV -F — oV - G
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The left-hand side (LHS) and the right-hand side (RHS) of the identity coincide, so the identity is demonstrated.

(Exercise 4) Consider the cylinder C' with radius 2, azxis of rotation on the x-axis and flat faces lying in
the planes {x = 0} and {x = 10}. Write C in the form C = {F € R? s.t. ...} and compute the outward pointing

unit normal vector field 1 defined on the boundary of C.
The cylinder can be written either as an open set
C, = {F € R® such that 0 < z < 10,y* + 2% < 4},

or as a closed set
C.= {Fe R3 such that 0 < z < 10,y + 22 < 4}.

The two flat faces lie in the planes {z = 0} and {z = 10}, so their normals must be either # = % or 1 = —3.
(If this is not clear from geometric intuition, we note that these planes are level sets for the scalar field f(¥) = «,
whose gradient is V f = 7 and has already unit length.) With simple geometric consideration, since 7 must point
outward, it is clear that # = —% on {x = 0} and # =% on {z = 10}.

The side has equation {y? + 22 = 4}, which is a level set of the field f(¥) = y? + 2%
V[ = 2yj+ 2zk, which has length |V f| = 24/y2 + 22. Thus, as in the exercises seen in class or in Example 1.33,
= :l:ﬁf/|§f| = +(yj+ zlzz)/\/gﬁ + z2. Since 7 is “outward pointing”, it must point away from the z-axis,
e.g. it must satisfy (2 + j) = 7, so we choose its sign as

yj+ 2k

n(r) = ————.
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Its gradient is



