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You may use the following identities and special coordinate systems in the solution:

~∇(fg) = f ~∇g + g~∇f, (1)

~∇ · (f ~G) = (~∇f) · ~G+ f ~∇ · ~G, (2)

~∇ · (~F× ~G) = (~∇× ~F) · ~G− ~F · (~∇× ~G), (3)

~∇× (f ~G) = (~∇f)× ~G+ f ~∇× ~G, (4)










x = r cos θ

y = r sin θ

z = z











x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cos φ

(5)

Section A (Answer all questions)

1. Let us fix the vector field

~F = x3ı̂+ y3̂,

and the half-circle path

Γ =
{

~r ∈ R
2, x2 + y2 = 1, x ≥ 0

}

,

from the initial point −̂ to the end point ̂.

(a) Write a curve ~a(t), defined on a suitable interval [tI , tF ] ⊂ R, that

parametrises Γ.

Hint: Note that Γ is a part of the unit circle {x2 + y2 = 1, z = 0}, for

which you know a parametrisation. To obtain the desired arc, you

need to choose the correct interval [tI , tF ].

[6 marks]

(b) Compute the line integral of ~F along Γ.

[8 marks]

(c) Compute the line integral of the first component F1 of ~F along Γ.

[10 marks]

Hint: Can any potential help you computing one of the two integrals?
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2. (a) Prove the following integral identity:
∫∫∫

D

~∇f · ~GdV = −

∫∫∫

D

f ~∇ · ~G dV +

∫ ∫

∂D

f ~G · d~S, (⋆)

where D ⊂ R
3 is a domain, f : R3 → R a scalar field and

~G : R3 → R
3 a vector field.

Hint: Use a suitable integral theorem and one of the vector product

rules (1)–(4).

[12 marks]

(b) Use identity (⋆) to compute the flux of the product

(xy2z3)(zı̂+ x̂+ yk̂)

through the boundary of the unit cube

C =
{

~r ∈ R
3, 0 < x < 1, 0 < y < 1, 0 < z < 1

}

.

[14 marks]

(c) Use identity (⋆) to show that, if f(~r) = 1 for all ~r ∈ ∂D (the boundary

of D), then, for all vector fields ~H,
∫∫∫

D

~∇f · (~∇× ~H) dV = 0.

Hint: You might need to use again an integral theorem.

[10 marks]

Section B (Choose two questions out of four)

3. Prove the product rule for the Laplacian

∆(fg) = (∆f)g + 2~∇f · ~∇g + f(∆g),

where f and g are smooth scalar fields.

[20 marks]
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4. Use Stokes’ theorem to compute the line integral of the vector field

~M = ~r+ zyı̂ + 2xz̂

(where ~r is the position vector) along the boundary of the graph surface

S =
{

xı̂+ y̂ + g(x, y)k̂, xı̂+ y̂ ∈ R
}

,

where

g(x, y) = xy, R = (0, 1)2 =
{

xı̂+y̂ ∈ R
2, 0 < x < 1, 0 < y < 1

}

.

[20 marks]

5. Fix a real number a > 0. Compute the triple integral of the scalar field

f = z/
√

x2 + y2 over

E =
{

~r ∈ R
3, |~r| < a, x > 0, y > 0, z > 0

}

,

namely the intersection of the sphere of radius a centred at the origin and

the first octant.

Hint: : You can use a system of special coordinates of those in (5).

[20 marks]

6. Prove that
∫∫

R

∂f

∂x
dA =

∮

∂R

f dy,

where R ⊂ R
2 is the x-simple region defined by

R =
{

xı̂+ y̂ ∈ R
2, y0 < y < y1, a(y) < x < b(y)

}

and f : R → R is a smooth scalar field.

As usual, the integral
∮

∂R
f dy is taken in the anti-clockwise direction.

Hint: Note that in a x-simple region the roles of x and y are swapped with

respect to the more usual y-simple regions.

[20 marks]

[End of Question Paper]
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