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1. (a) Prove the vector differential identity:

∇× (∇× F) = ∇(∇ · F)−∇2F .

It is sufficient to prove the equality for the x-component of each side.

[7 marks]

(b) Demonstrate that the above identity holds for

F = z2̂i+ y2ĵ+ x2k̂ .

[7 marks]

2. Demonstrate Green’s theorem,∫
R
[∇× F]z dA =

∮
∂R

F · dr ,

by explicitly evaluating both sides of the equality for

F = −x2yî+ xy2ĵ ,

where R is the unit circle defined by x2 + y2 ≤ 1.
Hint: dA = r dθ dr in polar coordinates. Depending how you do the line
integral, you may need: sin2(t) cos2(t) = (1− cos(4t))/8.

[12 marks]

3. (a) Prove that ∫
D

∂φ

∂z
dV =

∮
∂D
φ k̂ · n̂ dS ,

for the special case where D is a z-simple domain defined by

a ≤ x ≤ b, c ≤ y ≤ d, and f(x, y) ≤ z ≤ g(x, y) .

As usual, n̂ is the outward-pointing unit normal to the surface, ∂D.

[10 marks]
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(b) Briefly explain how this proof is extended to regular domains.

[2 marks]

4. Demonstrate the identity,∫
D
∇× F dV =

∮
∂D

n̂× F dS ,

by evaluating both sides of the equality for

F = xyk̂ ,

where D is the unit cube defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and 0 ≤ z ≤ 1.

As usual, n̂ is the outward-pointing unit normal to the surface, ∂D.

[12 marks]

[End of Question Paper]
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