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SPURIOUS QUASI-RESONANCES IN BOUNDARY INTEGRAL
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Abstract. We consider the Helmholtz transmission problem with piecewise-constant material
coefficients and the standard associated direct boundary integral equations. For certain coefficients
and geometries, the norms of the inverses of the boundary integral operators grow rapidly through
an increasing sequence of frequencies, even though this is not the case for the solution operator of
the transmission problem; we call this phenomenon that of spurious quasi-resonances. We give a rig-
orous explanation of why and when spurious quasi-resonances occur and propose modified boundary
integral equations that are not affected by them.
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1. Introduction and statement of the main results. The goal of this paper
is to explain, and also provide a remedy for, the feature of spurious quasi-resonances
in boundary integral equations for the Helmholtz transmission problem. This fea-
ture is illustrated in numerical experiments in section 1.4, with the explanation and
our remedy given in section 1.5. Sections 1.1--1.3 define, respectively, the Helmholtz
transmission problem, its solution operator, and the standard first- and second-kind
direct boundary integral formulations of this transmission problem.

1.1. The Helmholtz transmission scattering problem. We consider the
scattering of an incident time-harmonic acoustic wave by a penetrable homogeneous
object that occupies the region of space \Omega  - \subset \BbbR d, d = 2, 3, which is a bounded
Lipschitz open set. We first introduce notation necessary for a precise mathematical
statement of this transmission problem. Let \Omega + := \BbbR d \setminus \Omega  - , \Gamma := \partial \Omega  - = \partial \Omega +,
and let n be the unit normal vector field on \Gamma pointing from \Omega  - into \Omega +. For any
\varphi \in L2

loc(\BbbR d), we let \varphi  - := \varphi | \Omega  - and \varphi + := \varphi | \Omega + . With H1
loc(\Omega 

\pm ,\Delta ) := \{ v :
\chi v \in H1(\Omega \pm ),\Delta (\chi v) \in L2(\Omega \pm ) for all \chi \in C\infty 

comp(\BbbR d)\} , we define the Dirichlet and
Neumann trace operators

\gamma \pm D : H1
loc(\Omega \pm ) \rightarrow H1/2(\Gamma ) and \gamma \pm N : H1

loc(\Omega \pm ,\Delta ) \rightarrow H - 1/2(\Gamma ),

with \gamma \pm Dv := v\pm | \Gamma and \gamma \pm N such that if v \in H2
loc(\Omega \pm ), then \gamma \pm Nv = n \cdot \gamma \pm D(\nabla v). Let

\bfitgamma \pm 
C := (\gamma \pm D, \gamma 

\pm 
N ) be the Cauchy trace, which satisfies

\bfitgamma \pm 
C : H1

loc(\Omega 
\pm ,\Delta ) \rightarrow H1/2(\Gamma )\times H - 1/2(\Gamma ).
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SPURIOUS QUASI-RESONANCES 1447

Given \varphi \in C1(\BbbR d \setminus BR), for some ball BR := \{ | x| < R\} , and \kappa > 0, \varphi satisfies the
Sommerfeld radiation condition if

lim
r\rightarrow \infty 

r
d - 1
2

\biggl( 
\partial \varphi (x)

\partial r
 - i\kappa \varphi (x)

\biggr) 
= 0(1.1)

uniformly in all directions, where r := | x| ; we then write \varphi \in SRC(\kappa ).
Given ni, no > 0 and frequency k > 0, the Helmholtz transmission scattering

problem is that of finding the complex amplitude u of the sound pressure, with u \in 
H1

loc(\BbbR d \setminus \Gamma ) the solution of

(\Delta + k2ni)u
 - = 0 in \Omega  - ,

(\Delta + k2no)u
+ = 0 in \Omega +,

\bfitgamma  - 
Cu

 - = \bfitgamma +
Cu

+ + \bfitgamma \pm 
Cu

I on \Gamma ,

u+ \in SRC(k
\surd 
no),

(1.2)

where the incident wave uI is an entire solution of the homogeneous Helmholtz equa-
tion in \BbbR d,

(\Delta + k2no)u
I = 0 in \BbbR d.(1.3)

This setup means that u - is the total field in \Omega  - and u+ the scattered field in \Omega +.
In principle, the jump \bfitgamma +

Cu
+  - \bfitgamma  - 

Cu
 - of the Cauchy trace of u across \Gamma can be

more general than the Cauchy trace of an incident wave. This leads to the following
generic Helmholtz transmission problem.

Definition 1.1 (the Helmholtz transmission problem). Given positive real num-
bers k, ni, and no and f \in H1/2(\Gamma )\times H - 1/2(\Gamma ), find u \in H1

loc(\BbbR d \setminus \Gamma ) \cap SRC(k
\surd 
no)

such that

(\Delta + k2ni)u
 - = 0 in \Omega  - ,

(\Delta + k2no)u
+ = 0 in \Omega +,

\bfitgamma  - 
Cu

 - = \bfitgamma +
Cu

+ + f on \Gamma .

(1.4)

The following well-posedness result is proved in, e.g., [24, Lemma 2.2 and Appen-
dix A].

Lemma 1.2. The solution of the transmission problem of Definition 1.1 exists and
is unique. Moreover, if f \in H1(\Gamma )\times L2(\Gamma ), then \bfitgamma \pm 

Cu
\pm \in H1(\Gamma )\times L2(\Gamma ).

Remark 1.3. The transmission problem of Definition 1.1 is not the most general
form of the transmission problem. If the transmission condition in (1.4) is replaced
by

(1.5) \bfitgamma  - 
Cu

 - = D\bfitgamma +
Cu

+ + f , where D :=

\biggl( 
1 0
0 \alpha 

\biggr) 
,

for \alpha a constant, then this covers all possible constant-coefficient transmission prob-
lems; see, e.g., [24, p. 322]. In Appendix A we outline how our results extend this
more general transmission problem. We see that, although the main ideas remain the
same, more notation and technicalities are required, hence we have chosen to focus
on the simpler problem of Definition 1.1.
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1448 RALF HIPTMAIR, ANDREA MOIOLA, AND EUAN A. SPENCE

1.2. Solution operators and quasi-resonances.

Definition 1.4 (solution operators). Given positive real numbers k, ci, and co,
let

S(ci, co)f := \bfitgamma 
 - 
Cu,

where u \in H1
loc(\BbbR d \setminus \Gamma ) \cap SRC(k

\surd 
co) is the solution of the Helmholtz transmission

problem

(\Delta + k2ci)u
 - = 0 in \Omega  - ,

(\Delta + k2co)u
+ = 0 in \Omega +,

\bfitgamma  - 
Cu

 - = \bfitgamma +
Cu

+ + f on \Gamma .

(1.6)

Lemma 1.2 implies that S(ci, co) is well defined and bounded on either H1/2(\Gamma )\times 
H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ). We introduce the abbreviations

Sio := S(ni, no) and Soi := S(no, ni).

We refer to Sio as the ``physical"" solution operator, since it corresponds to the trans-
mission problem of Definition 1.1, and Soi as the ``unphysical"" solution operator, since
it corresponds to the transmission problem where the indices ni and no are swapped
compared to those in Definition 1.1. The results of this paper show that to under-
stand the behavior of boundary integral operators (BIOs) used to solve the ``physical""
problem, one needs both the ``physical"" solution operator and the ``unphysical"" one
(this is made more precise in Theorem 1.10 below).

The spurious quasi-resonances we study in this paper are related to the high-
frequency behavior of BIOs. We therefore recap here the high-frequency behavior
of Sio; recall that this depends on which of ni and no is larger. Indeed, if ni < no
and \Omega  - is Lipschitz and star-shaped with respect to a ball, then Lemma 4.5 below
shows that the norm of Sio has, at worst, mild algebraic growth in k; this result
uses the bounds on the solution operator from [24], with analogous bounds obtained
for smooth, convex \Omega  - with strictly positive curvature in [9]. If ni > no and \Omega  - is
smooth and convex with strictly positive curvature, then Lemma 4.6 below, based on
the results of [29], shows that there exists 0 < k1 < k2 < . . . with kj \rightarrow \infty such that
the norm of Sio blows up superalgebraically through kj as j \rightarrow \infty . (Similar results
in the particular case when \Omega  - is a ball were obtained in [7, 8] and summarized
in [1, Chapter 5].)

We call these real frequencies kj quasi-resonances, since they can be understood as
real parts of complex resonances of the transmission problem lying close to the real axis
(with this terminology also used in, e.g., [1, 7, 8]); the particular functions on which
Sio at k = kj blows up are called quasimodes. The relationship between quasimodes
and resonances is a classic topic in scattering theory; see [32, 33, 34], [17, section 7.3].
The Weyl-type bound on the number of resonances of the transmission problem when
\Omega  - is smooth and convex with strictly positive curvature in [10, Theorem 1.3] implies
that the number of quasi-resonances in [0,K] in this case grows like Kd as K \rightarrow \infty .

Remark 1.5. The physical reason for the existence of quasi-resonances when ni >
no is that, in this case, geometric-optic rays can undergo total internal reflection when
hitting \Gamma from \Omega  - . Rays ``hugging"" the boundary via a large number of bounces
with total internal reflection correspond to solutions of the transmission problem
localized near \Gamma ; in the asymptotic-analysis literature these solutions are known as
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SPURIOUS QUASI-RESONANCES 1449

``whispering gallery"" modes; see, e.g., [3, 4]. The existence of quasi-resonances of the
transmission problem has only been rigorously established when \Omega  - is smooth and
convex with strictly positive curvature. The understanding above via rays suggests
that such quasi-resonances and quasimodes do not exist for polyhedral \Omega  - (since
sharp corners prevent rays from moving parallel to the boundary), although solutions
with localization qualitatively similar to that of quasimodes can be seen when \Omega  - is
a pentagon [21, Figure 13] or a hexagon [6, Figure 23].

1.3. Calder\'on projectors and the standard first- and second-kind direct
boundary integral equations. Since all the layer potentials and integral operators
depend on k, we omit this k-dependence in the notation. Let the Helmholtz funda-
mental solutions be given by

\Phi i/o(x,y) :=

\left\{ 
   
   

i

4
H

(1)
0

\bigl( 
k
\surd 
ni/o| x - y| 

\bigr) 
for d = 2,

eik
\surd 
ni/o| \bfx  - \bfy | 

4\pi | x - y| for d = 3,

where H
(1)
0 is the Hankel function of the first kind and order zero; see [30, section 3.1].

As in [30, equation (3.6)], the single-layer, adjoint-double-layer, double-layer, and
hypersingular operators are defined for \phi \in L2(\Gamma ) and \psi \in H1(\Gamma ) by

Vi/o\phi (x) :=

\int 

\Gamma 

\Phi i/o(x,y)\phi (y) ds(y), K \prime 
i/o\phi (x) :=

\int 

\Gamma 

\partial \Phi i/o(x,y)

\partial n(x)
\phi (y) ds(y),

(1.7)

Ki/o\phi (x) :=

\int 

\Gamma 

\partial \Phi i/o(x,y)

\partial n(y)
\phi (y) ds(y), and

(1.8)

Wi/o\psi (x) :=  - \partial 

\partial n(x)

\int 

\Gamma 

\partial \Phi i/o(x,y)

\partial n(y)
\psi (y) ds(y)

(1.9)

for x \in \Gamma (note that the sign of the hypersingular operator is swapped compared to,
e.g., [11]). When \Gamma is Lipschitz, the integrals defining Ki/o and K \prime 

i/o must be un-

derstood as Cauchy principal values (see, e.g., [11, equation (2.33)]), and the integral
defining Wi/o is understood as a nontangential limit (see, e.g., [11, equation (2.36)])
or finite-part integral (see, e.g., [22, Theorem 7.4(iii)]), but we do not need the details
of these definitions in this paper.

Let the Calder\'on projectors P\pm 
i/o be defined by

P\pm 
i/o :=

1

2
I \pm Mi/o, where Mi/o :=

\biggl[ 
Ki/o  - Vi/o
 - Wi/o  - K \prime 

i/o

\biggr] 
;(1.10)

see, e.g., [30, section 3.6], [11, p. 117]. Basic results about P\pm 
i/o (including that they

are indeed projectors) are in section 2, but we record here that

P+
i/o + P - 

i/o = I.(1.11)

Let the BIOs AI and AII be defined by

AI := P - 
o  - P+

i = P - 
i  - P+

o =

\biggl[ 
 - (Ki +Ko) Vi + Vo
Wi +Wo K \prime 

i +K \prime 
o

\biggr] 
(1.12)
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1450 RALF HIPTMAIR, ANDREA MOIOLA, AND EUAN A. SPENCE

and

AII := P - 
o + P+

i = 2I  - P+
o  - P - 

i = I +

\biggl[ 
Ki  - Ko  - (Vi  - Vo)

 - (Wi  - Wo)  - (K \prime 
i  - K \prime 

o)

\biggr] 
.(1.13)

Lemma 1.6. If u is the solution of the Helmholtz transmission problem of Defini-
tion 1.1, then

AI(\bfitgamma 
 - 
Cu

 - ) = P - 
o f and AII(\bfitgamma 

 - 
Cu

 - ) = P - 
o f .(1.14)

In particular, if u solves the Helmholtz transmission scattering problem (1.2), then

AI(\bfitgamma 
 - 
Cu

 - ) = \bfitgamma  - 
Cu

I and AII(\bfitgamma 
 - 
Cu

 - ) = \bfitgamma  - 
Cu

I .(1.15)

These boundary integral equations (BIEs) are called single-trace formulations.
The first-kind BIEs in (1.14) and (1.15) appeared in [16], [38] and are also derived in,
e.g., [13, section 3.3]. Their counterparts for electromagnetic scattering are known as
the PMCHWT (Poggio--Miller--Chang--Harrington--Wu--Tsai) formulation [28]. The
second-kind BIEs in (1.14) and (1.15) can be found in, e.g., [14] and are known as the
M\"uller formulation in computational electromagnetics [26].

Lemma 1.7. (i) Both AI and AII are bounded and invertible on H1/2(\Gamma )\times H - 1/2(\Gamma ).
(ii) AII is bounded and invertible on H1(\Gamma )\times L2(\Gamma ).

The proofs of Lemmas 1.6 and 1.7 are contained in section 2.
The reason for the choice of spaces in Lemma 1.7 is the following. From the point

of view of computation, the natural space in which to consider AI is the trace space
H1/2(\Gamma )\times H - 1/2(\Gamma ), and the natural space in which to consider AII is the L

2-based
space H1(\Gamma )\times L2(\Gamma ) (see, e.g., the discussion in [14] and the references therein); these
choices are both included in Lemma 1.7. It turns out that all the results for AII on
H1(\Gamma ) \times L2(\Gamma ) also hold on H1/2(\Gamma ) \times H - 1/2(\Gamma ), and thus we include this second
choice of space for AII.

1.4. Spurious quasi-resonances for the standard BIOs. Lemma 1.7 shows
that the BIEs of (1.14) and (1.15) are well-posed. It is then reasonable to believe that
the solution operators of these BIEs inherit the behavior (with respect to frequency)
of the solution operator of the transmission problem. The following numerical results,
however, show that this is not the case.1

Example 1.8. If \Gamma is a circle for d = 2 or a sphere for d = 3 all BIOs Vi/o, K
\prime 
i/o,

Ki,o, and Wi/o can be ``diagonalized"" by switching to a ``modal"" L2(\Gamma )-orthogonal
basis of Fourier harmonics in two dimensions or spherical harmonics in three dimen-
sions, respectively. The corresponding eigenvalues can be found in, e.g., [2] for d = 2
and in, e.g., [37] for d = 3. All relevant norms have a simple sum representation with
respect to these bases. Therefore we can compute the norms of the solution operators
as the maximum of the Euclidean norms of 2 \times 2-matrices, one for every mode. We
did this in MATLAB for the modes of order at most 100, which seems to be sufficient,
because the maximal norm was invariably found among the modes of order \leq 25.

We report the computed norms of the solution operator Sio along with the
norms of A - 1

I and A - 1
II (i.e., the solution operators for the BIEs (1.15)) on the space

H1/2(\Gamma )\times H - 1/2(\Gamma ), where we use the weighted norm \| \cdot \| 
H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

defined in

1The code used to produce the numerical results is available at https://github.com/moiola/
TransmissionBIE-OpNorms.
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Figure 1: Γ unit circle: Norms of operators Sio, A
−1
I , and A−1

II on H1/2(Γ)×H−1/2(Γ) for ni = 3,
no = 1 (left) and ni = 1, no = 3 (right)

Figure 2: Γ unit sphere: Norms of operators Sio, A
−1
I , and A−1

II on H1/2(Γ)×H−1/2(Γ) for ni = 3,
no = 1 (left) and ni = 1, no = 3 (right)

When ni > no (plots on the left) we see the typical spikes in the norms as a function of k,
expected because of the results recalled in §1.2. Indeed, the results in §1.2 predict super-algebraic
growth through quasi-resonances only for sufficiently-large kj . However, noting the logarithmic
scale on the y-axis of the plots, we see that the super-algebraic growth occurs through the spikes
even for small- to moderate-sized kj .

Conversely, for ni < no (right plots) the norm of Sio (in yellow) does not have any spikes,
whereas the spikes persist in the norms of A−1

I and A−1
II .

The observations made in Example 1.8 provide evidence of spurious quasi-resonances of AI and
AII when ni < no: for certain frequencies these boundary integral operators are ill-conditioned
though for the same frequencies the solution operator is stable.

On rare occasions such spurious quasi-resonances have been noticed before. Indeed, the paper
[22] computed the complex eigenvalues of AI and AII and pointed out in [22, Section 2.3] the
existence of “fictitious eigenvalues”, i.e., non-physical poles of the resolvent operators. Although [22]
did not give a rigorous explanation for this phenomenon, [22] attempted to remedy it by modifying
the BIEs; these new BIEs, however, still have issues with poles with small imaginary part – see
the discussion in [22, §4]. Non-physical spikes in the condition numbers of discretized BIEs for
Helmholtz transmission problems were also reported in [34, Section 4.4], but no deeper investigation
was attempted.

The observation of the spurious quasi-resonances of Example 1.8 was the starting point for this
paper – we wanted to understand precisely why they affect AI and AII. We also wanted to find
alternative BIEs immune to spurious quasi-resonances. The remainder of this paper reports our
progress towards these goals.

Remark 1.9. For the standard first and second-kind BIEs for the exterior Dirichlet and Neumann
problems for the Helmholtz operator (modelling acoustic scattering by impenetrable objects), the
occurrence of spurious (true) resonances is well-known; see, e.g., [29, Section 3.9.2]: the solutions

5
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section 4.1. We plot these norms for different frequencies k and give the results for
d = 2 in Figure 1 and for d = 3 in Figure 2.

When ni > no (plots on the left) we see the typical spikes in the norms as a
function of k, expected because of the results recalled in section 1.2. Indeed, the
results in section 1.2 predict superalgebraic growth through quasi-resonances only for
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Conversely, for ni < no (right plots) the norm of Sio (in yellow) does not have
any spikes, whereas the spikes persist in the norms of A - 1

I and A - 1
II .

The observations made in Example 1.8 provide evidence of spurious quasi-
resonances of AI and AII when ni < no: for certain frequencies these boundary
integral operators are ill-conditioned though for the same frequencies the solution
operator is stable.

On rare occasions such spurious quasi-resonances have been noticed before. In-
deed, the paper [23] computed the complex eigenvalues of AI and AII and pointed
out in [23, section 2.3] the existence of ``fictitious eigenvalues,"" i.e., nonphysical poles
of the resolvent operators. Although [23] did not give a rigorous explanation for this
phenomenon, [23] attempted to remedy it by modifying the BIEs; these new BIEs,
however, still have issues with poles with small imaginary part---see the discussion
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in [23, section 4]. Nonphysical spikes in the condition numbers of discretized BIEs
for Helmholtz transmission problems were also reported in [35, section 4.4], but no
deeper investigation was attempted.

The observation of the spurious quasi-resonances of Example 1.8 was the starting
point for this paper---we wanted to understand precisely why they affect AI and AII.
We also wanted to find alternative BIEs immune to spurious quasi-resonances. The
remainder of this paper reports our progress toward these goals.

Remark 1.9. For the standard first- and second-kind BIEs for the exterior Dirich-
let and Neumann problems for the Helmholtz operator (modeling acoustic scattering
by impenetrable objects), the occurrence of spurious (true) resonances is well known
(see, e.g., [30, section 3.9.2]): the solutions of the BIEs are not unique for an infinite
sequence of distinct ks, although the boundary value problems have unique solutions
for all k. The standard remedies for this are recalled (and linked to the results of the
present paper) in Remark 1.16 below.

1.5. Statement of the main results.

1.5.1. The relationship between the BIOs and the solution operators.

Theorem 1.10. As an operator on H1/2(\Gamma ) \times H - 1/2(\Gamma ), A - 1
I has the decompo-

sition

A - 1
I = Sio + Soi  - I(1.16)

and, as an operator on either H1/2(\Gamma ) \times H - 1/2(\Gamma ) or H1(\Gamma ) \times L2(\Gamma ), A - 1
II has the

decomposition

A - 1
II = I  - Sio  - Soi + 2SioSoi.(1.17)

The proof of Theorem 1.10 is contained in section 3 below.
The following result uses (1.16) and results about the behavior of Sio and Soi in

Lemmas 4.5 and 4.6 below to prove that if ni \not = no, then the norm of AI blows up
through the quasi-resonances of the transmission problem (1.6) with ci = max\{ ni, no\} 
and co = min\{ ni, no\} . This result explains rigorously the experiments in Figures 1
and 2. The result is stated using the weighted norm \| \cdot \| 

H
1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

defined in

section 4.1, with the operator norm

\| \cdot \| 
H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )\rightarrow H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

abbreviated to \| \cdot \| 
H

1/2
k \times H

 - 1/2
k

.(1.18)

Theorem 1.11 (superalgebraic blow-up of \| A - 1
I \| for \Omega  - smooth and convex).

If \Omega  - is C\infty with strictly positive curvature and ni \not = no, then there exist frequencies
0 < k1 < k2 < . . . with kj \rightarrow \infty such that given any N > 0 there exists CN such that

\bigm\| \bigm\| A - 1
I

\bigm\| \bigm\| 
H

1/2
kj

\times H
 - 1/2
kj

\geq CNk
N
j for all j.

The proof of Theorem 1.11 is contained in section 4 below.
The reason we prove only blow-up of AI, and not of AII, is that Theorem 1.10

shows that A - 1
II involves not only Sio and Soi but also the composition of Sio and Soi

(whereas AI does not), and we do not currently know how to show that this extra
term does not cancel out the blow-up of one of Sio or Soi.

The next result shows that, on appropriate subspaces, A - 1
I and A - 1

II involve
only the physical solution operator Sio. In particular, this result demonstrates that,
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because of the specific form of the right-hand sides in (1.14), only the physical solution
operator Sio is involved in the solution of the boundary value problem of Definition 1.1,
as expected. The results for A - 1

II hold on either H1/2(\Gamma )\times H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ),
but the results for A - 1

I hold only on H1/2(\Gamma )\times H - 1/2(\Gamma ) (since we have not proved
that A - 1

I exists on H1(\Gamma ) \times L2(\Gamma )). We use the notation that R(P ) is the range of
the operator P .

Theorem 1.12 (AI and AII as operators R(P
 - 
i ) \rightarrow R(P - 

o )).
(i) A - 1

I P - 
o = A - 1

II P
 - 
o = SioP

 - 
o .

(ii) Both AI and AII are bounded and invertible from R(P - 
i ) \rightarrow R(P - 

o ) with
A - 1

I = A - 1
II = Sio as operators from R(P - 

o ) \rightarrow R(P - 
i ).

The proof of Theorem 1.12 is contained in section 3 below.

1.5.2. Augmented BIEs. We now propose a simple way to suppress spurious
quasi-resonances in the BIEs without resorting to products of integral operators. We
work in the Hilbert space \scrH where \scrH := H1/2(\Gamma )\times H - 1/2(\Gamma ) for the results involving
AI, and\scrH equals either H1/2(\Gamma )\times H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ) for the results involving
AII; the norm \| \cdot \| \scrH is then either \| \cdot \| 

H
1/2
k \times H

 - 1/2
k

or \| \cdot \| H1
k\times L2 . We equip the space

\scrH \times \scrH with the norm

\| \bfitpsi \| 2\scrH \times \scrH := \| \bfitpsi 1\| 2\scrH + \| \bfitpsi 2\| 2\scrH ,

where \bfitpsi = (\bfitpsi 1,\bfitpsi 2) with \bfitpsi 1,\bfitpsi 2 \in \scrH .

Define the augmented BIOs \widetilde AI and \widetilde AII : \scrH \rightarrow \scrH \times \scrH by

\widetilde AI :=

\biggl( 
AI

P+
i

\biggr) 
and \widetilde AII :=

\biggl( 
AII

P+
i

\biggr) 
.(1.19)

The idea behind introducing these augmented operator equations is that the solution
\bfitgamma  - 
Cu

 - to the BIEs (1.14) satisfies P+
i \bfitgamma 

 - 
Cu

 - = 0 (we see this below in (2.10) in the
proof of Lemma 1.6).

Lemma 1.13 (solutions of augmented BIEs). Let \widetilde A\ast be one of \widetilde AI and \widetilde AII. Given
g \in \scrH , if the solution \bfitphi to the augmented operator equation

\widetilde A\ast \bfitphi =

\biggl( 
g
0

\biggr) 
(1.20)

exists, then g satisfies

g = Soig(1.21)

and \bfitphi is given by

\bfitphi = Siog.(1.22)

Lemma 1.13 (proved in section 5) shows that the solution of the augmented oper-
ator equation (1.20), if it exists, only involves the physical solution operator Sio. Note
that if g = P - 

o f , i.e., the right-hand side of the first- and second-kind BIEs (1.14),
then (1.21) is satisfied; indeed, it follows from Lemma 3.2 below that (Soi - I)P - 

o = 0.

Example 1.14. As in Example 1.8 we perform a ``diagonalization"" of the aug-
mented BIOs of (1.19) to compute the operator norms of their pseudoinverses in
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1454 RALF HIPTMAIR, ANDREA MOIOLA, AND EUAN A. SPENCE

Define the augmented BIOs ÃI and ÃII : H → H×H by

ÃI :=

(
AI

P+
i

)
and ÃII :=

(
AII

P+
i

)
. (1.18)

The idea behind introducing these augmented operator equations is that the solution γ−Cu
− to the

BIEs (1.13) satisfies P+
i γ
−
Cu
− = 0 (we see this below in (2.10) in the proof of Lemma 1.6).

Lemma 1.13. (Solutions of augmented BIEs.) Let Ã∗ be one of ÃI and ÃII. Given g ∈ H, if
the solution φ to the augmented operator equation

Ã∗φ =

(
g
0

)
(1.19)

exists, then g satisfies
g = Soig (1.20)

and φ is given by
φ = Siog. (1.21)

Lemma 1.13 (proved in §5) shows that the solution of the augmented operator equation (1.19), if
it exists, only involves the physical solution operator Sio. Note that if g = P−o f , i.e., the right-hand
side of the first- and second-kind BIEs (1.13), then (1.20) is satisfied; indeed, it follows from Lemma
3.2 below that (Soi − I)P−o = 0.

Example 1.14. As in Example 1.8 we perform a “diagonalization” of the augmented BIOs of
(1.18) to compute the operator norms of their pseudo-inverses in H1/2(Γ)×H−1/2(Γ) numerically
(i.e., we compute the inverse of the smallest singular value of the block-diagonal matrix arising from
truncating the Fourier/spherical-harmonic expansion). These norms as functions of the frequency
k are plotted in Figure 3 for the case n1 = 1, no = 3, in which the physical solution operator Sio
has small norm for all values of k considered (as shown by the right-hand plots of Figures 1 and 2).

Figure 3: Plots of the operator norms of the pseudo-inverses Ã†I , Ã†II of the augmented BIOs

As an agreeable surprise, we see that the norms of the pseudo-inverses of the augmented BIOs
are smaller than those of Sio for the range of frequencies considered – augmentation has successfully
removed any spurious quasi-resonances!

The following theorem rigorously explains the results in Figure 3, and is proved in §5.

Theorem 1.15. (Stability of augmented BIEs.)

inf
φ∈H\{0}

sup
ψ∈H\{0}

∣∣(ÃIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

≥ 1√
2 max

{
‖Sio‖H→H , 1

} (1.22)

and

inf
φ∈H\{0}

sup
ψ∈H\{0}

∣∣(ÃIIφ,ψ
)
H×H

∣∣
‖φ‖H ‖ψ‖H×H

≥ 1√
6 + 4

√
2 max

{
‖Sio‖H→H , 1

} . (1.23)

7

Fig. 3. Plots of the operator norms of the pseudoinverses \widetilde A\dagger 
I ,

\widetilde A\dagger 
II of the augmented BIOs.

H1/2(\Gamma )\times H - 1/2(\Gamma ) numerically (i.e., we compute the inverse of the smallest singu-
lar value of the block-diagonal matrix arising from truncating the Fourier/spherical-
harmonic expansion). These norms as functions of the frequency k are plotted in
Figure 3 for the case n1 = 1, no = 3, in which the physical solution operator Sio has
small norm for all values of k considered (as shown by the right-hand plots of Figures
1 and 2).

As an agreeable surprise, we see that the norms of the pseudoinverses of the
augmented BIOs are smaller than those of Sio for the range of frequencies considered---
augmentation has successfully removed any spurious quasi-resonances!

The following theorem rigorously explains the results in Figure 3 and is proved
in section 5.

Theorem 1.15 (stability of augmented BIEs).

inf
\bfitphi \in \scrH \setminus \{ \bfzero \} 

sup
\bfitpsi \in \scrH \setminus \{ \bfzero \} 

\bigm| \bigm| \bigl( \widetilde AI\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH 

\bigm| \bigm| 
\| \bfitphi \| \scrH \| \bfitpsi \| \scrH \times \scrH 

\geq 1\surd 
2max

\bigl\{ 
\| Sio\| \scrH \rightarrow \scrH , 1

\bigr\} (1.23)

and

inf
\bfitphi \in \scrH \setminus \{ \bfzero \} 

sup
\bfitpsi \in \scrH \setminus \{ \bfzero \} 

\bigm| \bigm| \bigl( \widetilde AII\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH 

\bigm| \bigm| 
\| \bfitphi \| \scrH \| \bfitpsi \| \scrH \times \scrH 

\geq 1\sqrt{} 
6 + 4

\surd 
2 max

\bigl\{ 
\| Sio\| \scrH \rightarrow \scrH , 1

\bigr\} .(1.24)

This theorem reveals that the operator norms of the pseudoinverses \widetilde A\dagger 
I and

\widetilde A\dagger 
II are

bounded by Cmax
\bigl\{ 
\| Sio\| \scrH \rightarrow \scrH , 1

\bigr\} 
for some k-independent constant C > 0. Hence,

if the physical solution operator Sio is well-conditioned, then this well-conditioning
carries over to the BIOs of the augmented formulations.

Remark 1.16 (the analogue of Theorem 1.10 for BIOs for scattering by impene-
trable obstacles). The analogous formulae to those in Theorem 1.10 for second-kind
combined-field BIOs for solving the exterior Dirichlet, Neumann, and impedance prob-
lems were given in [11, Theorem 2.33], with formulae for certain BIOs involving opera-
tor preconditioning given in [5, Lemma 6.1]. (We note that [5, Lemma 6.1] introduced
the idea of obtaining these formulae via Calder\'on projectors, and we prove Theorem
1.10 using this idea in section 3.)

For example, the standard direct second-kind combined-field BIO for solving the
exterior Dirichlet problem involves the operator A\prime 

\eta := 1
2I +K

\prime  - i\eta S, for \eta \in \BbbR \setminus \{ 0\} ,
and [11, Theorem 2.33] and [5, Lemma 6.1] (see also [18, section 3]) prove that
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\bigl( 
A\prime 

\eta 

\bigr)  - 1
= I  - 

\bigl( 
DtN+  - i\eta 

\bigr) 
ItD - ,\eta ,(1.25)

where DtN+ is the exterior Dirichlet-to-Neumann map for solutions of the Helmholtz
equation satisfying the Sommerfeld radiation condition (1.1), and ItD - ,\eta is the inte-
rior impedance-to-Dirichlet map (where the impedance boundary condition is \gamma  - Nu - 
i\eta \gamma  - Du = g). Recalling that A\prime 

\eta is also the standard indirect second-kind BIO for solv-
ing the interior impedance problem, we see that (1.25) expresses (A\prime 

\eta )
 - 1 in terms of

the solution operators for the appropriate exterior and interior problems solved using
A\prime 

\eta .
The standard indirect second-kind combined-field BIO for solving the exterior

Dirichlet problem involves the operator A\eta := 1
2I + K  - i\eta S; this operator is also

the standard direct second-kind BIO for solving the interior impedance problem, and,
correspondingly,

\bigl( 
A\eta 

\bigr)  - 1
= I  - ItD - ,\eta 

\bigl( 
DtN+  - i\eta 

\bigr) 
.

Remark 1.17 (indirect BIEs). In this paper, we have considered only direct BIEs
for the Helmholtz transmission problem, i.e., BIEs where the unknown is the Cauchy
data of the solution. It is reasonable to expect that similar results hold for indirect
BIEs for the transmission problem, just as similar decompositions into solution oper-
ators hold for the inverses of the direct BIOs for scattering by impenetrable obstacles
(see the previous remark and [11, Theorem 2.33]), but we have not investigated this.

Remark 1.18 (spurious quasi-resonances for electromagnetic BIEs). We expect
that the phenomenon of spurious quasi-resonances also occurs for the BIEs for time-
harmonic electromagnetic scattering; we have not pursued this in this paper, however.

2. Recap of results about layer potentials, BIOs, and Calder\'on projec-
tors. The single-layer and double-layer potentials, \scrV i/o and \scrK i/o, respectively, are
defined for \varphi \in L1(\Gamma ) by

\scrV i/o\varphi (x) =

\int 

\Gamma 

\Phi i/o(x,y)\varphi (y)ds(y) for all x \in \BbbR d \setminus \Gamma and(2.1)

\scrK i/o\varphi (x) =

\int 

\Gamma 

\partial \Phi i/o(x,y)

\partial n(y)
\varphi (y)ds(y) for all x \in \BbbR d \setminus \Gamma ;(2.2)

these definitions for \varphi \in L1(\Gamma ) naturally extend to \varphi \in H - s(\Gamma ) for s \in [0, 1] by
continuity (see, e.g., [11, p. 109]).

Lemma 2.1. (i) If \phi \in Hs - 1/2(\Gamma ) with | s| \leq 1/2, then \scrV i/o\phi \in Hs+1
loc (\BbbR d) \cap 

C2(\BbbR d \setminus \Gamma ) \cap SRC(k
\surd 
ni/o).

(ii) If \psi \in Hs+1/2(\Gamma ) with | s| \leq 1/2, then \scrK i/o\psi \in Hs+1
loc (\BbbR d \setminus \Gamma ) \cap C2(\BbbR d \setminus \Gamma ) \cap 

SRC(k
\surd 
ni/o).

References for the proof. See, e.g., [11, Theorem 2.15]; we note that the mapping
properties for | s| = 1/2 crucially use the harmonic analysis results of [15], [36].

The potentials (2.1) and (2.2) are related to the integral operators in (1.7), (1.8),
and (1.9) via the jump relations

\gamma \pm D\scrV i/o = Vi/o, \gamma \pm N\scrV i/o = \mp 1

2
I +K \prime 

i/o, \gamma \pm D\scrK i/o = \pm 1

2
I +Ki/o, \gamma \pm N\scrK i/o =  - Wi/o;

(2.3)D
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see, e.g., [22, section 7, p. 219]. Recall the mapping properties, valid when \Gamma is
Lipschitz, k \in \BbbC , and | s| \leq 1/2,

Vi/o : Hs - 1/2(\Gamma ) \rightarrow Hs+1/2(\Gamma ), Wi/o : Hs+1/2(\Gamma ) \rightarrow Hs - 1/2(\Gamma ),(2.4a)

Ki/o : Hs+1/2(\Gamma ) \rightarrow Hs+1/2(\Gamma ), K \prime 
i/o : Hs - 1/2(\Gamma ) \rightarrow Hs - 1/2(\Gamma );(2.4b)

see, e.g., [11, Theorems 2.17 and 2.18] (similar to the results of Lemma 2.1, the
mapping properties for | s| = 1/2 crucially use the harmonic analysis results of [15],
[36]). The mapping properties (2.4) imply that P\pm 

i/o is a bounded operator from

H1/2(\Gamma )\times H - 1/2(\Gamma ) to itself and from H1(\Gamma )\times L2(\Gamma ) to itself.
We use the following notation for spaces of Helmholtz solutions:

\sansH  - (\kappa ) :=
\bigl\{ 
v \in H1(\Omega  - ) \cap C2(\Omega  - ), (\Delta + \kappa 2)v = 0

\bigr\} 
,

\sansH +(\kappa ) :=
\bigl\{ 
v \in H1

loc(\Omega 
+) \cap C2(\Omega +) \cap SRC(\kappa ), (\Delta + \kappa 2)v = 0

\bigr\} 
.

Lemma 2.2. R(P\pm 
i/o) = \bfitgamma 

\pm 
C\sansH 

\pm (k\surd ni/o).

Proof. By the jump relations (2.3) and the definitions of P\pm 
i/o (1.10), with \bfitphi =

(\phi 1, \phi 2),

P\pm 
i/o\bfitphi = \pm \bfitgamma \pm 

C

\bigl( 
\scrK i/o\phi 1  - \scrV i/o\phi 2

\bigr) 
;(2.5)

see, e.g., [11, equation (2.49)]. Both when \bfitphi \in H1(\Gamma )\times L2(\Gamma ) and when \bfitphi \in H1/2(\Gamma )\times 
H - 1/2(\Gamma ), the right-hand side is then the trace of an element of \sansH \pm (k\surd ni/o) by

Lemma 2.1, so that R(P\pm 
i/o) \subset \bfitgamma \pm 

C\sansH 
\pm (k\surd ni/o). To prove the reverse inclusion, given

u\pm \in \sansH \pm (k\surd ni/o), u\pm = \pm (\scrK i/o\gamma 
\pm 
Du  - \scrV i/o\gamma 

\pm 
Nu) by Green's integral representation

(see, e.g., [11, Theorems 2.20 and 2.21]); (2.5) with \phi 1 = \gamma \pm Du and \phi 2 = \gamma \pm Nu then
implies that \sansH \pm (k\surd ni/o) \subset R(P\pm 

i/o).

The following two lemmas are proved in, e.g., [11, p. 118 and Lemma 2.22], re-
spectively.2

Lemma 2.3. (P+
i/o)

2 = P+
i/o and (P - 

i/o)
2 = P - 

i/o as operators either on H1/2(\Gamma )\times 
H - 1/2(\Gamma ) or on H1(\Gamma )\times L2(\Gamma ).

Lemma 2.4. (i) If v \in \sansH  - (k\surd ni/o), then

P - 
i/o\bfitgamma 

 - 
Cv = \bfitgamma  - 

Cv.(2.6)

(ii) If v \in \sansH +(k
\surd 
ni/o), then

P+
i/o\bfitgamma 

+
Cv = \bfitgamma +

Cv.(2.7)

The next lemma is a converse to Lemma 2.4.

Lemma 2.5. Let \bfitphi \in H1/2(\Gamma )\times H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ).
(i) If P - 

i/o\bfitphi = \bfitphi , then \bfitphi = \bfitgamma  - 
Cv for some v \in \sansH  - (k\surd ni/o).

(ii) If P+
i/o\bfitphi = \bfitphi , then \bfitphi = \bfitgamma +

Cv for some v \in \sansH +(k
\surd 
ni/o).

2Strictly speaking, [11, section 2.5] only considers P\pm 
i/o

as operators on H1/2(\Gamma )\times H - 1/2(\Gamma ), but

the proofs of the results on H1(\Gamma )\times L2(\Gamma ) are the same.
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Proof. (i) Given \bfitphi such that P - 
i/o\bfitphi = \bfitphi , let

v(x) =  - 
\bigl( 
\scrK i/o\phi 1  - \scrV i/o\phi 2

\bigr) 
(x) for x \in \Omega  - .(2.8)

By Lemma 2.1, v \in \sansH  - (k\surd ni/o). We therefore only need to check that \bfitphi = \bfitgamma  - 
Cv.

However, by (2.5) and the definition of v (2.8), \bfitphi = P - 
i/o\bfitphi = \bfitgamma  - 

Cv.

(ii) Given \bfitphi such that P+
i/o\bfitphi = \bfitphi , let

v(x) =
\bigl( 
\scrK i/o\phi 1  - \scrV i/o\phi 2

\bigr) 
(x) for x \in \Omega +.(2.9)

Similar to in (i), v \in \sansH +(k
\surd 
ni/o), and, by (2.5) and the definition of v (2.9), \bfitphi =

P+
i/o\bfitphi = \bfitgamma +

Cv.

Proof of Lemma 1.6. By (1.4) and (2.6), P - 
i \bfitgamma 

 - 
Cu

 - = \bfitgamma  - 
Cu

 - , so that, by (1.11),

P+
i \bfitgamma 

 - 
Cu

 - = 0.(2.10)

Similarly, by (1.4), (2.7), and (1.11),

P - 
o \bfitgamma 

+
Cu

+ = 0.(2.11)

Applying P - 
o to the transmission condition \bfitgamma  - 

Cu
 - = \bfitgamma +

Cu
+ + f in (1.4) and using

(2.11), we find that

P - 
o (\bfitgamma  - 

Cu
 - ) = P - 

o f .(2.12)

Subtracting (2.10) from (2.12), we obtain the first-kind BIE in (1.14). Adding
(2.10) to (2.12), we obtain the second-kind BIE in (1.14).

To obtain (1.15), observe that, for the Helmholtz transmission scattering problem
(1.2), f = \bfitgamma  - 

Cu
I with uI satisfying (1.3). Then P - 

o \bfitgamma 
 - 
Cu

I = \bfitgamma  - 
Cu

I by (2.6), and thus
the right-hand sides of (1.14) are just \bfitgamma  - 

Cu
I .

Lemma 2.6. Let A\ast equal either AI or AII. Then A\ast is an injective, bounded
operator on either H1/2(\Gamma )\times H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ).

Proof. The boundedness of A\ast follows from the expressions (1.12)/(1.13) and the
boundedness of P\pm 

i/o. Injectivity follows by repeating the arguments in the proof of

Theorem 1.10 below with g = 0 (these arguments use uniqueness of the Helmholtz
transmission problem of Definition 1.1).

Proof of Lemma 1.7. The result for AI follows from Lemma 2.6 combined with the
coercivity result in H1/2(\Gamma )\times H - 1/2(\Gamma ) of, e.g., [13, Theorem 7.27] (see [13, Corollary
7.28]); we do not know of an analogous coercivity result in H1(\Gamma )\times L2(\Gamma ), hence why
our results for AI are only in H1/2(\Gamma )\times H - 1/2(\Gamma ).

The result for AII follows from Lemma 2.6 combined with the fact that AII  - I is
compact on both H1/2(\Gamma )\times H - 1/2(\Gamma ) and H1(\Gamma )\times L2(\Gamma ). This latter result follows
if we can show that

\bullet Ki  - Ko is compact H1/2(\Gamma ) \rightarrow H1/2(\Gamma ) and H1(\Gamma ) \rightarrow H1(\Gamma ),
\bullet Vi  - Vo is compact H - 1/2(\Gamma ) \rightarrow H1/2(\Gamma ) and L2(\Gamma ) \rightarrow H1(\Gamma ),
\bullet Wi  - Wo is compact H1/2(\Gamma ) \rightarrow H - 1/2(\Gamma ) and H1(\Gamma ) \rightarrow L2(\Gamma ), and
\bullet K \prime 

i  - K \prime 
o is compact H - 1/2(\Gamma ) \rightarrow H - 1/2(\Gamma ) and L2(\Gamma ) \rightarrow L2(\Gamma ).

Since \Phi i - \Phi o = (\Phi i - \Phi 0) - (\Phi o - \Phi 0), where \Phi 0 is the Laplace fundamental solution,
these mapping properties follow from the bounds on the difference of the Helmholtz
and Laplace fundamental solutions in [11, equation (2.25)] and the fact that the
inclusion Hs(\Gamma ) \rightarrow Ht(\Gamma ) is compact for  - 1 \leq t \leq s \leq 1.
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3. Proof of Theorems 1.10 and 1.12.

Lemma 3.1. Given \bfitphi , f in either H1/2(\Gamma )\times H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ),

\bfitphi = Siof if and only if

\biggl\{ 
P - 
i \bfitphi = \bfitphi , and
P - 
o (\bfitphi  - f) = 0.

(3.1)

Similarly,

\bfitphi = Soif if and only if

\biggl\{ 
P - 
o \bfitphi = \bfitphi , and
P - 
i (\bfitphi  - f) = 0.

(3.2)

Proof. We prove (3.1); the proof of (3.2) is the same with i and o swapped.
We first prove the forward implication in (3.1). Given f , let u be as in the

definition of Sio (Definition 1.4), i.e., u satisfies (1.6) with ci = ni and co = no. By
definition \bfitphi = \bfitgamma  - 

Cu, so P
 - 
i \bfitphi = \bfitphi by (2.6). The jump condition in (1.6) implies that

\bfitphi  - f = \bfitgamma +
Cu, and (2.7) then implies that P+

o (\bfitphi  - f) = \bfitphi  - f .
For the reverse implication in (3.1), given \bfitphi satisfying the right-hand side of (3.1),

part (i) of Lemma 2.5 implies that \bfitphi = \bfitgamma  - 
Cw

 - for some w - \in \sansH  - (k
\surd 
ni). Similarly,

part (ii) of Lemma 2.5 implies that \bfitphi  - f = \bfitgamma +
Cw

+ for some w+ \in \sansH +(k
\surd 
no). Let

w := w+ in \Omega + and w := w - in \Omega  - . Then \bfitgamma  - 
Cw

 -  - \bfitgamma +
Cw

+ = \bfitphi  - (\bfitphi  - f) = f . Since the
solution of the transmission problem is unique, w equals the function u in the definition
of Sio (i.e., Definition 1.4 with ci =ni and co =no), and \bfitphi =\bfitgamma  - 

Cw
 - =\bfitgamma  - 

Cu
 - =Siof .

We now prove Theorem 1.10.

Proof of the result (1.16) in Theorem 1.10. Assume that \bfitpsi ,g \in H1/2(\Gamma ) \times 
H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ) with AI\bfitpsi = g, i.e.,

(P - 
i  - P+

o )\bfitpsi = g.(3.3)

Step 1: apply P - 
i to (3.3). Applying P - 

i to (3.3) and using the fact that P - 
i is a

projection (by Lemma 2.3), we have

P - 
i

\bigl( 
\bfitpsi  - P+

o \bfitpsi  - g
\bigr) 
= 0,

that is, by (1.11),

P - 
i

\bigl( 
P - 
o \bfitpsi  - g

\bigr) 
= 0.(3.4)

Let \bfitphi := P - 
o \bfitpsi and let f := g. Then by Lemma 3.1 and the fact that P - 

o is a
projection, \bfitphi = Soig, i.e.,

P - 
o \bfitpsi = Soig.(3.5)

Step 2: apply P - 
o to (3.3). Applying P - 

o to (3.3) and using the fact that P - 
o is a

projection (so that, in particular, P - 
o P

+
o = 0), we have

P - 
o

\bigl( 
P - 
i \bfitpsi  - g

\bigr) 
= 0.(3.6)

Let \bfitphi := P - 
i \bfitpsi and let f := g. Then by Lemma 3.1 and the fact that P - 

i is a
projection, \bfitphi = Siog, i.e.,

P - 
i \bfitpsi = Siog.(3.7)

Step 3: use (1.11) and (3.3) and the results of Steps 1 and 2. By (1.11), (3.5),
(3.3), and (3.7) (in that order),

\bfitpsi = (P - 
o + P+

o )\bfitpsi = Soig + P - 
i \bfitpsi  - g = (Soi + Sio  - I)g,(3.8)

which is the result (1.16).
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Proof of the result (1.17) in Theorem 1.10. Assume that \bfitpsi ,g \in H1/2(\Gamma ) \times 
H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ) with AII\bfitpsi = g, i.e.,

(P - 
o + P+

i )\bfitpsi = g.(3.9)

Step 1: apply P - 
i to (3.9). Applying P - 

i to (3.9) and using the fact that P - 
i is

a projection (by Lemma 2.3), we see that (3.4) holds. Let \bfitphi := P - 
o \bfitpsi and let f := g.

Then by Lemma 3.1 and the fact that P - 
o is a projection, \bfitphi = Soig, i.e., (3.5) holds.

Step 2: apply P - 
o to (3.9). Applying P - 

o to (3.9) and using the fact that P - 
o is a

projection, we see that

P - 
o

\bigl( 
\bfitpsi + P+

i \bfitpsi  - g
\bigr) 
= 0.

Let \widetilde \bfitphi := P - 
i \bfitpsi , so that

P - 
o

\bigl( \widetilde \bfitphi + 2P+
i \bfitpsi  - g

\bigr) 
= 0.

Let \widetilde f :=  - 2P+
i \bfitpsi + g. Then by Lemma 3.1 and the fact that P - 

i is a projection,
\widetilde \bfitphi = Sio

\widetilde f , i.e.,
P - 
i \bfitpsi = Sio

\bigl( 
 - 2P+

i \bfitpsi + g
\bigr) 
.

Using (3.9) and then (3.5), which holds by Step 1, we have

P - 
i \bfitpsi = Sio

\bigl( 
2P - 

o \bfitpsi  - g
\bigr) 
= Sio

\bigl( 
2Soig  - g

\bigr) 
.(3.10)

Step 3: use (1.11), (3.9), and the results of Steps 1 and 2. By (1.11) and (3.5),

\bfitpsi = (P - 
o + P+

o )\bfitpsi = Soig + P+
o \bfitpsi .(3.11)

Using (1.11) in (3.9) and rearranging, we have

P+
o \bfitpsi =  - P - 

i \bfitpsi + 2\bfitpsi  - g,

and using this in (3.11) we find that

\bfitpsi =
\bigl( 
I  - Soi

\bigr) 
g + P - 

i \bfitpsi ;

the result (1.17) then follows from using (3.10).

To prove Theorem 1.12, we need the following consequences of the definitions of
Sio and Soi.

Lemma 3.2. SioP
+
o = 0 and SioP

 - 
i = P - 

i as operators on either H1/2(\Gamma ) \times 
H - 1/2(\Gamma ) or H1(\Gamma )\times L2(\Gamma ). Similarly, SoiP

+
i = 0 and SoiP

 - 
o = P - 

o .

Proof. We prove the relationships involving Sio; the proofs of those involving Soi

are completely analogous. Given f \in H1/2(\Gamma ) \times H - 1/2(\Gamma ) or H1(\Gamma ) \times L2(\Gamma ), by
Definition 1.4, SioP

+
o f = \bfitgamma  - 

Cv
 - , where

v+ \in \sansH +(k
\surd 
no), v - \in \sansH  - (k

\surd 
ni), and \bfitgamma  - 

Cv
 - = \bfitgamma +

Cv
+ + P+

o f .(3.12)

By Lemma 2.2 and (2.5), there exists w+ \in \sansH +(k
\surd 
no) such that \bfitgamma +

Cw
+ = P+

o f .
Thus v - := 0 and v+ :=  - w+ is a solution of (3.12), and by uniqueness of the
Helmholtz transmission problem (Lemma 1.2) it is the only solution. Therefore
SioP

+
o f = \bfitgamma  - 

Cv
 - = 0.

The proof that SioP
 - 
i = P - 

i is similar. Indeed, again using uniqueness of the
Helmholtz transmission problem, we have SioP

 - 
i f = \bfitgamma  - 

Cw
 - with w - \in \sansH  - (k

\surd 
ni)

and \bfitgamma  - 
Cw

 - = P - 
i f .
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Proof of Theorem 1.12. Part (i). By (1.16), A - 1
I P - 

o = (Sio+Soi - I)P - 
o . Lemma

3.2 shows that (Soi  - I)P - 
o = 0, and thus A - 1

I P - 
o = SioP

 - 
o . The equation A - 1

II P
 - 
o =

SioP
 - 
o follows similarly.
Part (ii). By the second equality in (1.12), Lemma 2.3, and (1.11),

AIP
 - 
i = (P - 

i  - P+
o )P - 

i = (I  - P+
o )P - 

i = P - 
o P

 - 
i ,

so that AI : R(P
 - 
i ) \rightarrow R(P - 

o ). Similarly, by (1.13),

AIIP
 - 
i = (P - 

o + P+
i )P - 

i = P - 
o P

 - 
i ,

so that AII : R(P
 - 
i ) \rightarrow R(P - 

o ). By Definition 1.4, Sio maps into the space of Cauchy
data of \sansH  - (k

\surd 
ni); by (2.6) and Lemma 2.2, this space is R(P - 

i ). Therefore, by
part (i), both A - 1

I and A - 1
II map R(P - 

o ) \rightarrow R(P - 
i ) and both equal Sio as operators

between these spaces.

4. Proof of Theorem 1.11. Throughout this section we use the notation that
a \lesssim b if there exists C > 0, independent of k, such that a \leq Cb. We write a \sim b if
both a \lesssim b and b \lesssim a.

4.1. Definitions of \bfitk -weighted norms and associated results. For \bfitphi \in 
H1(\Gamma )\times L2(\Gamma ) with \bfitphi = (\phi 1, \phi 2), let \nabla T\phi 1 be the tangential gradient of \phi 1 on \Gamma and

\| \phi 1\| 2H1
k(\Gamma )

:= \| \nabla T\phi 1\| 2L2(\Gamma ) + k2 \| \phi 1\| 2L2(\Gamma ) , \| \bfitphi \| 
2
H1

k(\Gamma )\times L2(\Gamma ) := \| \phi 1\| 2H1
k(\Gamma )

+ \| \phi 2\| 2L2(\Gamma ) .

Define H
1/2
k (\Gamma ) by interpolation between H1

k(\Gamma ) and L2(\Gamma ) and then H
 - 1/2
k (\Gamma ) by

duality. As in section 1, we use the abbreviation (1.18).
For a bounded Lipschitz open set D \subset \BbbR d, let

\| v\| 2H1
k(D) := \| \nabla v\| 2L2(D) + k2 \| v\| 2L2(D) .

Fix k0 > 0. Then, with H
1/2
k (\partial D) defined above, by, e.g., [27, Theorem 5.6.4],

\| \gamma Dv\| H1/2
k (\partial D)

\lesssim \| v\| H1
k(D) for all v \in H1(D) and k \geq k0,(4.1)

and there exists E : H1/2(\partial D) \rightarrow H1(D) such that

\gamma DE\phi = \phi and \| E\phi \| H1
k(D) \lesssim \| \phi \| 

H
1/2
k (\partial D)

.(4.2)

Lemma 4.1. If v \in H1(D,\Delta ) with (\Delta + k2c)v = 0 and k \geq k0, then

\| \gamma Nv\| H - 1/2
k (\partial D)

\lesssim \| v\| H1
k(D)(4.3)

(where the omitted constant depends on c and k0).

Sketch proof of Lemma 4.1. This follows by repeating the argument in, e.g., [22,
Lemma 4.3] (which starts from the definition of the Neumann trace via Green's iden-
tity) and then using weighted norms and, in particular, the bound (4.2).

4.2. From resolvent estimates to bounds on \bfitS \bfiti \bfito and \bfitS \bfito \bfiti .

Lemma 4.2. Given co, ci, R positive real numbers and g \in H1/2(\Gamma ) \times H - 1/2(\Gamma ),
let v \in H1

loc(\BbbR d \setminus \Gamma ) \cap SRC(k
\surd 
co) satisfy
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(\Delta + k2ci)v
 - = 0 in \Omega  - ,

(\Delta + k2co)v
+ = 0 in \Omega +,

\bfitgamma  - 
Cv

 - = \bfitgamma +
Cv

+ + g on \Gamma .

Assume that, for all f \in L2(\BbbR d) with supp f \subset BR and w \in H1
loc(\BbbR d \setminus \Gamma )\cap SRC(k

\surd 
co)

that satisfy

(\Delta + k2ci)w
 - = f - in \Omega  - ,

(\Delta + k2co)w
+ = f+ in \Omega +,

\bfitgamma  - 
Cw

 - = \bfitgamma +
Cw

+ on \Gamma ,

the following bound holds:

\| w\| H1
k(BR) \leq Csol(k,R, ci, co) \| f\| L2(BR) .(4.4)

Then, given k0 > 0,

\| v\| H1
k(BR) \lesssim k

\bigl( 
1 + Csol(k,R, ci, co)

\bigr) 
\| g\| 

H
1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

for all k \geq k0.(4.5)

Corollary 4.3. Under the assumptions of Lemma 4.2,

\| S(ci, co)\| H1/2
k \times H

 - 1/2
k

\lesssim k
\bigl( 
1 + Csol(k,R, ci, co)

\bigr) 
.

Proof of Corollary 4.3 from Lemma 4.2. This follows from combining the result
of Lemma 4.2 and the trace results (4.1) and (4.3).

Proof of Lemma 4.2. Let u \in H1(\BbbR d \setminus \Gamma ) \cap SRC(k
\surd 
co) be the solution to

(\Delta + (k2 + ik)ci)u
 - = 0 in \Omega  - ,

(\Delta + (k2 + ik)co)u
+ = 0 in \Omega + \cap BR\prime ,

\bfitgamma  - 
Cu

 - = \bfitgamma +
Cu

+ + g on \Gamma 

(4.6)

(this choice of auxiliary problem is motivated by the proof of [5, Theorem 3.5] using [5,
Lemma 3.3]). We prove below that

\| u\| H1
k(\Omega 

+) \lesssim k \| g\| 
H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

.(4.7)

Given R > 0 such that \Omega  - \Subset BR, choose \chi \in C\infty 
comp(\BbbR d) with supp\chi \subset BR and \chi \equiv 1

on \Omega  - . Let w = v  - \chi u; then w \in H1
loc(\BbbR d \setminus \Gamma ) \cap SRC(k

\surd 
co) satisfies

(\Delta + k2ci)w
 - = ikciu

 - in \Omega  - ,

(\Delta + k2co)w
+ = ikco\chi u

+  - 2\nabla u+ \cdot \nabla \chi  - u+\Delta \chi in \Omega +,

\bfitgamma  - 
Cw

 - = \bfitgamma +
Cw

+ on \Gamma .

Using the fact that w = v - \chi u, the fact that supp\chi \subset BR (by construction), and the
bound (4.4), we have that, given k0 > 0,

\| v\| H1
k(BR) \lesssim \| w\| H1

k(BR) + \| u\| H1
k(BR) \lesssim Csol(k,R, ci, co) \| u\| H1

k(BR) + \| u\| H1
k(BR)

for all k \geq k0; the result (4.5) then follows from the bound (4.7).
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It therefore remains to prove (4.7). First observe that, thanks to the ik term in
the PDE in (4.6), u+ decays exponentially at infinity, and thus u+ \in H1(\Omega +). Next,
apply Green's identity to u - in \Omega  - and u+ in \Omega + to obtain that

\bigm\| \bigm\| \nabla u - 
\bigm\| \bigm\| 2
L2(\Omega  - )

 - (k2 + ik)ci
\bigm\| \bigm\| u - 

\bigm\| \bigm\| 2
L2(\Omega  - )

= \langle \gamma  - Nu - , \gamma  - Du - \rangle \Gamma ,(4.8)
\bigm\| \bigm\| \nabla u+

\bigm\| \bigm\| 2
L2(\Omega +)

 - (k2 + ik)co
\bigm\| \bigm\| u+

\bigm\| \bigm\| 2
L2(\Omega +)

=  - \langle \gamma +Nu+, \gamma +Du+\rangle \Gamma .(4.9)

The jump condition in (4.6) implies that, with g = (gD, gN ),

\langle \gamma  - Nu - , \gamma  - Du - \rangle \Gamma  - \langle \gamma +Nu+, \gamma +Du+\rangle \Gamma = \langle gN , \gamma  - Du - \rangle \Gamma + \langle \gamma +Nu, gD\rangle \Gamma .(4.10)

Therefore, adding (4.8) and (4.9), taking the imaginary part, and then using the
Cauchy--Schwarz inequality on terms arising from (4.10), we obtain

min\{ ci, co\} k \| u\| 2L2(\Omega +) \leq \| gN\| 
H

 - 1/2
k (\Gamma )

\bigm\| \bigm\| \gamma  - Du - 
\bigm\| \bigm\| 
H

1/2
k (\Gamma )

+
\bigm\| \bigm\| \gamma +Nu+

\bigm\| \bigm\| 
H

 - 1/2
k (\Gamma )

\| gD\| 
H

1/2
k (\Gamma )

.(4.11)

Adding (4.8) and (4.9), taking the real part, adding a sufficiently large multiple of
k times (4.11), and then using the Cauchy--Schwarz inequality on terms arising from
(4.10), we have

\| u\| 2H1
k(\Omega 

+) \lesssim k
\Bigl( 
\| gN\| 

H
 - 1/2
k (\Gamma )

\bigm\| \bigm\| \gamma  - Du - 
\bigm\| \bigm\| 
H

1/2
k (\Gamma )

+
\bigm\| \bigm\| \gamma +Nu+

\bigm\| \bigm\| 
H

 - 1/2
k (\Gamma )

\| gD\| 
H

1/2
k (\Gamma )

\Bigr) 
.

(4.12)

The bound (4.7) then follows from using the inequality

2ab \leq \epsilon a2 + \epsilon  - 1b2, a, b, \epsilon > 0,(4.13)

and the trace bounds (4.1) and (4.3) in the right-hand side of (4.12).

4.3. \bfitk -explicit bounds on \bfitS \bfiti \bfito and \bfitS \bfito \bfiti . We recall the notions of star-shaped
and star-shaped with respect to a ball.

Definition 4.4. (i) \Omega  - is star-shaped with respect to the point x0 if, whenever
x \in \Omega  - , the segment [x0,x] \subset \Omega  - .

(ii) \Omega  - is star-shaped with respect to the ball Ba(x0) if it is star-shaped with
respect to every point in Ba(x0).

Lemma 4.5 (``good"" behavior of Sio when ni < no). If \Omega  - is star-shaped with
respect to a ball and ni < no, then, given k0 > 0,

\| Sio\| H1/2
k \times H

 - 1/2
k

\lesssim k for all k \geq k0.

Proof. [24, Theorem 3.2] proves that (4.4) holds with Csol(k) \sim 1, and the result
then follows from Corollary 4.3.

Lemma 4.6 (``bad"" behavior of Sio when ni > no). If \Omega  - is C\infty with strictly
positive curvature and ni > no, then there exist 0 < k1 < k2 < . . . with kj \rightarrow \infty such
that given any N > 0 there exists CN > 0 such that

\| Sio\| H1/2
k \times H

 - 1/2
k

\geq CNk
N
j for all j.
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In the proof of Lemma 4.6, we use the notation that a = O(k - \infty ) as k \rightarrow \infty 
if, given N > 0, there exists CN , k0 such that | a| \leq CNk

 - N for all k \geq k0, i.e., a
decreases superalgebraically in k.

The ideas behind Lemma 4.6 are that (i) if there exist quasimodes with O(k - \infty )
remainder (in the sense of (4.15) below), then the norm of Sio has O(k\infty ) blow up
(immediately from the definitions of quasimodes and Sio), and (ii) if \Omega  - is C\infty with
strictly positive curvature and ni > no, then quasimodes with O(k - \infty ) remainder
exist by [29]. To prove Lemma 4.6, we need the following bounds on the Newtonian
potential, i.e., integration against the fundamental solution. Let

\scrN i/of(x) :=

\int 

\BbbR d

\Phi i/o(x, y)f(y) dy.

Lemma 4.7. Given f \in L2(\BbbR d) with supp f \subset BR and k0 > 0,

1

k

\sum 

| \alpha | =2

\bigm\| \bigm\| \partial \alpha (\scrN i/of)
\bigm\| \bigm\| 
L2(BR)

+
\bigm\| \bigm\| \scrN i/of

\bigm\| \bigm\| 
H1

k(BR)
\lesssim \| f\| L2(BR)

for all k \geq k0, where the omitted constant depends on ni/o and R.

References for the proof of Lemma 4.7. See, e.g., [17, Theorem 3.1] for d = 3 and
[19, Theorem 14.3.7] for arbitrary dimension (note that [19, Theorem 14.3.7] is for
fixed k, but a rescaling of the independent variable yields the result for arbitrary
k).

Proof of Lemma 4.6. We are going to show that there exist gj \in H1/2(\Gamma ) \times 
H - 1/2(\Gamma ), j = 1, 2, . . ., such that the solutions vj to (1.6) (with ci = ni and co = no
and f = gj) are such that given N > 0 there exists CN > 0 such that

\bigm\| \bigm\| \bfitgamma  - 
Cv

 - 
j

\bigm\| \bigm\| 
H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

\geq CNk
N
j \| gj\| H1/2

k (\Gamma )\times H
 - 1/2
k (\Gamma )

for all j,

i.e., that

\| gj\| H1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )\bigm\| \bigm\| \bfitgamma  - 

Cv
 - 
j

\bigm\| \bigm\| 
H

1/2
k (\Gamma )\times H

 - 1/2
k (\Gamma )

= O(k - \infty 
j ) as j \rightarrow \infty .(4.14)

By [29], there exist kj \in \BbbC , with | kj | \rightarrow \infty , 0 > \Im kj = O(k - \infty 
j ), w\pm 

j \in C\infty (\Omega \pm )

with the support of w\pm 
j contained in a fixed compact neighborhood of \Gamma , and such

that \| \gamma  - Dw - 
j \| L2(\Gamma ) = 1,

\bigm\| \bigm\| (\Delta + k2jni/o)w
\pm 
j

\bigm\| \bigm\| 
L2(\Omega \pm )

= O(k - \infty 
j ),

\bigm\| \bigm\| \bfitgamma  - 
Cw

 - 
j  - \bfitgamma +

Cw
+
j

\bigm\| \bigm\| 
H2(\Gamma )\times H2(\Gamma )

= O(k - \infty 
j ),

(4.15)

as j \rightarrow \infty . We now claim that we can
1. change the normalization from \| \gamma  - Dw - 

j \| L2(\Gamma ) = 1 to \| \gamma  - Dw - 
j \| H1/2

| kj | 
(\Gamma )

= | kj | 1/2

(or indeed any finite power of | kj | ), and
2. assume, without loss of generality, that kj \in \BbbR for all j.

Indeed, [24, Corollary 6.1] shows that the results of [29] imply existence of a quasimode
normalized by \| \gamma  - Dw - 

j \| H1
| kj | 

(\Gamma ) = | kj | , and then [24, Corollary 6.2] shows that this

implies existence of a quasimode with kj \in \BbbR for all j, normalized by \| \gamma  - Dw - 
j \| H1

kj
(\Gamma ) =

kj . To obtain the claim involving points 1 and 2 above, we need to justify that we can
replace the normalization \| \gamma  - Dw - 

j \| H1
| kj | 

(\Gamma ) = | kj | by \| \gamma  - Dw - 
j \| H1/2

| kj | 
(\Gamma )

= | kj | 1/2. This

follows by repeating the arguments in [24, Corollaries 6.1 and 6.2] with
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\bullet the bound on the Dirichlet-to-Neumann map from H1
k(\Gamma ) \rightarrow L2(\Gamma ) from

[25, Lemma 5] replaced by the analogous bound from H
1/2
k (\Gamma ) \rightarrow H

 - 1/2
k (\Gamma )

obtained by interpolation (see, e.g., [12, Lemma 4.2]), and
\bullet the bounds on the L2(\Gamma ) \rightarrow L2

comp(\BbbR d) norms of \scrV i/o and \scrK i/o from [31,

Lemma 4.3] replaced by analogous bounds on the H
 - 1/2
k (\Gamma ) \rightarrow L2

comp(\BbbR d)

and H
1/2
k (\Gamma ) \rightarrow L2

comp(\BbbR d) norms, respectively; these bounds are proved
using the bounds in Lemma 4.7, the trace result (4.1), and arguments similar
to those in the proof of Lemma 4.1.

Note that, in both these points, the precise algebraic powers of kj don't matter, since
they are dominated by the O(k - \infty 

j ) coming from the quasimode.

With the changes to the quasimode w\pm 
j in points 1 and 2 above, we now let

v - j := w - 
j +\scrN i

\bigl( 
(\Delta + k2jni)w

 - 
j

\bigr) 
and v+j := w+

j +\scrN o

\bigl( 
(\Delta + k2jno)w

+
j

\bigr) 
(4.16)

(where the arguments of \scrN i and \scrN o are extended by zero outside their supports) and
observe that, since w+

j has compact support, v+j \in SRC(kj
\surd 
no). Let

gj := \bfitgamma 
 - 
Cv

 - 
j  - \bfitgamma +

Cv
+
j ;

then v satisfies (1.6) with ci = ni and co = no and f = gj .
We now show that (4.14) holds. On the one hand, by the definition of gj , the

second equation in (4.15), Lemma 4.7, and the first equation in (4.15),

\| gj\| H1/2
kj

(\Gamma )\times H
 - 1/2
kj

(\Gamma )
\leq 

\bigm\| \bigm\| \bfitgamma  - 
Cw

 - 
j  - \bfitgamma +

Cw
+
j

\bigm\| \bigm\| 
H

1/2
kj

(\Gamma )\times H
 - 1/2
kj

(\Gamma )

+
\bigm\| \bigm\| \bfitgamma  - 

C\scrN i

\bigl( 
(\Delta + k2jni)w

 - 
j

\bigr) \bigm\| \bigm\| 
H

1/2
kj

(\Gamma )\times H
 - 1/2
kj

(\Gamma )

+
\bigm\| \bigm\| \bfitgamma +

C\scrN o

\bigl( 
(\Delta + k2jno)w

+
j

\bigr) \bigm\| \bigm\| 
H

1/2
kj

(\Gamma )\times H
 - 1/2
kj

(\Gamma )

= O(k - \infty 
j ) as j \rightarrow \infty .(4.17)

On the other hand, using (4.16), the normalization \| \gamma  - Dw - 
j \| H1/2

kj
(\Gamma )

= k
1/2
j , Lemma

4.7, and (4.15) (in that order), we have
\bigm\| \bigm\| \bfitgamma  - 

Cv
 - 
j

\bigm\| \bigm\| 
H

1/2
kj

(\Gamma )\times H
 - 1/2
kj

(\Gamma )
\geq 

\bigm\| \bigm\| \gamma  - Dv - j
\bigm\| \bigm\| 
H

1/2
kj

(\Gamma )
\geq 

\bigm\| \bigm\| \gamma  - Dw - 
j

\bigm\| \bigm\| 
H

1/2
kj

(\Gamma )

 - 
\bigm\| \bigm\| \gamma  - D\scrN i

\bigl( 
(\Delta + k2jni)w

 - 
j

\bigr) \bigm\| \bigm\| 
H

1/2
kj

(\Gamma )

= k
1/2
j +O(k - \infty 

j ) as j \rightarrow \infty .(4.18)

The bound (4.14) (and hence the result) follows by combining (4.17) and (4.18).

Proof of Theorem 1.11. This follows by combining Theorem 1.10, Lemma 4.5,
and Lemma 4.6. Indeed, if ni < no, then Sio has ``good"" behavior via Lemma 4.5,
but Soi has ``bad"" behavior via Lemma 4.6. If ni > no, then Sio has ``bad"" behavior
via Lemma 4.6, and Soi has ``good"" behavior via Lemma 4.5.

We also record the following upper bound on
\bigm\| \bigm\| A - 1

I

\bigm\| \bigm\| 
H

1/2
k \times H

 - 1/2
k

, valid for all

Lipschitz \Omega  - .

Theorem 4.8 (inverse is algebraically bounded in frequency for almost all fre-
quencies). Given positive real numbers ni, no, k0, \delta , and \varepsilon , there exists a set J \subset 
[k0,\infty ) with | J | \leq \delta and C = C(\delta , \varepsilon , k0) such that

\bigm\| \bigm\| A - 1
I

\bigm\| \bigm\| 
H

1/2
k \times H

 - 1/2
k

\leq Ck2+5d/2+\varepsilon for all k \in [k0,\infty ) \setminus J.
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This result shows that, at high frequency, the blow-up associated with spurious
quasi-resonances is extremely localized in frequency, thus giving a possible reason why
spurious quasi-resonances seem to have rarely been noticed in the literature.

Proof of Theorem 4.8. This follows from Theorem 1.10, Corollary 4.3, and the
results of [20]. Indeed, [20, Theorem 1.1] implies that, for arbitrary positive real
numbers ni, no, the assumptions of Lemma 4.2 (and hence also Corollary 4.3) are
satisfied with Csol(k) \sim k5d/2+1+\varepsilon . To see this, we note that [20, Theorem 1.1] holds
for problems fitting in the ``black-box scattering"" framework, and the transmission
problem fits in this framework by [20, Lemma 2.3 and Remark 2.4]. Furthermore, [20,
Theorem 1.1] is an L2 \rightarrow L2 bound, but this implies a bound of the form (4.4)
with Csol(k) \sim k5d/2+1+\varepsilon thanks to Green's identity---see the comments around [20,
equation (1.3)].

5. Proofs of Lemma 1.13 and Theorem 1.15 (the results about the
augmented BIEs).

Proof of Lemma 1.13. We first prove the result when \widetilde A\ast = \widetilde AI. By the first equa-
tion in (1.20) \bfitphi = A - 1

I g. Then, by the second equation in (1.20) and the expression
for A - 1

I (1.16),

0 = P+
i \bfitphi = P+

i A
 - 1
I g = P+

i (Sio + Soi  - I)g.

By (3.1) P+
i Sio = 0, and then

P+
i (Soi  - I)g = 0.(5.1)

Now, by (3.2), P - 
i (Soi  - I)g = 0, and thus the constraint (1.21) follows by (1.11).

Then, by the first equation in (1.20) and (1.16), \bfitphi = A - 1
I g = (Sio + Soi  - I)g, and

the result (1.22) follows by (1.21).

We now prove the result when \widetilde A\ast = \widetilde AII. Similar to before, by (1.20) and the
expression for A - 1

II (1.17),

0 = P+
i \bfitphi = P+

i A
 - 1
II g = P+

i (I  - Sio  - Soi + 2SioSoi)g = P+
i (I  - Soi)g,

since P+
i Sio = 0 by (3.1); we therefore obtain (5.1), and the constraint (1.21) follows

exactly as before. The result (1.22) then follows from using the constraint (1.21) in
the expression for A - 1

II (1.17).

Proof of Theorem 1.15. We first prove (1.23). Let \bfitpsi = (\bfitpsi 1,\bfitpsi 2) for \bfitpsi 1,\bfitpsi 2 \in \scrH .
Then

\bigl( \widetilde AI\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH =

\bigl( 
AI\bfitphi ,\bfitpsi 1

\bigr) 
\scrH +

\bigl( 
P+
i \bfitphi ,\bfitpsi 2

\bigr) 
\scrH .

Given \bfitphi , let \bfitpsi 2 := P+
i \bfitphi . Since \bfitphi = P+

i \bfitphi + P - 
i \bfitphi ,

\bigl( \widetilde AI\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH =

\bigl( 
AIP

+
i \bfitphi ,\bfitpsi 1

\bigr) 
\scrH +

\bigl( 
AIP

 - 
i \bfitphi ,\bfitpsi 1

\bigr) 
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH .

Motivated by Theorem 1.12, let \bfitpsi 1 := S\ast 
ioP

 - 
i \bfitphi . By Theorem 1.12, SioAI = I as an

operator R(P - 
i ) \rightarrow R(P - 

i ), and thus

\bigl( \widetilde AI\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH =

\bigl( 
AIP

+
i \bfitphi , S

\ast 
ioP

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigl( 
SioAIP

 - 
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

=
\bigl( 
AIP

+
i \bfitphi , S

\ast 
ioP

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH .
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Now, by the second equality in (1.12), Lemma 2.3, and (1.11),

\bigl( 
AIP

+
i \bfitphi , S

\ast 
ioP

 - 
i \bfitphi 

\bigr) 
\scrH =

\bigl( 
Sio(P

 - 
i  - P+

o )P+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH ,

which equals zero since P - 
i P

+
i = 0 by (1.11) and SioP

+
o = 0 by Lemma 3.2. Therefore,

with this choice of \bfitpsi ,

\bigm| \bigm| \bigl( \widetilde AI\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH 

\bigm| \bigm| 
\| \bfitphi \| \scrH \| \bfitpsi \| \scrH \times \scrH 

=

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

\| \bfitphi \| \scrH 
\sqrt{} \bigm\| \bigm\| S\ast 

ioP
 - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

\geq 

\sqrt{} \bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

\| \bfitphi \| \scrH max
\bigl\{ 
\| Sio\| \scrH \rightarrow \scrH , 1

\bigr\} .

(5.2)

By (1.11), the triangle inequality, and the inequality 2ab \leq a2 + b2 for a, b > 0,

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH \geq 1

2
\| \bfitphi \| 2\scrH .(5.3)

The result (1.23) then follows from combining (5.2) and (5.3).
We now prove (1.24). As above, let \bfitpsi = (\bfitpsi 1,\bfitpsi 2) for \bfitpsi 1,\bfitpsi 2 \in \scrH . Motivated by

the proof of (1.23), given \bfitphi \in \scrH , let \bfitpsi 1 := S\ast 
ioP

 - 
i \bfitphi . Then, by the definition of \widetilde AII

and Theorem 1.12,

\bigl( \widetilde AII\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH =

\bigl( 
SioAII\bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigl( 
P+
i \bfitphi ,\bfitpsi 2

\bigr) 
\scrH 

=
\bigl( 
SioAIIP

+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigl( 
P+
i \bfitphi ,\bfitpsi 2

\bigr) 
\scrH .(5.4)

Now, by the definition of AII (1.13), Lemma 2.3, (1.11), and the fact that SioP
+
o = 0

by Lemma 3.2,

\bigl( 
SioAIIP

+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH =

\bigl( 
Sio

\bigl( 
P - 
o + I

\bigr) 
P+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH = 2

\bigl( 
SioP

+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH .(5.5)

We now let \bfitpsi 2 := P+
i \bfitphi  - 2S\ast 

ioP
 - 
i \bfitphi . This definition along with (5.4) and (5.5) implies

that

\bigl( \widetilde AII\bfitphi , \psi 
\bigr) 
\scrH \times \scrH = 2

\bigl( 
SioP

+
i \bfitphi , P

 - 
i \bfitphi 

\bigr) 
\scrH +

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH  - 2

\bigl( 
P+
i \bfitphi , S

\ast 
ioP

 - 
i \bfitphi 

\bigr) 
\scrH ,

=
\bigm\| \bigm\| P - 

i \bfitphi 
\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH .

Therefore, with this choice of \bfitpsi ,

\bigm| \bigm| \bigl( \widetilde AII\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH 

\bigm| \bigm| 
\| \bfitphi \| \scrH \| \bfitpsi \| \scrH \times \scrH 

=

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

\| \bfitphi \| \scrH 
\sqrt{} \bigm\| \bigm\| S\ast 

ioP
 - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| (P+
i  - 2S\ast 

ioP
 - 
i )\bfitphi 

\bigm\| \bigm\| 2
\scrH 

.

We now use the triangle inequality and (4.13) to find that

\bigm\| \bigm\| S\ast 
ioP

 - 
i \bfitphi 

\bigm\| \bigm\| 2 +
\bigm\| \bigm\| (P+

i  - 2S\ast 
ioP

 - 
i )\bfitphi 

\bigm\| \bigm\| 2

\leq \| S\ast 
io\| 2

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2 +
\bigl( \bigm\| \bigm\| P+

i \bfitphi 
\bigm\| \bigm\| + 2 \| S\ast 

io\| 
\bigm\| \bigm\| P - 

i \bfitphi 
\bigm\| \bigm\| \bigr) 2

\leq \| S\ast 
io\| 2

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2 +
\bigm\| \bigm\| P+

i \bfitphi 
\bigm\| \bigm\| 2

+ 4 \| S\ast 
io\| 2

\bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2 + 4
\bigm\| \bigm\| P+

i \bfitphi 
\bigm\| \bigm\| \| S\ast 

io\| 
\bigm\| \bigm\| P - 

i \bfitphi 
\bigm\| \bigm\| 

\leq (1 + 2\epsilon )
\bigm\| \bigm\| P+

i \bfitphi 
\bigm\| \bigm\| 2 + (5 + 2/\epsilon ) \| S\ast 

io\| 2
\bigm\| \bigm\| P - 

i \bfitphi 
\bigm\| \bigm\| 2
\scrH ;
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if \epsilon = 1 +
\surd 
2, then 5 + 2\epsilon = 1 + 2\epsilon = 3 + 2

\surd 
2 and thus

\bigm| \bigm| \bigl( \widetilde AII\bfitphi ,\bfitpsi 
\bigr) 
\scrH \times \scrH 

\bigm| \bigm| 
\| \bfitphi \| \scrH \| \bfitpsi \| \scrH \times \scrH 

\geq 

\sqrt{} \bigm\| \bigm\| P - 
i \bfitphi 

\bigm\| \bigm\| 2
\scrH +

\bigm\| \bigm\| P+
i \bfitphi 

\bigm\| \bigm\| 2
\scrH 

\| \bfitphi \| \scrH 
\sqrt{} 
3 + 2

\surd 
2max

\bigl\{ 
\| Sio\| \scrH \rightarrow \scrH , 1

\bigr\} .

The result (1.24) follows from this inequality and (5.3).

Appendix A. Extension of the results to the more general form of the
transmission problem. We now sketch how the decomposition (1.16) of the first-
kind BIE extends to the more general transmission problem of Definition 1.1 with
the transmission condition in (1.4) replaced by (1.5). The analogous extension of the
decomposiiton (1.17) for the second-kind BIE is very similar.

Derivation of the first-kind BIE. Equation (2.10) holds as before, but now the
analogue of (2.12) is

P - 
o D

 - 1\bfitgamma  - 
Cu

 - = P - 
o D

 - 1f .

Therefore, the analogue of the first-kind BIE AI in (1.14) is

Agen
I \bfitgamma  - 

Cu
 - = P - 

o D
 - 1f ,

where

Agen
I := P - 

o D
 - 1  - D - 1P+

i = D - 1P - 
i  - P+

o D
 - 1

=

\biggl[ 
 - (Ki +Ko) Vi + \alpha  - 1Vo
\alpha  - 1Wi +Wo \alpha  - 1(K \prime 

i +K \prime 
o)

\biggr] 
.(A.1)

Solution operators. Let S(ci, co) be the solution operator of the boundary-value

problem (1.6) with the transmission condition replaced by (1.5). Let \widetilde S(ci, co) be the
solution operator to (1.6) with the transmission condition

\bfitgamma  - 
Cu

 - = D - 1\bfitgamma +
Cu

+ + f ;

i.e., \alpha is replaced by \alpha  - 1 compared to S(ci, co). Let Sio := S(ni, no) and let \widetilde Soi :=
\widetilde S(no, ni).

Lemma A.1.

(A.2)
\bigl( 
Agen

I

\bigr)  - 1
= SioD +D \widetilde Soi  - D.

Sketch of the proof. The analogue of Lemma 3.1 is now that

\bfitphi = Siof if and only if

\biggl\{ 
P - 
i \bfitphi = \bfitphi , and

P - 
o D

 - 1(\bfitphi  - f) = 0,
(A.3)

and

\bfitphi = \widetilde Soif if and only if

\biggl\{ 
P - 
o \bfitphi = \bfitphi , and

P - 
i D(\bfitphi  - f) = 0.

(A.4)

We then repeat the steps in the proof of Theorem 1.10. Assuming that Agen
I \bfitpsi = g

and applying P - 
i D, we find that the analogue of (3.4) is that

P - 
i D

\bigl( 
P - 
o D

 - 1\bfitpsi  - g
\bigr) 
= 0,
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so that, by (A.4),

(A.5) P - 
o D

 - 1\bfitpsi = \widetilde Soig.

Similarly applying P - 
o to Agen

I \bfitpsi = g, we find that the analogue of (3.6) is

P - 
o

\bigl( 
D - 1P - 

i \bfitpsi  - g
\bigr) 
= 0,

so that, by (A.3),

(A.6) P - 
i \bfitpsi = SioDg.

Then, using that Agen
I \bfitpsi = g, (A.1), (A.5), and (A.6), we find that the analogue of

(3.8) is

\bfitpsi = (P+
i + P - 

i )\bfitpsi = DP - 
o D

 - 1\psi  - Dg + P - 
i \bfitpsi = D \widetilde Soig  - Dg + SioDg,

which is (A.2).
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