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Abstract. We propose and analyze a space-time virtual element method for the discretization of
the heat equation in a space-time cylinder, based on a standard Petrov—Galerkin formulation. Local
discrete functions are solutions to a heat equation problem with polynomial data. Global virtual
element spaces are nonconforming in space, so that the analysis and the design of the method are
independent of the spatial dimension. The information between time slabs is transmitted by means
of upwind terms involving polynomial projections of the discrete functions. We prove well posedness
and optimal error estimates for the scheme, and validate them with several numerical tests.
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1. Introduction. The virtual element method (VEM) was introduced in [3]
as an extension of the finite element method to general polytopic meshes for the
approximation of solutions to the Poisson equation. Trial and test spaces consist
of functions that are solutions to local problems related to the PDE problem to be
approximated. Moreover, they typically contain polynomials of a given maximum
degree, together with nonpolynomial functions allowing for the enforcement of the
desired type of conformity in the global spaces. These functions are not required to
be explicitly known. Suitable sets of degrees of freedom (DoFs) are chosen so that
projections from local virtual element (VE) spaces onto polynomial spaces can be
computed out of them. Such polynomial projectors and certain stabilizing bilinear
forms are used to define the discrete bilinear forms. A nonconforming version of the
VEM was proposed in [2]. Unlike its conforming counterpart, the nonconforming
VEM can be presented in a unified framework for any dimension, which significantly
simplifies its analysis and implementation.

In the VEM literature, time dependent problems have always been tackled by
combining a VE discretization in space with a time-stepping scheme for the solution
to the resulting ODE system. The prototypical example is [21], where the heat equa-
tion was considered. On the other hand, space—time Galerkin methods are based on
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discretizing the space and time variables of a PDE at once. These methods provide
a natural framework where high-order accuracy can be obtained in both space and
time, and an approximate solution is available on the whole space-time domain.

In this paper, we design and analyze the first space—time VEM for the solution to
a time-dependent PDE, namely, the heat equation; we can consider spatial domains in
one, two, and three dimensions. We employ prismatic-type elements. This allows us to
distinguish two types of mesh facets: space-like facets, i.e., facets lying on hyperplanes
in space-time that are perpendicular to the time axis; time-like facets, i.e., facets
whose normals are perpendicular to the time axis. The method we propose is based
on a standard space—time variational formulation of the heat equation in the space—
time cylinder Q7 = Q x (0,T) with trial space L?(0,T;HZ(2)) N HY(0,T; H-1(Q))
and test space L2(0,T; H}(9)); see [7, Ch. XVIII, sect. 4.1].

For a recent survey of space—time discretizations of parabolic problems, we refer to
[13]. In particular, a continuous finite element discretization of the standard Petrov—
Galerkin variational formulation is presented and analyzed in [18]. Additionally, we
refer to [1], [17], and [20] for wavelet- or finite element-type discretizations based on
a minimal residual Petrov—Galerkin formulation, and to [15] and [6] for discontinu-
ous Galerkin approaches. Motivated by the boundary integral operator analysis, a
continuous finite element method based on a fractional-order-in-time variational for-
mulation was studied in [19]. Recently, the space—time first order system least squares
(FOSLS) formulation of [4] has been revisited and analyzed; see [8], [9], and [10].
We summarize the main features of the proposed VEM.

e Local VE spaces consist of functions that solve a heat equation with polyno-
mial data on each space—time element; this makes the method particularly
suitable for further extensions, e.g., to its Trefftz variant.

e We consider tensor-product in time (prismatic) meshes but the VE spaces are
not of tensor-product type. Even for prismatic elements with simplicial bases,
the proposed VE spaces do not coincide with their standard tensor-product
finite element counterparts.

e Global VE spaces involve approximating continuity constraints across mesh
facets. More precisely, we impose nonconformity conditions on time-like
facets analogous to those in [2] for the Poisson problem, and allow for dis-
continuous functions in time. Across space-like facets, we transmit the infor-
mation between consecutive time slabs by upwinding. In the present VEM
context, the upwind terms are defined by means of a polynomial projection.

e To keep the presentation and the analysis of the method as simple as possible,
the details are presented for the particular case of space—time tensor-product
meshes. However, as discussed in subsection 2.6 below, the method can handle
nonmatching time-like or space-like facets, which is desirable for space-time
adaptivity.

We summarize the advantages of the proposed space-time VEM over standard space—
time conforming finite element methods.

e The nonconforming VEM setting is of arbitrary order and its design is inde-
pendent of the spatial dimension.

e Nonmatching space-like and time-like facets, which naturally stem from mesh
adaptive procedures, can be handled easily.

e As the discrete spaces are discontinuous in time, we can solve the global
(expensive) problem as a sequence of local (cheaper) problems on time slabs.

e The definition of the local spaces allows for the construction of space-time
discrete Trefftz spaces.
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The main advancements of this paper are the following.
e We design a novel space-time VEM for the heat equation in any spatial
dimension.
e We prove its well posedness and optimal a priori error estimates.
e We validate numerically the theoretical results on some test cases.

Notation. We denote the first and second partial derivatives with respect to the
time variable ¢ by 0; and 0y, respectively, and the spatial gradient and Laplacian
operators by Vi, Ay, respectively. Throughout this paper, standard notation for
Sobolev spaces will be employed. For a given bounded Lipschitz domain D C R?
(d e N), H*(D) represents the standard Sobolev space of order s € N, endowed with
the standard inner product (-,-)s,p, the seminorm ||, ,, and the norm |||, 5. In
particular, H°(D) := L?(D), where L?(D) is the space of Lebesgue square integrable
functions over D and HE (D) is the closure of C§°(D) in the H'(D) norm. Whenever
s is a fractional or negative number, the Sobolev space H®(D) is defined by means
of interpolation and duality. The Sobolev spaces on 0D are defined analogously and
denoted by H*(9D), s < 1.

As is common in space—time variational problems, we shall also use Bochner spaces
of functions mapping a time interval (a,b) into a Banach space (Z, ||-||,), which we
denote by H*(a,b; Z), s€N.

Structure of this paper. In the remainder of this introduction, we introduce the
model problem (subsection 1.1), and a regular sequence of meshes (subsection 1.2).
The new space—time VEM method is presented in section 2. Section 3 is dedicated
to the well-posedness of the method, while in section 4 we present an a priori error
analysis and prove quasi-optimal estimates for the h-version of the method. We
conclude this work with some numerical experiments in section 5 and some concluding
remarks in section 6.

1.1. The model problem and its weak formulation. We are interested in
the approximation of solutions to heat equation initial-boundary value problems on
the space-time domain Q7 := Q x (0,T), where Q CR? (d=1, 2, 3) and T'> 0 denote
a bounded Lipschitz spatial domain and a final time, respectively.

Let f: Q@7 — R denote the prescribed right-hand side. We consider a positive
constant volumetric heat capacity cy and a positive constant scalar-valued thermal
conductivity v. The strong formulation of the initial-boundary value problem for the
heat equation reads: Find a function u: Qp — R (temperature) such that

{cHatu —vAyu=f in Qr;

1.1
(1.1) u=0 on Qx {0}; u=0 on 90 x (0,T).

See Remark 1.2 below for more general initial and boundary conditions.
Introduce the function spaces

(1.2)

Y:=L%(0,T;Hy(Q), X:={veYNnH'(0,T;H () [v=0inQx{0}},

endowed with the norms

2
lolly = |72V

2 2 2
i ol = ”CHatUHL?(o,T;H—l(Q))"’HU”Ya

respectively. Here, we have used the following definition:

7

T
: _ Jo (¢, v)dt
forany 9 in LT H @), 1ol = o0, S
v Y
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where (-,-) denotes the duality between H}(Q) and H~!(Q). Next, we define the
space—time bilinear form b(-,): X x Y = R as

(1.3) b(u,v) = /OT ((cHatu,w + /S2 vVyxu - Vyv dx ) dt.

The weak formulation of (1.1), see, e.g., [7], reads as follows:

T
(1.4) Find u € X such that b(u,v) z/ (f,v)dt YveY.
0

The following well-posedness result is valid; see e.g., [18, Cor. 2.3].

PROPOSITION 1.1. If f belongs to L*(0,T; H-1(Q)), then the variational formu-
lation (1.4) is well posed with the a priori bound

Jull x < 2\/§||fHL2(O,T;H*1(Q))'

Remark 1.2 (inhomogeneous initial and boundary conditions). Given (f,ug) in
L2(0,T; H-1(Q2)) x L?(f2), consider the following problem: find u € Y N H(0,T;
H~1(Q)) such that
(1.5)

T T
/ <(CH8tu, v) Jr/ vVxu - Vxv dx > dt :/ (f,v)dt Vve L*0,T; H-Y(Q)),
0 Q 0

/ u(~,0)wdx:/ upw dx Vw € L2(9Q).
Q Q
The well-posedness of problem (1.5) is discussed, e.g., in [17, sect. 5].

The case of inhomogeneous Dirichlet boundary conditions v = g on 9Q x (0,7T)
can be dealt with by assuming g in H'(0,T; H'/?(0Q)). Denote by G : Q7 — R the
solution to the family of elliptic problems —vAxG(-,t) =0 in Q with G(-,t) = g(-,t)
on 99 for all 0 <t <T. The function G belongs to H'(0,T; H'(2)), since 9;G solves
a similar family of elliptic problems with boundary data d;g in L?(0,T; H'/?(9Q)).

For the case of inhomogeneous initial and boundary conditions, denote by w the
solution to problem (1.5) with source term f—cy0:G and initial condition ug—g(-,0).
Then, u = G 4 w solves the inhomogeneous initial-boundary value problem with data

(f,u0,g). In particular, u belongs to L*(0,T; H*(Q)) N H(0,T; H~1(1)).

1.2. Mesh assumptions. For the sake of presentation, we stick to tensor-
product-in-time meshes. We postpone possible generalization to subsection 2.6 below,
which are important, e.g., for an adaptive version of the scheme.

We consider a sequence of polytopic meshes {7}, of Qr. We require that

(G1) the space domain  is split into a mesh 7;* of nonoverlapping d-dimensional
polytopes with straight facets; the time interval (0,7) is split into N subin-
tervals I, := (tn—1,t,) with knots 0 =ty <1 <... <ty =T, each element K
in 75 can be written as Ky x I, for some Ky in 7;* and 1 <n < N.
Essentially, assumption (G1) states that (i) each element is the tensor-product of a
d-dimensional polytope with a time interval; (ii) each element belongs to a time slab
out of the N identified by the partition {t,})_,; (iii) each time slab is partitioned
by the same space mesh; (iv) all elements within the same time slab have the same
extent in time.

Given an element K in 7, K = Kx x I,, we denote its diameter by hx and

the diameter of Ky by hgk,, and set hy, :=t, —t,—1. We let h:= maxge7, hx and
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hx := maxgerx hi, . Furthermore, the set of all (d — 1)-dimensional facets of Ky is
denoted by F%x, and for any Fy € F%x we define

T min{th,hf(x} if iy = Ky N Ky for some Ky € T,
B e, if Fy C 090,

For d =1, Fx is a point and fo v(x,t)dS is equal to v(Fx,t). For each spatial facet
F, in F%<_ we introduce the time-like facet F := Fy x I,,; we collect all these time-like
facets into the set FX.

We fix one of the two unit normal d-dimensional vectors associated with Fy and
denote it by np, . For d > 1, each time-like facet F' = Fy x I,, lies in a d-dimensional
hyperplane with unit normal vector nr := (ng,,0).

Next, we require further assumptions on the spatial mesh: there exists v > 0
independent of the meshsize such that

(G2) each spatial element K in 7;* is star-shaped with respect to a ball of radius
pK, with hg <~vpgk, and the number of (d — 1)-dimensional facets of Ky is
uniformly bounded with respect to the meshsize;

(G3) given two neighboring elements Ky and Kx of T;*, we have that ’y‘lhf(x <
th < ’Yhf(x.

For a given space-time element K C R**! and any space-like or time-like facet F' C
0K, we denote the space of polynomials of total degree at most p € N on K and F by
P, (K) and P, (F), respectively. For a given time interval I, P, (I) denotes the space
of polynomials in I of total degree at most p in N.

Henceforth, for a positive natural number %, we define the spaces of broken H*
functions over 7, and 7Ty, respectively, by

HY(TX) = {ve L*(Qr) | vk, € H*(Kx) VEx €T} ;
HY(Ty) ={ve L*(Qr)| vix € H*(K) VK € Tp}.

We denote the broken Sobolev k seminorm on 7j by |-, 7, and the space of piecewise
polynomials of degree at most £ in N on 75, by S¢(Tp).

2. The virtual element method. In this section, we introduce a VEM for the
discretization of problem (1.4) based on the regular meshes introduced in subsection
1.2. First, local VE spaces are introduced in subsection 2.1 together with their DoFs.
Based on the choice of such DoF's, in subsection 2.2, we show that we can compute
different polynomial projections of the VE functions. Such polynomial projections
are instrumental in the design of the global VE spaces; see subsection 2.3. Likewise,
in subsection 2.4, we design computable discrete bilinear forms and require sufficient
properties that will allow us to prove the well posedness of the scheme, introduced in
subsection 2.5, as well as convergence estimates. Finally, in subsection 2.6, we present
more general types of meshes that can be used, e.g., in an adaptive framework.

2.1. Local virtual element spaces. We present a VE discretization of the
infinite-dimensional spaces X and Y introduced in (1.2).

Given an approximation degree p € N and an element K = Ky x I, in Ty, we
define the following local VE spaces:

(2.1)
Vh(K) ::{Uh S LQ(K) | Eﬁ@tvh - ;KAXU}L clP,_q (K) » Un|Kyex{tn_1} € P, (Kx) 3

np, - Vawn|p € P, (F) VF := Fy x I, with Fy € fo},

SK . SK . 12
where cpy :=hy, and U™ :=hj .
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The space V3, (K) contains P, (K). The degree p in the Neumann boundary con-
ditions is not necessary for this inclusion to be valid, as p — 1 would be sufficient.
Nevertheless, the degree p is crucial in the proof of the Poincaré-type inequality in
Proposition 2.8 below.

Remark 2.1. Functions in V3 (K) solve a heat equation problem with polynomial
source, initial condition, and Neumann boundary conditions. For this reason, V}, (K) C
L?(I,,; H*(Kx)); see [14, Thm. 4.1 and sect. 4.7.2 in Ch. 3] with standard modifications
to deal with the inhomogeneous Neumann data.

Remark 2.2. As opposed to the standard VEM setting [3], in definition (2.1) we
consider solutions to local problems involving some scaling factors (¢& and 7%). The
reason is that these local problems involve differential operators of different orders.
By using a scaling argument and mapping the element K into a “reference” element
K =T x Kg, with |I.| = dlam(KA) = 1, the resulting reference space consists of
solutions to a heat equation with both coefﬁments equal to 1. This allows us to use
equivalence of norms results when proving the stability of the scheme.

Let {mK}dlm(P” i { g}dlm(P ). and {mfx}iiﬂ@p([{")) be any bases of
Pp_1(K), Py(F), and P ( x)- We introduce the following set of linear functionals on
Vi(K):

e the bulk moments
1
(2.2) —/ / v, mEdx dt Va=1,...,dim(P,_1 (K));
K| Jr, Jx,

o for all space-time facets Fy x I, = F € FX_ the time-like moments
1
(2.3) —/ / op mpdS dt VB =1,...,dim(P,(F));
\F| Jr, Jr,
e the space-like moments
1
(2.4) — / vp (-t )mB=dx Vy=1,...,dim(P,(Kx)).
K| J e, !

Since functions vy, € Vj,(K) are polynomials at time ¢,_;, then the integrals in (2.4)
are well defined. Moreover, the inclusion Vj,(K) C L?(I,,; H'(Kx)) (see Remark 2.1)
implies that the integrals in (2.2) and (2.3) are well defined as well.

We introduce the number of the functionals in (2.2)—(2.4) as

#DoFs :=dim(P, 1 (K))+ Y dim(P,(F)) + dim(P,(Kx)).

In the following lemma, we prove that the linear functionals (2.2)—(2.4) actually define
a set of DoF's for V},(K). For convenience, we denote the set of these linear functionals
by {DOF }# DoFs

LEMMA 2.3. The linear functionals (2.2)—(2.4) are a set of unisolvent DoFs for
the space Vi (K).

Proof. Since the right-hand side and the initial and Neumann boundary condi-
tions in (2.1) are independent of each other, the dimension of Vj,(K) is equal to the
number of the linear functionals (2.2)—(2.4). Thus, it suffices to prove that the set
of these linear functionals is unisolvent. In other words, we prove that, whenever
vy € Vi (K) satisfies DoF;(vy) =0 for all i =1,...,#DoFs, then v, =0.
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Thanks to the definition of the DoFs (2.2) and (2.3), we have
:/ / vy, (Cl 0o — T Agry) dx dt + 0% / / VRN, vah ds dt
I
€P,1(K) FreFr e

~K
C 2 2 ~ 2
=L (Jlon )l e, = on o ta-) 6., ) + 75 V05 -

Furthermore, using the definition of the DoFs (2.4), we have ||vp (-, tn—1) ||3’Kx =0 and
deduce that

17K\|vahH3’K:0 = Vyup,=0in K = v, =u(t).

From the definition of the space V},(K), this implies that O,v;, belongs to Pp_1(I,);
equivalently, vj, belongs to P,(I,,). On the other hand, we know that the moments
(2.3) are zero, in particular when they are taken with respect to monomials up to
degree p in time only. This implies v, = 0. O

2.2. Polynomial projections. Functions in the local VE space V;,(K) are not
known in closed form. However, if we have at our disposal the DoF's of a function
vp in Vi, (K), then we can compute projections onto polynomial spaces with given
maximum degree.

First, for all K = Ky x I,, in T, and ¢ > 0, we define the operator HN :
H2te(I,; L2(Ky)) N L2(I; HY(Ky)) — P,(K) as follows: for any v in H2%e(I,; L2
(K)) N L2 (L HY (K)),

(2.5a) / / qup (1] Mo —v) dx dt=0 qu eP,(K);
(2.5b) / / gp—1( v—v)dxdt—O Vgp—1 €Ppo1 (In);
(2.5¢) / (Hp V(X tn—1) — v(X,tp—1)) dx =0.

x

We have Vj,(K) C L?(I,; H'(Kx)); see Remark 2.1. This and the fact that functions
in V,,(K) restricted to the time ¢,,_; are polynomials entail that we can define H;,V v
also for v in V,(K).

LEMMA 2.4. The operator Hi’)v is well defined. Moreover, for any vy, in Vi, (K),
1Y vy, is computable via the DoFs (2.2)(2.4).

Proof. In order to prove that HZZ,V is well defined, we need to show that the number
of (linear) conditions in (2.5a)—(2.5¢) is equal to dim(P,(K)). As (2.5a) is void for
all ¢ € P, (I,,), we have that the number of conditions in (2.5a)—(2.5¢) is equal to
dim(PP,(K)). We need only show that they are linearly independent.

To this aim, assume that v = 0. Conditions (2.5a) imply that VxHé,vv =0, i.e.,
I1)Yv belongs to P, (I,,). Let L,(-) be the Legendre polynomial of degree p over [-1,1].

Using conditions (2.5b), we deduce that there exists a constant ¢ such that
2 —tp_1—t
o=t (B0,
P b tn —tn-1

Since condition (2.5¢) entails IV o(-,t,—1) = 0 and L,(—1) # 0, we deduce ¢ = 0,
whence HZJ,V v = 0. Therefore, the conditions are linearly independent and so le)v is
well defined.
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As for the computability of II)v), for vy in V4(K), conditions (2.5a) and (2.5b)
are available via the bulk moments (2.2) (up to order p—2) and the time-like moments
(2.3) (up to order p — 1); condition (2.5¢) is available via the lowest-order space-like
moment in (2.4). d

Next, for all K in T, we define the operator ITy : CO(I,; L*(Kx)) — P,(K) as
follows: for any v in C%(I,; L?(Kx)),

(2.6a) /I /K q{il Iy —v) dx dt =0 qu)il eP,_1(K);

(2.6b) /K q{f" (I o(x,th—1) — v(X, tp—1)) dx =0 Vq{f" eP, (Kx).

x

Again, we have Vj,(K) C L?(I,; H' (Kx)); see Remark 2.1. This and the fact that
functions in Vj,(K) restricted to the time t,_1 are polynomials entail that we can
define IT)Y v also for v in V;,(K).

LEMMA 2.5. The operator 115 is well defined. Moreover, for any vy in Vh(K),
[¥vy, is computable via the DoFs (2.2)~(2.4).

Proof. As in the proof of Lemma 2.4, we observe that the number of (linear)
conditions in (2.6a)—(2.6b) is equal to dim(P,(K)). Thus, it suffices to show that
they are linearly independent.

Assume that v = 0. Then, taking g5 = II}v(x, t,—1) in (2.6b), we get I v(x, tn_1)
=0. On the other hand, taking ¢ | = §,II}v in (2.6a), we get

1 N 2 2 1 2
0= 3 (HHPU("t”)Ho,Kx - HH;v('Vt”*l)Ho,Kx) = 5”1_[1;”('7’5”)“0,1(,;
In addition, we observe that

t

- / / v 0plliv dx dt =0.
t=tn_1 I, J Ky ——
EPp_2(K)

This implies that 0;IT5v =0, which, together with IT5v(-,%,) =0, gives that ILjv = 0.
Therefore, the conditions are linearly independent and so I} is well defined.

As for the computability of ITsvy, for vy, € V4 (K), conditions (2.6a) are available
via the bulk DoF's (2.2), and conditions (2.6b) are at disposal via the bottom space-like
DoF's (2.4). |

We introduce other polynomial projectors: for all K in 7, and v in L?(K),

H@tH;vHé,K:/K v (x,t) 1 v(x, t)dx

x

I L2(K) = Py (K), (@ v =T )0k =0 Yg&, ePy1(K);
for each temporal interval I,, and v € L?(1,,),
I L(1,) = Ppoi(Ln), (g, v —T0"50)or, =0 Vg, € Pyoi();
for each spatial element Ky and v € L?(Ky),
MM L2(Kx) =R, (qo,v— g™ 0)o k, =0 Vo €R;
for all time-like facet F' and v in L?(F),

07 L2(F) = Py(F),  (qp ,v—T0F0)or=0 Vg, €Py(F).
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Given vy, in V4 (K), the computability of the above projectors applied to vy, follows

from the definition of the DoFs (2.2)—(2.4). The projector Hg’f(l induces the global
piecewise L? projector Hg’_QlT over Tp.

The following polynomial inverse inequalities are valid.

LEMMA 2.6. For any p € N, there exist positive constants criy and cry indepen-
dent of hy, and hi, such that, for all ¢, in P,(K),

2 2 2
HQPHO,K + h%(xHquPHO,K + hi”atQPHO,K

(2.7) 9 2 0,1 2 0,K. 2
<cny (thVx%o,K + HHPLE%HO,K + h,, ||y xqp("t"_l)Ho,Kx>
and
2 2 2
lanlly e + e, [ Vcally i + 13, [0eaplle 1
(2.8)

2
2
ol ).

0,K
< Iy ("Hp;1Qp 0

Proof. The assertion follows from the regularity of the spatial mesh in assumption
(G2), the fact that the functionals on the right-hand side of (2.7) and (2.8) are norms
for P, (K), and the equivalence of norms for spaces of polynomials with fixed maximum
degree. 0

The presence of the subscripts appearing in the inverse estimate constants cny
and ¢y is to remind one that the norms on the right-hand side of (2.7) and (2.8) are
induced by the definition of the operators Hg and II7.

2.3. Global virtual element spaces. We construct the global VE spaces in
a nonconforming fashion. To this aim, we introduce a jump operator on the time-
like facets. Fach internal time-like facet F' is shared by two elements K; and K
with outward pointing unit normal vectors ng, and ng,, whereas each boundary
time-like facet belongs to the boundary of a single element K3 with outward pointing
unit normal vector ng,. We denote the d-dimensional vector containing the spatial
components of the restriction of ng, to the time-like facet F' by nij. Then, the
normal jump on each time-like facet F' is defined as

(2.9) K

V), N +vg,nf,  if Fis an internal face;
[v]f:= ! 2
VR N, if F' is a boundary face.

On each time slab I,,, we introduce the nonconforming Sobolev space of order p
associated with the mesh 7;*:

HY" (T, 1) o= {v € Ly (I; H'(TY)) ’

(2.10)
//qf[[v]]F-andetzo queIP’p(F)}.
I, JFyx

This allows us to define the VE discretization Y, of the space Y in (1.2) as the
space of functions that are possibly discontinuous in time across space-like facets and
nonconforming as above in space:

Y = {Uh GLQ(QT) | Vh|K € Vi(K) VK €T,

vh|7—hx><[n c Hl,nc(r]—gc;[n) VYn = 17“ . 7N}'
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The functions in the space X in (1.2) are continuous in time, namely,
(2.11) X = C°([0,T); L*(2));

see, e.g, [22, Thm. 25.5]. Nevertheless, we discretize it with Y}, as well, and impose
the time continuity weakly through upwinding. As functions in the local VE space
Vi (K) are not known at the local final time ¢,,, the upwind fluxes are defined in terms
of the traces of their polynomial projections IL3; see (2.22) below.

Remark 2.7. Due to the choice of the DoFs, one cannot define a continuous-in-
time discretization of X with the local spaces V},(K). If this were possible, then each
VE function on K = Ky x I, would be a polynomial of degree p at the local final
time t,. For general choices of the right-hand side, initial condition, and boundary
conditions in (2.1), this cannot be true.

2.4. Discrete bilinear forms. On each element K, define the local continuous
bilinear form in V,(K) x V3 (K) and seminorm

2
a® (up, o) = v(Vun, Vavn)o.x, \vh|y(K) = a (v, ).
Next, we prove a local Poincaré-type inequality.

PROPOSITION 2.8. If vy belongs to Vi (K), K = Ky X I,, then |Uh|Y(K) =0 if and
only if vy, = vp(t) belongs to P,(I,). Moreover, there exists a positive constant CK
independent of hy, and hg, such that

(212) qteglf(l )H“h_q1t7’|0,;< <OPh |\ Vxonllox  Von € Va(K).

Proof. If vy, belongs to Vi (K) with [|Vxvplly (g = 0, then vy = vy (t). The
definition of V4, (K) in (2.1) implies that O,v;, belongs to Pp_1(I,) or, equivalently,
that vy, belongs to P,(I,,). The converse is obviously true.

Inequality (2.12) follows from the equivalence of seminorms with the same kernel
on finite-dimensional spaces and the scaling argument in Remark 2.2. ]

We define Y (7) := L?(0,T; H' (7;¥)) and introduce the global broken seminorms

for almost all ¢, |v(~,t)|ifr’f = > V()5 ks
Kx€T;x

T
2 2 2
o = [ GO et = 3 ol
0 KeTs
PROPOSITION 2.9. The seminorm ||y (z. | is a norm in Yy, .t

Proof. Given vy, in Y}, we need only prove that \Uh|y(Th) =0 implies vy, =0. The
identity |vp|y(7;) =0 implies that |vp|y ) = 0 for all elements K = Kx X I,,. Using
Proposition 2.8, we deduce that vy | only depends on time and belongs to Py (1)
The assertion follows using the spatial nonconformity of the space Y} (see (2.10)),
which is up to order p. ]

On each element K in 7y, K = Ky X I,,, let
SE Vi (K) 4+ L*(I,; H (Ky)) N CO(I; L*(Ky))* = R

1n fact, HY(T;L) is a norm on Y + Y. So, for arguments in Y + Y}, we shall denote it by
-y -
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be any symmetric positive semidefinite bilinear form that is computable via the DoFs
and satisfies the following properties:
e for any v, in V,(K)Nker(IL)'), we have that

(2.13) S¥(onon) =0 = =0

e the following bound is valid with a positive constant ¢* > 0 independent of
h]n, th, and K:
(2.14)

SK (v,0) < & (h;(i 10]12 ¢ + V0|2 + B2 h2, ||8tv||§7K) Vo e HY(K).

Property (2.13) implies that S¥(-,-) induces a norm in V;,(K) N ker(Hév). Another
consequence of (2.13) and the scaling argument in Remark 2.2, is that there exist two
constants 0 < ¢, < ¢* independent of K such that

(2.15) c*\vhﬁ/(K) <vSE (v, vp) Sc*\vhﬁ,(K) ‘v’thVh(K)ﬂker(HéV).

In fact, the functional ||y 4 is a norm on Vj,(K) N ker(IL).
We define the discrete counterpart of the local bilinear forms a€ (-, ):

(2.16) ak (up,vp) = aK(HéVuh, H]]D\Ivh) +vSE((I - H]])V)uh7 (I-— H;}V)vh).

LEMMA 2.10. Property (2.15) implies that there exist two constants 0 < a, < *
independent of K such that the following local stability bounds are valid:

(2.17) aulonly iy < ak (Un,vn) S @ funlS ) Yon € Va(K).

Proof. We only show the upper bound as the lower bound follows analogously
leading to «, :=min(1,c,). We have

2
al (v, o) = yHVxHéVvhHOK +vSE((I— H;V)vh, - H}],V)vh)
Ny |2
(I - 1L, )”h’y(x)

<max(1,c") (’Hév”h’i(m + (1= Hfjﬂv)vhﬁ/(K)) '

< }Hz])\]“h’i(m +ct

Pythagoras’ theorem implies
ar (vp,vp) < max(l,c*)\vh\i(;{).

This proves the upper bound in (2.17) with o* = max(1,c*). 0

The global discrete bilinear form associated with the spatial Laplace operator
reads

ap(up,vp) = Z a{f(uh,vh) Yup, vp €Y.
KeTy,

Taking into account Proposition 2.9, an immediate consequence of (2.17) is the global
stability bounds

2 x 2
(2.18) o [vnlly 7,y < an(vn,vn) < a*[lonlly (7, Yup, € Y.

For sufficiently smooth functions, we have the following upper bounds.
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PROPOSITION 2.11. For all v in H'(Ty,), the following local and global bounds are
valid: for all K in Ty,

a¥ (v,v) < 3max(1,¢*)v (1+(1+Ctr)cn;y)

- 2 2 - 2
(2.19) S (A e et A
and
an(v,v) <3max(1l,c")v <1+(1+Ctr)0n;]v>

— 2 2 — 2
30 (W20 s+ 10l s+ RiERE 1000l i)
KeTh

(2.20)

where ¢ is the stability constant in (2.14), v is the thermal conductivity, cy,. is the
constant appearing in the elemental trace (in time) inequality, and ey is the inverse
estimate constant in (2.8).

Proof. The stability of the Hév projector entails

o (1) 0, 1) 0) = | VI ol o < vVl
Using definition (2.16) and bound (2.14), we deduce that
(2.21) ak (v,v) = aK(HIJ)Vv, Hf,vv) +vSE((1 - HIZ)V)U, (I - Hév)v) <max(1,¢")v
X (V01 s + B2 =)ol e+ V(T =T Y0
I, 0T =T )
Using the polynomial inverse estimate (2.7) with ¢, = H;V v, we can write
sl [ AR P (e P Pl [0

atH?”Hi,K)

2
0,Kx 1N
e,

=ik (Y ollg i + Pl Vg + 1,

2
”Ho,K

2
ol N2 0,K N
<cnyhy, <th||Vpr vHO,K + HHP_al vHo.K +hi,

The definition of HZI,V , and the stability of the L? and HZI)V projectors entail

MY g e + 1T ollg i+ hiZhd, DT ol

2
oCota 1))

Applying a trace inequality along the time variable (with constant c;.) on the last
term yields

hi |15

2
’UH07K

_ 2 2
< ey hi? (e IV<0l s + 101G 1 + P,

2 2 _ 2
U”OJ{ + HVXHéVUHO,K + hKih%n HatHéVUHo,K

- 2 2 - 2
<(1+ Ctr)cng)’ (hKi”UHO,K + ”VXUHO,K + hKih%n ||8tv||o,K) :

We insert this bound into (2.21) after applying the triangle inequality and obtain
(2.19). Adding over all elements gives (2.20). 0

Here and in the following, for a given v in L?(Qr), we shall write

v = Vn=1,...,N.

vlsz><1n
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For all up, v, in Y, and K in 7}, K = Ky X I,,, we set

(2.22)
e (O un, v )o,x + afy (un,vn)

—&-CH(HI*,u,(ll)(-,O),U,(ll)(-,0))0K if n=1;

K .
bh (uhvvh) = CH(atH;Uh,Uh)QK+GFIL{(Uh,Uh)

+cH(H;u;"> Cytne)=T0u ™ (), 00 tn_l)) if 2<n<N.
The bilinear form b (-, -) is computable through the DoFs. Actually, H;ugn) (tn_1)=
uﬁln)(~7tn,1) for 1 <n < N by the definition of II; in (2.6) and the definition of the
local VE spaces.

We define the discrete counterpart of the global bilinear form b(-, ) introduced in
(1.3) as follows:

(2.23) b (up,vp) = Z bf(uh,vh) Yup, vy € Yy,
KeTn

The third terms in the definition of b (up,vs) in (2.22) stand for upwind fluxes for
the weak imposition of the zero initial condition for n =1, or of time continuity for
2<n<N.

2.4.1. An admissible stabilization. Consider the following stabilization for
K=Ky x I,:

SK (uh, ’Uh) = hl_(i (Hg"_Kluh, Hg’_Kl’Uh)(LK + hl_(i Z (Hg’Fuh, Hg’FUh)(LF
(2.24) P

+ h;(ihln (un(-stn—1),v (s tn—-1))o K, -

This bilinear form is computable via the DoF's.

PROPOSITION 2.12. The stabilization in (2.24) satisfies properties (2.13) and
(2.14).

Proof. Property (2.13) follows from the fact that S (vj,,v),) involves the squares
of all the DoFs. Furthermore, property (2.14) follows from the stability of the
L? projectors and the trace inequality applied to the time-like and space-like facet
terms. 0

As pointed out in subsection 2.4, property (2.13) and the scaling argument in
Remark 2.2 imply that property (2.15) is satisfied as well.

2.5. The method. The VEM that we propose reads as follows:
(2.25) Find up, € Y}, such that by, (up,vp) = (f, Hg’_Qlth)o,QT Yo, €Y.

The projector Hg’_QlT makes the right-hand side computable and is L? stable, which
is used in the proof of the well posedness of (2.25) in Theorem 3.3 below.

Under assumption (G1), the method can be solved in a time-marching fashion
by solving the counterpart of (2.25) restricted to the time-slab I,,, forn=1,...,N —
1, and then transmitting the information to the subsequent time-slab I,,;1 through
upwinding.
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FiG. 1. (a) Left panel: a mesh satisfying assumption (G1). (b) Central panel: a mesh with
nonmatching time-like facets. (c) Right panel: a mesh with nonmatching space-like facets.

2.6. A glimpse on more general meshes. The reasons why we required as-
sumption (G1) is that it is easier to present the construction of the VE spaces. We
refer to Figure 1(a) for an example of an admissible mesh in the sense of (G1). We can
weaken this assumption along two different avenues: we can allow for the following:

e nonmatching time-like facets; see Figure 1(b);
e nonmatching space-like facets; see Figure 1(c).

These generalizations are particularly convenient for space—time adaptivity, where
nonmatching time-like and space-like facets typically occur. In the definition of the
corresponding VE spaces, a few modifications would take place. In the case of non-
matching time-like facets (as in Figure 1(b)), VE functions have piecewise polynomial
Neumann traces. Nonmatching space-like facets (as in Figure 1(c)) have no effect on
the definition of the local VE spaces; see [11] for more details.

3. Well posedness of the virtual element method. In this section, we prove
well posedness of the method in (2.25). To this aim, we endow the trial space with a
suitable norm, which is defined by means of a VE Newton potential; see subsection
3.1. In subsection 3.2, we prove a discrete inf-sup condition. This proof extends that
of [18, Theorem 2.1] to our setting, where multiple variational crimes have to be taken
into account.

Before that, we prove a global Poincaré-type inequality for functions in the space
Y.

PROPOSITION 3.1. Let assumptions (G1)-(G2) be valid. Then, there exists a
positive constant C'p independent of the mesh size h such that

(3.) lonlo.qp < Crllonlyery  Von €Y.

Proof. It suffices to prove the counterpart of (3.1) over each time slab I,,. On
any time-like face F, we define the scalar jump [v,] as [vp]p - np.? We start from
the spatial Poincaré inequality in [5, eq. (1.3) for d > 2 and sect. 8 for d = 1] with
constant cpp and integrate it in time over the time slab I,:

2
onlB s, Sern (0 IVl 3 0! [ ( / [{vhﬂds) dt

KeTh, KCQxIn, FeFj

For d =1, the integral over the point Fy is the evaluation at Fy.
To conclude, we have to estimate the second term on the right-hand side. To this
aim, we prove estimates on each time-like facet and then collect them together. For

2We have that [-] is a scalar function whereas [ defined in (2.9) is a vector field.
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simplicity, we further assume that F = Fy X I, is an internal (time-like) facet shared
by two elements K1 = Ky 1 x I;, and Ka = Ky 5 X I5,. The case of a boundary time-like
facet can be dealt with similarly. Recall from the nonconformity of the space Y}, (see
(2.10)) that I [v,] = 0.

Using Jensen’s inequality, we write

h! /, (/F [[vh]]ds)zdt < /, /F [vn]2dS dt =||[oa] — TS [op] |, -

Denote the L? projection onto P,(I,,) of the restriction of vy to K by ¢/, j=1,2.
Let qp be defined on K; U K5 piecewise as qp| =¢%, j =1,2. A standard trace

inequality in space with constant c¢;., and the local Pomcare inequality (2.12) give

2
hy! /1 ( /F [0:14S) b < oy (o — abl12 e, + P | TCon — )2
i o = a5 e, + ool Vx(on =) )

2
<24, (Ir&a% cf§> (hics e [[Fc0n = a1 s, + oo | Vo = @[5 1, )

2 2
< 2¢4y (Ir(rlea%zCII;.() max(hg, ., hK, ) Z||vah||(2)7Kj.

Summing over all the time-like facets of the nth time slab and recalling that the
number of (d — 1)-dimensional facets of each Ky is uniformly bounded with respect
to the meshsize (see assumption (G2)), we get the assertion. d

3.1. A virtual element Newton potential. We define a VE Newton potential
Ny, : Sp(Th) — Y, as follows: for any ¢, in Sp(7r), Mp¢y in Yy, solves

(3.2)
an(Nndn,vn) = bn(dn,vn) — an(dn,vn)

—cn [<at¢h,vh>o,QT (002 o)

+ Z <¢h tn—1) ¢§1”71)(~,tn_1),v,(1”)(-,tn_1))0 Q} Vop € Y.

Thanks to the stability bounds (2.18), the bilinear form ap(-,-) is continuous and
coercive, and the continuity in the Y'(7,) norm of the functional on the right-hand
side of (3.2) follows from Proposition 3.1. Therefore, the VE Newton potential is well
defined.

We introduce the following norm on the sum space X + Y},: for all v in X 4 Yy,

2

2 2 * 2 CH *
90 2= Pl ey + [0 [ + B (e 0

(3.3) N o - 2 . 2
*,,(n * . (n— *
e 3 m —m ef] + fen])

Recalling the embedding X < C°(0,T; L?*(2)) in (2.11), we have that IT% in (2.6) is
well defined for functions in X. In section 4 below, we shall present the convergence
analysis of the method with respect to the ||-[| x (7, ) norm.
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3.2. A discrete inf-sup condition and well posedness of the method. In
this section, we prove a discrete inf-sup condition in the spaces (Y, |||l X(Th)) for the
trial functions and (Y4, |[-[ly-(7;)) for the test functions.

PROPOSITION 3.2. There exists a positive constant vy independent of Ty, such that
bp(up, vp
(3.4) sup On (un, vn) Z1lunll x () Yup, € Yy,
0£v,EY), ”Uhuy(Th)
Proof. For any uy, in Y}, define wy, :=MNy, (H;uh) in Y},. It suffices to prove that
by (up, up + dwy)
llun + dwnlly (7,

= yillunll x (7,

for a suitable real parameter J > 0, which will be fixed below.
The triangle inequality and the definition of the norm ”'HX(Th) in (3.3) imply

||Uh+5whuy(”r, (||uh||y(T,)+5 ”wh“Y(T)) < 2max(1,6” )||Uh||x(7',)7

whence we deduce

(3.5) l[un + Swhlly () < V2max(1,6)[lunll x (7, -
Next, recalling (2.23) and (2.22), we write
2
bn(un,up) = Z (cr (O un, un)o, i + ap (un,un)) + CHHH;US)(HO)HO o

KeTsn

(3.6) x
+CHZ (H;ugzn ( n— 1) H* ( )('7tn*1)7u2n)('7tn*1))
n=2

0,
For K = Ky x I, we have
(O un, Yok = (BT, T5up Yo,k
=5 (Jmuce])

By (2.6b), we have u%n)(-,tn,l) = H;ug")(~7tn,1). Simple calculations give

0,Kx

_”H* (m)( tn_l)H2 )

2
Z (atH;umuh)o,K + HHZUS)(7O)H
KeTh

5 -t )

0,0

0,Q

2

Ly, (n) SR | ) 2 ol
—Z(J%%CMJM—JMMW¢WW +ma ol

* 2 x (n—1 *x (n
+ Z <HH uh bn— 1)HO,Q B (Hpué )('7tn—1)’Hpu§1 )("t"_l))o,a

x (1 2 n % (n—1 2
QHH () ’O)HOQ QH () Htn1) = Mpu ( )(’tn_l)Hosz
1 (V) 2
+ﬂbwhﬂfwm-
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Therefore, from (3.6) and (2.18), we get

p

c *
br(un, un) ZO‘*HuhH%/(Th) +== (‘ 11 Ugll)("o)H

2 0,0

Sl > (n) (n—1) 2 (N) 2
+ 3 @t - ) o+ [T ).
~ : :

Moreover, the definition of by(+,-) in (2.22) and (2.23), and the definition of the VE
Newton potential in (3.2) imply
(3.8) br(un, dwp) = 0 (an(wn, wn) + an(up, wp)) -

Since (2.18) gives ap(wp,wp) > a*||wh||§,(n), then Young’s inequality entails, for all
positive ¢,

1
2

an(unswn) > — (an(un,up))? (an(wp, wp))

= =" ||lunlly (7 llwnlly (7,

*
> ﬁ|
- 2

o 2 2
2*6||uh||y(n) - [wlly (7,

Inserting the two above inequalities into (3.8) yields

a*e

2 a*d 2
(39) (a6 26 (= 25 ) i~ Gl

As a final step, we sum (3.7) and (3.9):

bh(uh, up + (5U)h)
a*d 2 a*e 2
> (e = 520 ) Honlf iy + 8 (0 = 557 ) Hunlf

N
cn (1) 2 ., (n) (n—1) 2
U (LGOI R Y LT CLRVES 47 sl GV

n=2

v
+anuh (~T) 07Q>'

Taking 0 < e < (2a.)/a* and 0 < 0 < (2, ) /o, defining

) a*d a’e
[ :=min (a* — ?’5 (a* — 2)) >0,

and recalling (3.3) and (3.5), we can write
bh(uh, up + 5wh)

2 2 CH 1 2
> B (lunlls iy + lwnly ey ) + = (| Ius ,0)
2

0,0
Y e, () . (n—1) 2 « (N) 2
S - e+ k)

n=2 ’

0,2
) 9 min (1, 8)
>min (1, 8) lunlx 7,y > m”“h”)«m

un + 5wnlly (75

The assertion follows with v := min (1, 3) /(v/2max(1,d)). |

We are in a position to prove the well posedness of the method in (2.25).
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THEOREM 3.3. There exists a unique solution uy, to the method in (2.25) with the
following continuous dependence on the data:

lunllx () <77 Cov™ I f oo

where vy is the discrete inf-sup constant in (3.4), Cp is the Poincaré-type inequality
constant in (3.1), and v is the thermal conductivity.

Proof. The discrete inf-sup condition (3.4) implies uniqueness of the solution.
The existence follows from the uniqueness, owing to the finite dimensionality of Y.
As for the stability bound, we apply again the inf-sup condition (3.4) and recall the
definition (2.25) of the method:

0,
1 bh(uh,vh) o 1 (fa Hp—QlT'Uh)QQT
lunllx () < — su =, 5
V1 otveevn lvnlly 7y V1 ozvnevn  llonlly (7,

The Cauchy—Schwarz inequality, the L? stability of Hg’_QlT, and the global Poincaré-
type inequality (3.1) give the assertion. O

4. Convergence analysis. In this section, we analyze the convergence of the
method in (2.25). We start by introducing further technical tools in subsection 4.1,
which are typical of the nonconforming framework. Then, in subsections 4.2 and 4.3,
we develop an a priori error analysis in two steps: first, we prove a convergence result
a la Strang; next, we derive optimal convergence rates, by using interpolation and
polynomial approximation results, assuming sufficient regularity on the solution.

4.1. Technical results. Introduce the bilinear form N}, : L? (O,T;H%"rs (Q)) x
Y, — R given by

(4.1) N (u,vp) ::1/2/1 Z /vau- [vn] p dS dt.

n FyeFy

This bilinear form encodes information on the nonconformity of the space Y}, across
time-like facets.
On K =1, x K, define the local bilinear form

b5 (w, v) ::/ / (caOpw v+ vVxw - Vxv) dx dt.
I J Ky

LEMMA 4.1. Assume that the solution u to the continuous problem (1.4) belongs
to L2(0,T; H3<(Q)). Then, for all vy in Yy,

(4.2) > 05 (wvn) = (f,00)0.0r + Na(u,vn).
KeTh

Proof. Integrating by parts in space and recalling the definition of A}, in (4.1),
we can write

Z bK(u,vh)

KeTy

= Z/ (/ (caOiu — vAxu)vpdx +v Z /vh(npx-vxu)d5>dt
I, Kx Fx

KeTn Fy e FKx
= (f,vn)0,Qr + Nn(u,vn),
which proves (4.2). |
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We introduce another preliminary result, which characterizes the polynomial
inconsistency of the method in (2.25). To this aim, we define the bilinear form
JE HYTy) x Y — R given on each K = Ky x I,, in T, as follows: for all w in
Hl('ﬁl), Uh in Yh,

(4.3)

cH (H;w(l)(-,O),v}(})(~,0))0K if n=1;

CH <(H;w(”)—H;w(”*1)) (~,tn,1),v,(ln)(-,tn,1)) if 2<n<N.

s

jK(wa Uh)::

This bilinear form encodes the polynomial inconsistency of the method at space-like
facets, as stated in the following lemma.

LEMMA 4.2. The local bilinear forms bf (-,-) satisfy
(4.4) th(QPth) = bK(Qpavh) + jK(Qp’Uh) Vayp € Sp(Th), Yon € Vi (K), VK € Tp.

Proof. Thanks to the definition of the bilinear form a(-,-), the orthogonality
properties of the projector Hf,v , and the fact that the projectors I and sz,v preserve
polynomials of degree p, we have

th(QZHUh)

= e (0013, va)o, k +a™ (I g, T v )+ 0S5 (T =11 )y, (I —T10 op )+ T X (1T, vn)
=cr (0013 qp, v)o.x + a” (g, T vp) + T ¥ (g, vn)

= cn(9edp,vn)o, Kk + aK(qu vp) + jK(qz)a vp) = bK(qz)a vp) + jK(‘Jpa ).

This completes the proof. 0

4.2. A Strang-type result. We prove an a priori estimate for the method in
(2.25).

THEOREM 4.3. Let u and uyp be the solutions to (1.4) and (2.25), let u belong to
X NL2(0,T, H2(Q)) for some e >0, let uy inY), be the DoF interpolant of u in Yy,
and let y; be the discrete inf-sup constant appearing in (3.4). Then, we have

(4.5)
lu—unllx(7,) < llu—urlly )
. |(f =TS Foon)ogrl | [NGu(u,vn)]
0#vp €Yy, thHY(Th) ||Uh||y(n,)
L mf ZKeT: (b (u = gp,vn) = 0% (u — gp,vp) + T ™ (gp, vn))
ap€Sp(Th) [onlly (73,

Proof. By the triangle inequality, we have

lw—unllx 7, < llu=uvrllx )+ llur = uall x 7,y = T2 + T2

Since I} is computable from the DoFs, we have that H;(u —uy) =0 in each element.
Taking into account (3.3), this yields

72 = u— sl + 90 (= un) [ ) + L2 (30— un) O,
N 2
+ 3 [ =) o) T =) )| = a5 )
n=2 ’

2
=ju— UIHY(Th)'
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The rest of this proof is devoted to estimate the term T5. The definition of u; implies

bh(ul,vh):bh(u,vh) Yo €Y.
Using this property and the discrete inf-sup condition (3.4), we get

_ bp(ur — up, vp _ by (u — up,vp
fur — il <5t sup Pttt gy, Dl o)
(Tw)
ozvney,  lvnlly(r) ozvnevn  lvnlly(z,)
We recall (2.25), add and subtract any ¢, in S,(7},), use the inconsistency property
(4.4), add and subtract u, recall the property of the nonconformity bilinear form
Np(+,+) in (4.2), and deduce that

bh(u - uhavh) - Z bi[f(uvvh) - (fa HgfngUh)&QT
KeTh

= Z (th(u_anvh)+th(QPaUh)) _(fvngLQlTUh)O,QT
KeTn

= > (b (u—gpyon) + 5 (gp,vn) + T (gp,v0)) = (£T1) % vh)0.0r
KeTy

= > (b (= o) + b5 (g — w,vn) + 65 (w,0) + TX (g vn)) = (£ 1105 000,
KeT,

= Z (b (u=gp, vn)—b" (u=gp, vn)+T ™ (4p, v1)) +(f—H2LQ1TﬁUh)o,QT-H\/h(U,vh).
KeTy

The assertion follows from taking the infimum over all g, in S,(75) and then the
supremum over all vy in Y. O

4.3. A priori error estimate. The aim of this section is to prove optimal
convergence rates for the method in (2.25). So far, we derived all estimates with
explicit constants, so as to track the use of different type of inequalities (Poincaré,
trace, inverse estimates, ...). Furthermore, we kept separated the contributions of
hx, and hy,. In this section, we shall not keep this level of detail. As a matter of
notation, we henceforth write a < b meaning that there exists a positive constant ¢
independent of the meshsize, such that a < cb. We also write a ~bif a <band b<a
at once.

We prove error estimates under some regularity assumptions on the exact solution
and focus on the case of isotropic space—time meshes, i.e., assume that

(4.6) hi,~h;, ~hg VK =Ky xI,€Th.

In Theorem 4.3, we proved that the error of the method in (2.25) is bounded by the
sum of four terms of different flavour: (i) a VE interpolation error; (ii) a term involving
the discretization of the right-hand side f; (iii) a term measuring the spatial noncon-
formity of the discrete space; (iv) a term involving polynomial error estimates, which
appears because of the temporal nonconformity and the polynomial inconsistency of
the discrete bilinear form. Based on that result, we prove the following theorem.

THEOREM 4.4. Let assumptions (G1)-(G8) be valid, and let Ty, be isotropic in the
sense of (4.6). Let u, the solution of (1.4), and f, the right-hand side of (1.4), belong to
HPYY(T,) and HP(Ty,), respectively, where p > 1 denotes the degree of approzimation
of the method in (2.25). Let up be the solution to (2.25). Then,

(4.7) lw = unllx 7y S B ([lpir 7, + 1 f1p7)-
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Proof. We estimate the four terms on the right-hand side of (4.5) separately. The
assertion then follows by combining the four bounds we provide below.

Part (i) VE interpolation error. For any ¢, in S,(75), the triangle inequality
implies
(4.8) flu— ul”Y(Th) <lu-— ‘I;D|y(7-h) +lap — UI|y(7—h)~

We focus on the second term on the right-hand side. For any K in Ty, (g, — u1)|,
belongs to V,(K). Therefore, the stability bounds (2.17) entail

2
|qP*uI|y(K)gahK(QPful,quuI) VK € Th.
Since uy is the DoF's interpolant of u and ay(+,-) is computed via the DoFs, the above
inequality also implies
2
lap — U1|y(7h) S an(qp —ur,gp —ur) = an(qp — u,qp — u).
Furthermore, using the discrete continuity property (2.20), we arrive at
2 2 2 2
gy = il S D (MR = gl e + e =gl )
KeTh

Inserting this into (4.8) and using standard polynomial approximation results yield

flu— UI”y(T,I) S hp‘“|p+1,7'h~

Part (ii) Handling the variational crime on the right-hand side f. Using
the definition of H291T7 standard polynomial approximation estimates, and the global
discrete Poincaré inequality (3.1) entail

0, 0,K
(F =TS foodor < 3 |[F =T lonllo e S P71
KeTy ’

p7illVnllo. oy

Shp|f|p,7*hHUh||y(71)-

Part (iii) Handling the variational crime of the time-like nonconformity.
We estimate

sup Wi (u,on)| su |VEF€}'h f]n fo Vixu - [op] pdS dt|
0#v,EYr th“Y(Th) 0#v, €Yy, HU}Z”Y(Th)

We present estimates on a single facet F' = Fyx x I,. For the sake of simplicity,
we assume that F' is an internal time-like facet shared by the elements K7 and Kos.
Using the definition of the spatial nonconformity of the space Yy, (see (2.10)) and the
properties of L? projectors, for all ¢i', ¢* in P,(I,,), we write?

/ / Vit [[vh]]Fdet’ = / / V- np, [[Uhﬂdet’
I, J Fy I, J Fy
/ / (qu~l’lpx 7H2’F (qu-npx)) [[’Uhﬂdet‘

I, J Fy

=|[ [ @enn =1 Trem)) (0n1, = 057~ (g, — af) st
I, JFy

3Here we use the scalar normal jump [-] defined in the proof of Proposition 3.1.
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Next, use the Cauchy—Schwarz inequality, the triangle inequality, standard properties
of the L? projector, a trace inequality, the local quasi-uniformity of the space-time
mesh, and arrive at

xU - [op] pdS dt‘

< Hvxu ‘Nnp, — Hg’F (Vxu- an)HL?(F) <

t,2
Vh|p, ~ 4p ’ + th\xl 49

t,2
(b

L2(F)

<HV (U7Hp+1 u)~an L2(F)+ Vhlg, — dp
S (hies |u =045 hSe, [u— 0Ky )
~ < Ky |Y p+1 U Y (K1) + p+1 34e K,
1 . 1
(5 (w1, 1 o))
j=1,2
An application of (2.12) yields
xu [[Uh]]Fdet‘
0,K e+3 0,K
(‘u—Herllu Y(K1)+h 2 —Herllu sie Kl) Z |Uh‘y(K)

7=1,2

Summing up over all the elements and using approximation properties of the L2
projector, we eventually get
Ni(u,v
sup [Nh(u, vn)| < hP|ul

ozoneYi 1vnlly (7, P

Part (iv.a) Polynomial approximation error of b¥(-,-) type. Let g, be in
Sp(T). Using the Cauchy—Schwarz inequality twice and the definition of the bilinear
form b¥(-,.) give

bK(U_(IPth) =CH (8t(u_‘Ip)vvh)o,K + v (Vx(u—gp), vxvh)O,K
S‘u_th,K( )-

Summing up over all the elements, using an ¢ Cauchy-Schwarz inequality, and re-
calling the global Poincaré-type inequality (3.1), we can write

(4.9) Z bK(uqu)arUh),S |U7QIJ‘17T,,L||Uh||Y(77L)'
KeTh

Part (iv.b) Polynomial approximation error of bf(-,-) + J¥(-,*) type.
Thanks to definitions (2.22) and (4.3) on each element K = Ky X I, in Ty, for all v,

in Y}, we have
(4 10) th(U - Qvah) + jK(Qpavh) = CH(atH;(u - QP)avh)O,K
+ag (u— gy vo) + T (u,0n),

where ¢, is the same as in Part (iv.a). We first focus on the second term. Using the
stability bound (2.17) and the continuity property (2.19) with hx, ~ hy, , we arrive at

n?
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1 1
af (1= gy vn) < aff (u—gp,u = gp) Faff (vn,01)’
S (R = gl e + 1 = gl e ) lonly gy

Next, we deal with the first term on the right-hand side of (4.10). The Cauchy—
Schwarz inequality yields

(8tH;(u - QP)aUh)O,K < HatH;(U - ‘JP)HO’KHUh”o,K'
A polynomial inverse inequality gives
(4.11) [| 0115 (u het |15 (u

_qp)HO,KS _qp)HO,K'

By using (2.8), the definition of IT}, the stability of the L? orthogonal projection, and
the trace inequality, we arrive at

(4.12)

L
7HHP 1 U*‘I;D)H ||H0K (u—ap)(stn—1 ||0K
<u— qp||0K+hKH(U ) (s tn-1)llo x,
= HU7QP||O,K+hK|u7qP|1,K'

Therefore, we obtain

(O3 = gp) o )o,ie S (P = aplo e + 1w = ply i ) ol e

Finally, we estimate the third term on the right-hand side of (4.10). Since the initial
condition u(-,0) is zero, J¥ (u,vs) =0 if n=1. So, we consider the case n > 2:

T (uy0n) = e (L™ (1) = T (1), 08 (o tae1))o, i
<h2 <H n 1) H;u(n)(atn—l)‘

0,Kx

. s T I =3, (n) .
+ U'( 7tn—1) Hpu (7tn—1) 0K hK Uy, (;tn—l)

0,K,

Proceeding as in Proposition 2.12, it is possible to show that

h2||lv

("t”*)Ho . S [only (k)

)

Thus, we can focus on the two terms involving u. As for the first one, we use a trace
inequality along the time direction, add and subtract the same g, as above, recall
that 1L preserves polynomials of degree at most p, use the triangle inequality, apply
the polynomial inverse estimate (4.11), and get

hi + |0

(e tn) = T ()| % = T

o,k
< ||U - QPHQ KT hKuat(u —4p

<llu=gpllo i + P[0 (u —

lo s + T (w = ap) | e + P[0Ty = ap)]
HO,K + HH;(U - qp)HO,K'

)
qp)
Next, we apply estimate (4.12) and get

1
2
hK

ulrtn) =M™ ot )| Sl gl s + hacu = gl
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For the second term involving u, we proceed analogously. Setting K’ := Ky x I,,_1
and using the local quasi-uniformity of the space-time mesh, we get

1
2
hK

WCstn) =Tu D tun)|| Sl =apllg oo+ ool = gyl e

s M

Summing over all the elements, using standard manipulations (including ¢? Cauchy—
Schwarz inequalities), and applying the global Poincaré type inequality (3.1) give

(4.13) > (K (u=gpyon) + T (ap,0n))
Ke,ﬁl
_ 2 2 \3
S Z (hK2||“_Qp||L2(K)+|u_qP|1,K> ”UhHY(Th)'
KeTh

Conclusion of Part (iv). From (4.9) and (4.13), which are valid for any ¢, €
Vi (K), and standard polynomial approximation results, we obtain

ZKeTh (b{f(u - Qp’vh) - bK(U - qﬁ»”h> + jK(qP7vh))

sup inf < hP|u| .
07vn €Yr 10 ESp(Th) onlly (7, LT
This concludes Part (iv) and completes the whole proof. |

5. Numerical results. In this section, we assess the error estimates proven in
Theorem 4.4. We developed an object-oriented MATLAB implementation to obtain
high-order approximations of space—time (1+1)- and (2+41)-dimensional problems. We
briefly mention some relevant computational aspects regarding the numerical results
below.

e In case of inhomogeneous initial and/or boundary conditions, we set moments
at 1 x {0} and/or at 92 x (0,T") accordingly and modify the right-hand side.
This corresponds to a standard lifting procedure, where the lifting has all the
remaining moments equal to zero. In this way, in the presence of incompatible
initial and boundary data, no artificial compatibility condition is enforced on
the discrete solutions.

e In Theorem 4.4, error bounds are provided in the ||-[| (7, ) norm. Since the
virtual element solution up, to (2.25) is not known in closed form and the error
in the X (7},) norm is not computable, we report the following associated error
quantities:

(5.1a)
& = Ty € o= I O~ )y

(") :=C§(HH;<u—uh><-,O>Him> 1T (= un) D)2

N
+y HH;(u — )™ (-t y) — TT5(u — uh)(”_l)(~7tn,1)‘
n=2

2
2@ )’

The X (73,) norm is related to the sum of £, €V and Y. We also show the
error in the L?(Qr) norm, namely

(5.1b) fo ::HU_H;uhHL2(QT)’

which is not covered by our theory.
e In all experiments, we take cy = v =1 and employ the stabilization in (2.24).
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10g10(5Y)
10810(5N)

2 -1..8 -1..6 -1:4 -1:2 1 2 -1:3 -1..6 -1:4 -1:2 1
logyy(h) logyo(h)

F1G. 2. h-dependence of the errors in (5.1) for the patch tests with solution up in (5.2).

5.1. Results in (1 + 1)-dimension. We use tensor-product meshes and uni-
form partitions along the space and time directions.

5.1.1. Patch test. The discrete bilinear form by(-,-) in (2.23) is polynomial
inconsistent; see Lemma 4.2. However, thanks to the error estimates (4.7), the method
in (2.25) passes the patch test, i.e., up to round-off errors, polynomial solutions of
order p are approximated exactly.

We consider the following family of exact solutions on Q7 = (0,1) x (0,1):

2,.p/2 e )
(5.2) wy(2,8) = {tp/xp/ ) ?fp Ts even;
t(P=1)/24(p+1)/2 4 4(p+1)/2,(0=1)/2  if p i5 odd.

For any p € N, u, belongs to P, (Qr). In Figure 2, for p=1,...,5, we show the errors
in the approximation of u, obtained using a sequence of meshes with hg, = h;, =
5x 1072/2t=1 i =1,...,4, and approximation degree p. The scale of 1071 in the
figures validates the patch test. The growth of the error observed while decreasing
the mesh size represents the actual effect of the condition number when solving the
linear systems stemming from (2.25).

5.1.2. Smooth solution. On the space-time domain Q7 = (0,1) x (0,1), we
consider the problem with exact smooth solution

(5.3) u(z,t) = sin(t) sin(3nz).

In Figure 3, we show the rates of convergence of the errors in (5.1) obtained using
a sequence of meshes with hx, = hy, = 0.2 x 27% for i = 1,...,5, and different
approximation degrees p. We observe convergence of order O(hP) for the error £V,
of order O(hP+2) for the error £V, and of order O(hP+1) for the errors EN and EL.
Such rates of convergence are in agreement with estimate (4.7) and the approximation
rates that might be expected from the norms in (5.1).

5.1.3. Singular solutions. We assess the convergence of the method for so-
lutions with finite Sobolev regularity. We use the same sequence of meshes as in
subsection 5.1.1. For Qr = (0,1) x (0,1) and « > —1/2, we consider the singular
solutions

(5.4) Ug (2, 1) =t sin(7x).
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F1G. 3. h-convergence of the errors in (5.1) for the test case with smooth solution (5.3). The
numbers in the yellow rectangles denote the experimental orders of convergence. (Figure in color
online.)

We have that u, and d,u, belong to H*T1/27¢(0,1;C>(0,1)) for any ¢ > 0. The
singularity occurs at the initial time. The errors in (5.1) are depicted in Figures 4
and 5 for « =0.55 and o = 0.75. We observe convergence of order (’)(hmin{p’o“"lp})
for the error £, of order O(h*~2) for the error £V, of order O(h®) for the error £,
and of order O(h®*2) for the error £L.

For a continuous finite element discretization of formulation (1.4), lower rates of

convergence are obtained; see [12, sect. 7.5.3].

5.1.4. Incompatible initial and boundary conditions. On the space-time
domain Qr = (0,1) x (0,1), we consider the heat equation problem (1.1) with zero
source term (f = 0), homogeneous Dirichlet boundary conditions (v = 0 on 9Q x
(0,7)), and constant initial condition (u =1 on © x {0}). The corresponding exact
solution is given by the Fourier series

oo

4
5.5 u(x,t) = ———sin((2n+ Dmx) exp (—(2n + 1)%72t) .
(55) (5:0)= 3 Gy 7 i (204 Dre)xp (—(2-+ 1)

Due to the incompatibility of the initial and boundary conditions, v is discontinuous
at (0,0) and (1,0), and does not belong to H'(Qr) but belongs to H* (0,1; H}(0,1))
for any s < 1/4; see [16, sect. 7.1]. Therefore, the rates of convergence obtained cannot
be predicted by Theorem 4.4.

In Figure 6, we show the errors obtained with p =1,2 on a sequence of uniform
Cartesian meshes for the proposed VEM and on a sequence of structured triangular
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FI1G. 4. h-convergence of the errors in (5.1) for the test case with singular solution uq (5.4)
with o = 0.55.

meshes for the continuous finite element method in [18]. The continuous finite element
method does not converge in the Y-norm, while the error €Y of the proposed VEM
converges with order O(h'/*). For the computation of the error, we truncate the
series (5.5) at n = 250.

5.1.5. Increasing the degree of approximation. We are also interested in
the performance of the p-version of the method, i.e., we fix a mesh and increase the
degree of approximation. This is worth investigating also in view of the design of hp
refinements. We consider the smooth solution test case from subsection 5.1.2 with a
fixed mesh with h;, = hg, =0.1. The results shown in Figure 7 in semilogy scale. We
observe the expected exponential convergence in terms of the square root of Np,ps
for all the VEM errors.

5.2. Results in (24 1)-dimension. We use tensor-product-in-time meshes
and uniform partitions of the time interval (0,7"), and discretize the spatial domain
Q with sequences of quadrilateral meshes such as that in Figure 8 (left panel). We
checked that the method passes the patch test also in the (2+ 1)-dimensional case.
We do not report the results for the sake of brevity.

On Qr = (0,1)2 x (0,1), we consider

(5.6) u(x,t) = exp(—t) sin(mzy ) sin(mrzs).

In Figure 8 (right panel), we display the rates of convergence using different values of
p and observe the expected rates of convergence for the error £Y .
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FI1G. 5. h-convergence of the errors in (5.1) for the test case with singular solution ua (5.4)

with a = 0.75.

IOglo(gy)

‘25 -é -1 :5 _;
logyg(h)

(a) Proposed VEM

logyo (|[u — unlly)

0.2
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-0.4

-0.6

-0.8

logyo(h)

(b) Continuous finite element method

FI1G. 6. h-convergence for the test case with exact solution (5.5) with incompatible initial and

boundary conditions.

6. Conclusions. We designed and analyzed a space-time VEM for the heat
equation based on a standard Petrov—Galerkin variational formulation. The advan-
tages of using the proposed space—time VEM over standard space—time finite element
methods are that it allows for decomposing the linear system stemming from the
method into smaller systems associated with different time slabs, can be modified
into a Trefftz variant, and permits the treatment of incompatible initial and boundary
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Fic. 8. Left panel: ezample of mesh for the 2-dimensional spatial domain used in the numerical
ezperiments. Right panel: h-convergence for the test case with smooth solution (5.6).

data. We proved well posedness of the method and optimal a priori error estimates.
Numerical results validate the expected rates of convergence.
In [11], the method introduced in this paper has been extended to more general
prismatic meshes with hanging facets and variable degrees of accuracy, enabling the
implementation of hp-adaptive mesh refinements.
driven by a residual-type error indicator are also presented there.

Tests of an adaptive procedure
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