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Abstract. We propose and analyze a space-time virtual element method for the discretization of
the heat equation in a space-time cylinder, based on a standard Petrov--Galerkin formulation. Local
discrete functions are solutions to a heat equation problem with polynomial data. Global virtual
element spaces are nonconforming in space, so that the analysis and the design of the method are
independent of the spatial dimension. The information between time slabs is transmitted by means
of upwind terms involving polynomial projections of the discrete functions. We prove well posedness
and optimal error estimates for the scheme, and validate them with several numerical tests.
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1. Introduction. The virtual element method (VEM) was introduced in [3]
as an extension of the finite element method to general polytopic meshes for the
approximation of solutions to the Poisson equation. Trial and test spaces consist
of functions that are solutions to local problems related to the PDE problem to be
approximated. Moreover, they typically contain polynomials of a given maximum
degree, together with nonpolynomial functions allowing for the enforcement of the
desired type of conformity in the global spaces. These functions are not required to
be explicitly known. Suitable sets of degrees of freedom (DoFs) are chosen so that
projections from local virtual element (VE) spaces onto polynomial spaces can be
computed out of them. Such polynomial projectors and certain stabilizing bilinear
forms are used to define the discrete bilinear forms. A nonconforming version of the
VEM was proposed in [2]. Unlike its conforming counterpart, the nonconforming
VEM can be presented in a unified framework for any dimension, which significantly
simplifies its analysis and implementation.

In the VEM literature, time dependent problems have always been tackled by
combining a VE discretization in space with a time-stepping scheme for the solution
to the resulting ODE system. The prototypical example is [21], where the heat equa-
tion was considered. On the other hand, space--time Galerkin methods are based on
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200 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

discretizing the space and time variables of a PDE at once. These methods provide
a natural framework where high-order accuracy can be obtained in both space and
time, and an approximate solution is available on the whole space--time domain.

In this paper, we design and analyze the first space--time VEM for the solution to
a time-dependent PDE, namely, the heat equation; we can consider spatial domains in
one, two, and three dimensions. We employ prismatic-type elements. This allows us to
distinguish two types of mesh facets: space-like facets, i.e., facets lying on hyperplanes
in space--time that are perpendicular to the time axis; time-like facets, i.e., facets
whose normals are perpendicular to the time axis. The method we propose is based
on a standard space--time variational formulation of the heat equation in the space--
time cylinder QT = \Omega \times (0, T ) with trial space L2(0, T ;H1

0 (\Omega )) \cap H1(0, T ;H - 1(\Omega ))
and test space L2(0, T ;H1

0 (\Omega )); see [7, Ch. XVIII, sect. 4.1].
For a recent survey of space--time discretizations of parabolic problems, we refer to

[13]. In particular, a continuous finite element discretization of the standard Petrov--
Galerkin variational formulation is presented and analyzed in [18]. Additionally, we
refer to [1], [17], and [20] for wavelet- or finite element-type discretizations based on
a minimal residual Petrov--Galerkin formulation, and to [15] and [6] for discontinu-
ous Galerkin approaches. Motivated by the boundary integral operator analysis, a
continuous finite element method based on a fractional-order-in-time variational for-
mulation was studied in [19]. Recently, the space--time first order system least squares
(FOSLS) formulation of [4] has been revisited and analyzed; see [8], [9], and [10].
We summarize the main features of the proposed VEM.

\bullet Local VE spaces consist of functions that solve a heat equation with polyno-
mial data on each space--time element; this makes the method particularly
suitable for further extensions, e.g., to its Trefftz variant.

\bullet We consider tensor-product in time (prismatic) meshes but the VE spaces are
not of tensor-product type. Even for prismatic elements with simplicial bases,
the proposed VE spaces do not coincide with their standard tensor-product
finite element counterparts.

\bullet Global VE spaces involve approximating continuity constraints across mesh
facets. More precisely, we impose nonconformity conditions on time-like
facets analogous to those in [2] for the Poisson problem, and allow for dis-
continuous functions in time. Across space-like facets, we transmit the infor-
mation between consecutive time slabs by upwinding. In the present VEM
context, the upwind terms are defined by means of a polynomial projection.

\bullet To keep the presentation and the analysis of the method as simple as possible,
the details are presented for the particular case of space--time tensor-product
meshes. However, as discussed in subsection 2.6 below, the method can handle
nonmatching time-like or space-like facets, which is desirable for space--time
adaptivity.

We summarize the advantages of the proposed space--time VEM over standard space--
time conforming finite element methods.

\bullet The nonconforming VEM setting is of arbitrary order and its design is inde-
pendent of the spatial dimension.

\bullet Nonmatching space-like and time-like facets, which naturally stem from mesh
adaptive procedures, can be handled easily.

\bullet As the discrete spaces are discontinuous in time, we can solve the global
(expensive) problem as a sequence of local (cheaper) problems on time slabs.

\bullet The definition of the local spaces allows for the construction of space--time
discrete Trefftz spaces.
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SPACE-TIME VEM FOR THE HEAT EQUATION 201

The main advancements of this paper are the following.
\bullet We design a novel space--time VEM for the heat equation in any spatial

dimension.
\bullet We prove its well posedness and optimal a priori error estimates.
\bullet We validate numerically the theoretical results on some test cases.

Notation. We denote the first and second partial derivatives with respect to the
time variable t by \partial t and \partial tt, respectively, and the spatial gradient and Laplacian
operators by \nabla x, \Delta x, respectively. Throughout this paper, standard notation for
Sobolev spaces will be employed. For a given bounded Lipschitz domain D \subset \BbbR d

(d \in \BbbN ), Hs(D) represents the standard Sobolev space of order s \in \BbbN , endowed with
the standard inner product (\cdot , \cdot )s,D, the seminorm | \cdot | s,D, and the norm \| \cdot \| s,D. In

particular, H0(D) :=L2(D), where L2(D) is the space of Lebesgue square integrable
functions over D and H1

0 (D) is the closure of C\infty 
0 (D) in the H1(D) norm. Whenever

s is a fractional or negative number, the Sobolev space Hs(D) is defined by means
of interpolation and duality. The Sobolev spaces on \partial D are defined analogously and
denoted by Hs(\partial D), s < 1.

As is common in space--time variational problems, we shall also use Bochner spaces
of functions mapping a time interval (a, b) into a Banach space (Z,\| \cdot \| Z), which we
denote by Hs(a, b;Z), s\in \BbbN .

Structure of this paper. In the remainder of this introduction, we introduce the
model problem (subsection 1.1), and a regular sequence of meshes (subsection 1.2).
The new space--time VEM method is presented in section 2. Section 3 is dedicated
to the well-posedness of the method, while in section 4 we present an a priori error
analysis and prove quasi-optimal estimates for the h-version of the method. We
conclude this work with some numerical experiments in section 5 and some concluding
remarks in section 6.

1.1. The model problem and its weak formulation. We are interested in
the approximation of solutions to heat equation initial-boundary value problems on
the space--time domain QT := \Omega \times (0, T ), where \Omega \subset \BbbR d (d= 1, 2, 3) and T > 0 denote
a bounded Lipschitz spatial domain and a final time, respectively.

Let f : QT \rightarrow \BbbR denote the prescribed right-hand side. We consider a positive
constant volumetric heat capacity cH and a positive constant scalar-valued thermal
conductivity \nu . The strong formulation of the initial-boundary value problem for the
heat equation reads: Find a function u :QT \rightarrow \BbbR (temperature) such that

(1.1)

\Biggl\{ 
cH\partial tu - \nu \Delta xu= f in QT ;

u= 0 on \Omega \times \{ 0\} ; u= 0 on \partial \Omega \times (0, T ).

See Remark 1.2 below for more general initial and boundary conditions.
Introduce the function spaces

(1.2)
Y :=L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
, X :=

\bigl\{ 
v \in Y \cap H1

\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
| v= 0 in \Omega \times \{ 0\} 

\bigr\} 
,

endowed with the norms

\| v\| 2Y :=
\bigm\| \bigm\| \bigm\| \nu 1/2\nabla xv

\bigm\| \bigm\| \bigm\| 2
0,QT

, \| v\| 2X := \| cH\partial tv\| 2L2(0,T ;H - 1(\Omega )) + \| v\| 2Y ,

respectively. Here, we have used the following definition:

for any \phi in L2(0, T ;H - 1(\Omega )), \| \phi \| L2(0,T ;H - 1(\Omega )) := sup
0\not =v\in Y

\int T

0
\langle \phi , v\rangle dt
\| v\| Y

,
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202 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

where \langle \cdot , \cdot \rangle denotes the duality between H1
0 (\Omega ) and H - 1(\Omega ). Next, we define the

space--time bilinear form b(\cdot , \cdot ) :X \times Y \rightarrow \BbbR as

(1.3) b(u, v) :=

\int T

0

\biggl( 
\langle cH\partial tu, v\rangle +

\int 
\Omega 

\nu \nabla xu \cdot \nabla xv dx

\biggr) 
dt.

The weak formulation of (1.1), see, e.g., [7], reads as follows:

(1.4) Find u\in X such that b(u, v) =

\int T

0

\langle f, v\rangle dt \forall v \in Y.

The following well-posedness result is valid; see e.g., [18, Cor. 2.3].

Proposition 1.1. If f belongs to L2(0, T ;H - 1(\Omega )), then the variational formu-
lation (1.4) is well posed with the a priori bound

\| u\| X \leq 2
\surd 
2\| f\| L2(0,T ;H - 1(\Omega )).

Remark 1.2 (inhomogeneous initial and boundary conditions). Given (f,u0) in
L2(0, T ;H - 1(\Omega )) \times L2(\Omega ), consider the following problem: find u \in Y \cap H1(0, T ;
H - 1(\Omega )) such that
(1.5)\left\{       
\int T

0

\biggl( 
\langle cH\partial tu, v\rangle +

\int 
\Omega 

\nu \nabla xu \cdot \nabla xv dx

\biggr) 
dt =

\int T

0

\langle f, v\rangle dt \forall v \in L2(0, T ;H - 1(\Omega )),\int 
\Omega 

u(\cdot ,0)wdx=

\int 
\Omega 

u0wdx \forall w \in L2(\Omega ).

The well-posedness of problem (1.5) is discussed, e.g., in [17, sect. 5].
The case of inhomogeneous Dirichlet boundary conditions u = g on \partial \Omega \times (0, T )

can be dealt with by assuming g in H1(0, T ;H1/2(\partial \Omega )). Denote by G : QT \rightarrow \BbbR the
solution to the family of elliptic problems  - \nu \Delta xG(\cdot , t) = 0 in \Omega with G(\cdot , t) = g(\cdot , t)
on \partial \Omega for all 0\leq t\leq T . The function G belongs to H1(0, T ;H1(\Omega )), since \partial tG solves
a similar family of elliptic problems with boundary data \partial tg in L2(0, T ;H1/2(\partial \Omega )).

For the case of inhomogeneous initial and boundary conditions, denote by w the
solution to problem (1.5) with source term f - cH\partial tG and initial condition u0 - g(\cdot ,0).
Then, u=G+w solves the inhomogeneous initial-boundary value problem with data
(f,u0, g). In particular, u belongs to L2(0, T ;H1(\Omega ))\cap H1(0, T ;H - 1(\Omega )).

1.2. Mesh assumptions. For the sake of presentation, we stick to tensor-
product-in-time meshes. We postpone possible generalization to subsection 2.6 below,
which are important, e.g., for an adaptive version of the scheme.

We consider a sequence of polytopic meshes \{ \scrT h\} h of QT . We require that
(G1) the space domain \Omega is split into a mesh \scrT x

h of nonoverlapping d-dimensional
polytopes with straight facets; the time interval (0, T ) is split into N subin-
tervals In := (tn - 1, tn) with knots 0 = t0 < t1 < . . . < tN = T ; each element K
in \scrT h can be written as Kx \times In, for some Kx in \scrT x

h and 1\leq n\leq N .
Essentially, assumption (G1) states that (i) each element is the tensor-product of a
d-dimensional polytope with a time interval; (ii) each element belongs to a time slab
out of the N identified by the partition \{ tn\} Nn=0; (iii) each time slab is partitioned
by the same space mesh; (iv) all elements within the same time slab have the same
extent in time.

Given an element K in \scrT h, K = Kx \times In, we denote its diameter by hK and
the diameter of Kx by hK\bfx , and set hIn := tn  - tn - 1. We let h := maxK\in \scrT h

hK and
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SPACE-TIME VEM FOR THE HEAT EQUATION 203

hx := maxK\in \scrT \bfx 
h
hK\bfx . Furthermore, the set of all (d - 1)-dimensional facets of Kx is

denoted by \scrF K\bfx , and for any Fx \in \scrF K\bfx we define

hF\bfx :=

\Biggl\{ 
min\{ hK\bfx , h \widetilde K\bfx 

\} if Fx =Kx \cap \widetilde Kx for some \widetilde Kx \in \scrT x
h ,

hK\bfx if Fx \subset \partial \Omega .

For d = 1, Fx is a point and
\int 
F\bfx 

v(x, t)dS is equal to v(Fx, t). For each spatial facet

Fx in \scrF K\bfx , we introduce the time-like facet F := Fx\times In; we collect all these time-like
facets into the set \scrF K .

We fix one of the two unit normal d-dimensional vectors associated with Fx and
denote it by nF\bfx . For d\geq 1, each time-like facet F = Fx \times In lies in a d-dimensional
hyperplane with unit normal vector nF := (nF\bfx ,0).

Next, we require further assumptions on the spatial mesh: there exists \gamma > 0
independent of the meshsize such that
(G2) each spatial element Kx in \scrT x

h is star-shaped with respect to a ball of radius
\rho K\bfx with hK\bfx \leq \gamma \rho K\bfx and the number of (d - 1)-dimensional facets of Kx is
uniformly bounded with respect to the meshsize;

(G3) given two neighboring elements Kx and \widetilde Kx of \scrT x
h , we have that \gamma  - 1h \widetilde K\bfx 

\leq 
hK\bfx \leq \gamma h \widetilde K\bfx 

.

For a given space--time element K \subset \BbbR d+1 and any space-like or time-like facet F \subset 
\partial K, we denote the space of polynomials of total degree at most p\in \BbbN on K and F by
\BbbP p (K) and \BbbP p (F ), respectively. For a given time interval I, \BbbP p (I) denotes the space
of polynomials in I of total degree at most p in \BbbN .

Henceforth, for a positive natural number k, we define the spaces of broken Hk

functions over \scrT x
h and \scrT h, respectively, by
Hk(\scrT x

h ) :=
\bigl\{ 
v \in L2(QT ) | v| K\bfx 

\in Hk(Kx) \forall Kx \in \scrT x
h

\bigr\} 
;

Hk(\scrT h) :=
\bigl\{ 
v \in L2(QT ) | v| K \in Hk(K) \forall K \in \scrT h

\bigr\} 
.

We denote the broken Sobolev k seminorm on \scrT h by | \cdot | k,\scrT h
and the space of piecewise

polynomials of degree at most \ell in \BbbN on \scrT h by \scrS \ell (\scrT h).
2. The virtual element method. In this section, we introduce a VEM for the

discretization of problem (1.4) based on the regular meshes introduced in subsection
1.2. First, local VE spaces are introduced in subsection 2.1 together with their DoFs.
Based on the choice of such DoFs, in subsection 2.2, we show that we can compute
different polynomial projections of the VE functions. Such polynomial projections
are instrumental in the design of the global VE spaces; see subsection 2.3. Likewise,
in subsection 2.4, we design computable discrete bilinear forms and require sufficient
properties that will allow us to prove the well posedness of the scheme, introduced in
subsection 2.5, as well as convergence estimates. Finally, in subsection 2.6, we present
more general types of meshes that can be used, e.g., in an adaptive framework.

2.1. Local virtual element spaces. We present a VE discretization of the
infinite-dimensional spaces X and Y introduced in (1.2).

Given an approximation degree p \in \BbbN and an element K = Kx \times In in \scrT h, we
define the following local VE spaces:

Vh(K) :=
\Bigl\{ 
vh \in L2(K) | \widetilde cKH\partial tvh  - \widetilde \nu K\Delta xvh \in \BbbP p - 1 (K) , vh| K\bfx \times \{ tn - 1\} \in \BbbP p (Kx) ;

nF\bfx \cdot \nabla xvh| F \in \BbbP p (F ) \forall F := Fx \times In with Fx \in \scrF K\bfx 

\Bigr\} 
,

(2.1)

where \widetilde cKH := hIn and \widetilde \nu K := h2
K\bfx 

.
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204 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

The space Vh(K) contains \BbbP p (K). The degree p in the Neumann boundary con-
ditions is not necessary for this inclusion to be valid, as p  - 1 would be sufficient.
Nevertheless, the degree p is crucial in the proof of the Poincar\'e-type inequality in
Proposition 2.8 below.

Remark 2.1. Functions in Vh(K) solve a heat equation problem with polynomial
source, initial condition, and Neumann boundary conditions. For this reason, Vh(K)\subset 
L2(In;H

1(Kx)); see [14, Thm. 4.1 and sect. 4.7.2 in Ch. 3] with standard modifications
to deal with the inhomogeneous Neumann data.

Remark 2.2. As opposed to the standard VEM setting [3], in definition (2.1) we
consider solutions to local problems involving some scaling factors (\widetilde cKH and \widetilde \nu K). The
reason is that these local problems involve differential operators of different orders.
By using a scaling argument and mapping the element K into a ``reference"" element\widehat K = \widehat I \times \widehat K\widehat x, with | \widehat In| = diam( \widehat K\widehat x) = 1, the resulting reference space consists of
solutions to a heat equation with both coefficients equal to 1. This allows us to use
equivalence of norms results when proving the stability of the scheme.

Let \{ mK
\alpha \} dim(\BbbP p - 1(K))

\alpha =1 , \{ mF
\beta \} 

dim(\BbbP p(F ))
\beta =1 , and \{ mK\bfx 

\gamma \} dim(\BbbP p(K\bfx ))
\gamma =1 be any bases of

\BbbP p - 1(K), \BbbP p(F ), and \BbbP p(Kx). We introduce the following set of linear functionals on
Vh(K):

\bullet the bulk moments

(2.2)
1

| K| 

\int 
In

\int 
K\bfx 

vh mK
\alpha dx dt \forall \alpha = 1, . . . ,dim(\BbbP p - 1(K));

\bullet for all space--time facets Fx \times In = F \in \scrF K , the time-like moments

(2.3)
1

| F | 

\int 
In

\int 
F\bfx 

vh mF
\beta dS dt \forall \beta = 1, . . . ,dim(\BbbP p(F ));

\bullet the space-like moments

(2.4)
1

| Kx| 

\int 
K\bfx 

vh(\cdot , tn - 1)m
K\bfx 
\gamma dx \forall \gamma = 1, . . . ,dim(\BbbP p(Kx)).

Since functions vh \in Vh(K) are polynomials at time tn - 1, then the integrals in (2.4)
are well defined. Moreover, the inclusion Vh(K) \subset L2(In;H

1(Kx)) (see Remark 2.1)
implies that the integrals in (2.2) and (2.3) are well defined as well.

We introduce the number of the functionals in (2.2)--(2.4) as

\#DoFs := dim(\BbbP p - 1(K)) +
\sum 

F\in \scrF K

dim(\BbbP p(F )) + dim(\BbbP p(Kx)).

In the following lemma, we prove that the linear functionals (2.2)--(2.4) actually define
a set of DoFs for Vh(K). For convenience, we denote the set of these linear functionals
by \{ DoFi\} \#DoFs

i=1 .

Lemma 2.3. The linear functionals (2.2)--(2.4) are a set of unisolvent DoFs for
the space Vh(K).

Proof. Since the right-hand side and the initial and Neumann boundary condi-
tions in (2.1) are independent of each other, the dimension of Vh(K) is equal to the
number of the linear functionals (2.2)--(2.4). Thus, it suffices to prove that the set
of these linear functionals is unisolvent. In other words, we prove that, whenever
vh \in Vh(K) satisfies DoFi(vh) = 0 for all i= 1, . . . ,\#DoFs, then vh = 0.
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SPACE-TIME VEM FOR THE HEAT EQUATION 205

Thanks to the definition of the DoFs (2.2) and (2.3), we have

0 =

\int 
In

\int 
K\bfx 

vh
\bigl( \widetilde cKH\partial tvh  - \widetilde \nu K\Delta xvh

\bigr) \underbrace{}  \underbrace{}  
\in \BbbP p - 1(K)

dx dt + \widetilde \nu K \sum 
F\bfx \in \scrF K\bfx 

\int 
In

\int 
F\bfx 

vhnF\bfx \cdot \nabla xvh\underbrace{}  \underbrace{}  
\in \BbbP p(F )

dS dt

=
\widetilde cKH
2

\Bigl( 
\| vh(\cdot , tn)\| 20,K\bfx 

 - \| vh(\cdot , tn - 1)\| 20,K\bfx 

\Bigr) 
+ \widetilde \nu K\| \nabla xvh\| 20,K .

Furthermore, using the definition of the DoFs (2.4), we have \| vh(\cdot , tn - 1)\| 20,K\bfx 
= 0 and

deduce that

\widetilde \nu K\| \nabla xvh\| 20,K = 0 \Rightarrow \nabla xvh = 0 in K \Rightarrow vh = vh(t).

From the definition of the space Vh(K), this implies that \partial tvh belongs to \BbbP p - 1(In);
equivalently, vh belongs to \BbbP p(In). On the other hand, we know that the moments
(2.3) are zero, in particular when they are taken with respect to monomials up to
degree p in time only. This implies vh = 0.

2.2. Polynomial projections. Functions in the local VE space Vh(K) are not
known in closed form. However, if we have at our disposal the DoFs of a function
vh in Vh(K), then we can compute projections onto polynomial spaces with given
maximum degree.

First, for all K = Kx \times In in \scrT h and \varepsilon > 0, we define the operator \Pi N
p :

H
1
2+\varepsilon (In;L

2(Kx)) \cap L2(In;H
1(Kx)) \rightarrow \BbbP p(K) as follows: for any v in H

1
2+\varepsilon (In;L

2

(Kx))\cap L2(In;H
1(Kx)),\int 

In

\int 
K\bfx 

\nabla xq
K
p \cdot \nabla x

\bigl( 
\Pi N

p v - v
\bigr) 
dx dt = 0 \forall qKp \in \BbbP p (K) ;(2.5a) \int 

In

\int 
K\bfx 

qp - 1(t)
\bigl( 
\Pi N

p v - v
\bigr) 
dx dt = 0 \forall qp - 1 \in \BbbP p - 1 (In) ;(2.5b) \int 

K\bfx 

\bigl( 
\Pi N

p v(x, tn - 1) - v(x, tn - 1)
\bigr) 
dx = 0.(2.5c)

We have Vh(K)\subset L2(In;H
1(Kx)); see Remark 2.1. This and the fact that functions

in Vh(K) restricted to the time tn - 1 are polynomials entail that we can define \Pi N
p v

also for v in Vh(K).

Lemma 2.4. The operator \Pi N
p is well defined. Moreover, for any vh in Vh(K),

\Pi N
p vh is computable via the DoFs (2.2)--(2.4).

Proof. In order to prove that \Pi N
p is well defined, we need to show that the number

of (linear) conditions in (2.5a)--(2.5c) is equal to dim(\BbbP p(K)). As (2.5a) is void for
all qKp \in \BbbP p (In), we have that the number of conditions in (2.5a)--(2.5c) is equal to
dim(\BbbP p(K)). We need only show that they are linearly independent.

To this aim, assume that v = 0. Conditions (2.5a) imply that \nabla x\Pi 
N
p v = 0, i.e.,

\Pi N
p v belongs to \BbbP p(In). Let Lp(\cdot ) be the Legendre polynomial of degree p over [ - 1,1].

Using conditions (2.5b), we deduce that there exists a constant c such that

\Pi N
p v= cLp

\biggl( 
2t - tn - 1  - tn

tn  - tn - 1

\biggr) 
.

Since condition (2.5c) entails \Pi N
p v(\cdot , tn - 1) = 0 and Lp( - 1) \not = 0, we deduce c = 0,

whence \Pi N
p v = 0. Therefore, the conditions are linearly independent and so \Pi N

p is
well defined.
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206 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

As for the computability of \Pi N
p vh for vh in Vh(K), conditions (2.5a) and (2.5b)

are available via the bulk moments (2.2) (up to order p - 2) and the time-like moments
(2.3) (up to order p - 1); condition (2.5c) is available via the lowest-order space-like
moment in (2.4).

Next, for all K in \scrT h, we define the operator \Pi  \star 
p : \scrC 0(In;L

2(Kx)) \rightarrow \BbbP p(K) as
follows: for any v in \scrC 0(In;L

2(Kx)),\int 
In

\int 
K\bfx 

qKp - 1

\bigl( 
\Pi  \star 

pv - v
\bigr) 
dx dt = 0 \forall qKp - 1 \in \BbbP p - 1 (K) ;(2.6a) \int 

K\bfx 

qK\bfx 
p

\bigl( 
\Pi  \star 

pv(x, tn - 1) - v(x, tn - 1)
\bigr) 
dx = 0 \forall qK\bfx 

p \in \BbbP p (Kx) .(2.6b)

Again, we have Vh(K) \subset L2(In;H
1(Kx)); see Remark 2.1. This and the fact that

functions in Vh(K) restricted to the time tn - 1 are polynomials entail that we can
define \Pi N

p v also for v in Vh(K).

Lemma 2.5. The operator \Pi  \star 
p is well defined. Moreover, for any vh in Vh(K),

\Pi  \star 
pvh is computable via the DoFs (2.2)--(2.4).

Proof. As in the proof of Lemma 2.4, we observe that the number of (linear)
conditions in (2.6a)--(2.6b) is equal to dim(\BbbP p(K)). Thus, it suffices to show that
they are linearly independent.

Assume that v= 0. Then, taking qK\bfx 
p =\Pi  \star 

pv(x, tn - 1) in (2.6b), we get \Pi  \star 
pv(x, tn - 1)

= 0. On the other hand, taking qKp - 1 = \partial t\Pi 
 \star 
pv in (2.6a), we get

0 =
1

2

\Bigl( \bigm\| \bigm\| \Pi  \star 
pv(\cdot , tn)

\bigm\| \bigm\| 2
0,K\bfx 

 - 
\bigm\| \bigm\| \Pi  \star 

pv(\cdot , tn - 1)
\bigm\| \bigm\| 2
0,K\bfx 

\Bigr) 
=

1

2

\bigm\| \bigm\| \Pi  \star 
pv(\cdot , tn)

\bigm\| \bigm\| 2
0,K\bfx 

.

In addition, we observe that\bigm\| \bigm\| \partial t\Pi  \star 
pv
\bigm\| \bigm\| 2
0,K

=

\int 
K\bfx 

\Pi  \star 
pv(x, t)\partial t\Pi 

 \star 
pv(x, t)dx

\bigm| \bigm| \bigm| tn
t=tn - 1

 - 
\int 
In

\int 
K\bfx 

\Pi  \star 
pv \partial tt\Pi 

 \star 
pv\underbrace{}  \underbrace{}  

\in \BbbP p - 2(K)

dx dt = 0.

This implies that \partial t\Pi 
 \star 
pv = 0, which, together with \Pi  \star 

pv(\cdot , tn) = 0, gives that \Pi  \star 
pv = 0.

Therefore, the conditions are linearly independent and so \Pi  \star 
p is well defined.

As for the computability of \Pi  \star 
pvh for vh \in Vh(K), conditions (2.6a) are available

via the bulk DoFs (2.2), and conditions (2.6b) are at disposal via the bottom space-like
DoFs (2.4).

We introduce other polynomial projectors: for all K in \scrT h and v in L2(K),

\Pi 0,K
p - 1 :L

2(K)\rightarrow \BbbP p - 1(K), (qKp - 1, v - \Pi 0,K
p - 1v)0,K = 0 \forall qKp - 1 \in \BbbP p - 1(K);

for each temporal interval In and v \in L2(In),

\Pi 0,In
p - 1 :L

2(In)\rightarrow \BbbP p - 1(In), (qInp - 1, v - \Pi 0,In
p - 1v)0,In = 0 \forall qInp - 1 \in \BbbP p - 1(In);

for each spatial element Kx and v \in L2(Kx),

\Pi 0,K\bfx 

0 :L2(Kx)\rightarrow \BbbR , (q0, v - \Pi 0,K\bfx 

0 v)0,K\bfx = 0 \forall q0 \in \BbbR ;

for all time-like facet F and v in L2(F ),

\Pi 0,F
p :L2(F )\rightarrow \BbbP p(F ), (qFp , v - \Pi 0,F

p v)0,F = 0 \forall qFp \in \BbbP p(F ).
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SPACE-TIME VEM FOR THE HEAT EQUATION 207

Given vh in Vh(K), the computability of the above projectors applied to vh follows
from the definition of the DoFs (2.2)--(2.4). The projector \Pi 0,K

p - 1 induces the global

piecewise L2 projector \Pi 0,QT

p - 1 over \scrT h.
The following polynomial inverse inequalities are valid.

Lemma 2.6. For any p \in \BbbN , there exist positive constants c\Pi N
p

and c\Pi  \star 
p
indepen-

dent of hIn and hK\bfx such that, for all qp in \BbbP p(K),

\| qp\| 20,K + h2
K\bfx 

\| \nabla xqp\| 20,K + h2
In\| \partial tqp\| 

2
0,K

\leq c\Pi N
p

\biggl( 
h2
K\bfx 

\| \nabla xqp\| 20,K +
\bigm\| \bigm\| \bigm\| \Pi 0,In

p - 1qp

\bigm\| \bigm\| \bigm\| 2
0,K

+ hIn

\bigm\| \bigm\| \bigm\| \Pi 0,K\bfx 

0 qp(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 2
0,K\bfx 

\biggr) 
(2.7)

and

\| qp\| 20,K + h2
K\bfx 

\| \nabla xqp\| 20,K + h2
In\| \partial tqp\| 

2
0,K

\leq c\Pi  \star 
p

\biggl( \bigm\| \bigm\| \bigm\| \Pi 0,K
p - 1qp

\bigm\| \bigm\| \bigm\| 2
0,K

+ hIn\| qp(\cdot , tn - 1)\| 20,K\bfx 

\biggr) 
.

(2.8)

Proof. The assertion follows from the regularity of the spatial mesh in assumption
(G2), the fact that the functionals on the right-hand side of (2.7) and (2.8) are norms
for \BbbP p(K), and the equivalence of norms for spaces of polynomials with fixed maximum
degree.

The presence of the subscripts appearing in the inverse estimate constants c\Pi N
p

and c\Pi  \star 
p
is to remind one that the norms on the right-hand side of (2.7) and (2.8) are

induced by the definition of the operators \Pi N
p and \Pi  \star 

p.

2.3. Global virtual element spaces. We construct the global VE spaces in
a nonconforming fashion. To this aim, we introduce a jump operator on the time-
like facets. Each internal time-like facet F is shared by two elements K1 and K2

with outward pointing unit normal vectors nK1
and nK2

, whereas each boundary
time-like facet belongs to the boundary of a single element K3 with outward pointing
unit normal vector nK3

. We denote the d-dimensional vector containing the spatial
components of the restriction of nKj to the time-like facet F by nF

Kj
. Then, the

normal jump on each time-like facet F is defined as

(2.9) [[v]]F :=

\Biggl\{ 
v| K1

nF
K1

+ v| K2
nF
K2

if F is an internal face;

v| K3
nF
K3

if F is a boundary face.

On each time slab In, we introduce the nonconforming Sobolev space of order p
associated with the mesh \scrT x

h :

H1,nc(\scrT x
h ; In) :=

\Bigl\{ 
v \in L2

\bigl( 
In;H

1(\scrT x
h )
\bigr) \bigm| \bigm| \bigm| \int 

In

\int 
F\bfx 

qFp [[v]]F \cdot nF\bfx dS dt = 0 \forall qFp \in \BbbP p (F )
\Bigr\} 
.

(2.10)

This allows us to define the VE discretization Yh of the space Y in (1.2) as the
space of functions that are possibly discontinuous in time across space-like facets and
nonconforming as above in space:

Yh :=
\Bigl\{ 
vh \in L2(QT ) | vh| K \in Vh(K) \forall K \in \scrT h,

vh| \scrT \bfx 
h \times In \in H1,nc(\scrT x

h ; In) \forall n= 1, . . . ,N
\Bigr\} 
.
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208 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

The functions in the space X in (1.2) are continuous in time, namely,

(2.11) X \lhook \rightarrow \scrC 0([0, T ];L2(\Omega ));

see, e.g, [22, Thm. 25.5]. Nevertheless, we discretize it with Yh as well, and impose
the time continuity weakly through upwinding. As functions in the local VE space
Vh(K) are not known at the local final time tn, the upwind fluxes are defined in terms
of the traces of their polynomial projections \Pi  \star 

p; see (2.22) below.

Remark 2.7. Due to the choice of the DoFs, one cannot define a continuous-in-
time discretization of X with the local spaces Vh(K). If this were possible, then each
VE function on K = Kx \times In would be a polynomial of degree p at the local final
time tn. For general choices of the right-hand side, initial condition, and boundary
conditions in (2.1), this cannot be true.

2.4. Discrete bilinear forms. On each element K, define the local continuous
bilinear form in Vh(K)\times Vh(K) and seminorm

aK(uh, vh) := \nu (\nabla xuh,\nabla xvh)0,K , | vh| 2Y (K) := aK(vh, vh).

Next, we prove a local Poincar\'e-type inequality.

Proposition 2.8. If vh belongs to Vh(K), K =Kx\times In, then | vh| Y (K) = 0 if and

only if vh = vh(t) belongs to \BbbP p(In). Moreover, there exists a positive constant CK
P

independent of hIn and hK\bfx such that

(2.12) inf
qtp\in \BbbP p(In)

\bigm\| \bigm\| vh  - qtp
\bigm\| \bigm\| 
0,K

\leq CK
P hK\bfx \| \nabla xvh\| 0,K \forall vh \in Vh(K).

Proof. If vh belongs to Vh(K) with \| \nabla xvh\| Y (K) = 0, then vh = vh(t). The
definition of Vh(K) in (2.1) implies that \partial tvh belongs to \BbbP p - 1(In) or, equivalently,
that vh belongs to \BbbP p(In). The converse is obviously true.

Inequality (2.12) follows from the equivalence of seminorms with the same kernel
on finite-dimensional spaces and the scaling argument in Remark 2.2.

We define Y (\scrT h) :=L2(0, T ;H1(\scrT x
h )) and introduce the global broken seminorms

for almost all t, | v(\cdot , t)| 21,\scrT \bfx 
h
:=

\sum 
K\bfx \in \scrT \bfx 

h

\| \nabla xv(\cdot , t)\| 20,K\bfx 
;

| v| 2Y (\scrT h)
:=

\int T

0

\nu | v(\cdot , t)| 21,\scrT \bfx 
h
dt =

\sum 
K\in \scrT h

| v| 2Y (K).

Proposition 2.9. The seminorm | \cdot | Y (\scrT h)
is a norm in Yh.

1

Proof. Given vh in Yh, we need only prove that | vh| Y (\scrT h)
= 0 implies vh = 0. The

identity | vh| Y (\scrT h)
= 0 implies that | vh| Y (K) = 0 for all elements K =Kx \times In. Using

Proposition 2.8, we deduce that vh| K only depends on time and belongs to \BbbP p(In).
The assertion follows using the spatial nonconformity of the space Yh (see (2.10)),
which is up to order p.

On each element K in \scrT h, K =Kx \times In, let

SK : [Vh(K) +L2(In;H
1(Kx))\cap \scrC 0(In;L

2(Kx))]
2 \rightarrow \BbbR 

1In fact, | \cdot | Y (\scrT h) is a norm on Y + Yh. So, for arguments in Y + Yh, we shall denote it by

\| \cdot \| Y (\scrT h).
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SPACE-TIME VEM FOR THE HEAT EQUATION 209

be any symmetric positive semidefinite bilinear form that is computable via the DoFs
and satisfies the following properties:

\bullet for any vh in Vh(K)\cap ker(\Pi N
p ), we have that

(2.13) SK(vh, vh) = 0 =\Rightarrow vh = 0;

\bullet the following bound is valid with a positive constant \widetilde c\ast > 0 independent of
hIn , hK\bfx , and K:
(2.14)

SK(v, v)\leq \widetilde c\ast \Bigl( h - 2
K\bfx 

\| v\| 20,K + \| \nabla xv\| 20,K + h - 2
K\bfx 

h2
In\| \partial tv\| 

2
0,K

\Bigr) 
\forall v \in H1(K).

Property (2.13) implies that SK(\cdot , \cdot ) induces a norm in Vh(K) \cap ker(\Pi N
p ). Another

consequence of (2.13) and the scaling argument in Remark 2.2, is that there exist two
constants 0< c\ast < c\ast independent of K such that

(2.15) c\ast | vh| 2Y (K) \leq \nu SK(vh, vh)\leq c\ast | vh| 2Y (K) \forall vh \in Vh(K)\cap ker(\Pi N
p ).

In fact, the functional | \cdot | Y (K) is a norm on Vh(K)\cap ker(\Pi N
p ).

We define the discrete counterpart of the local bilinear forms aK(\cdot , \cdot ):

(2.16) aKh (uh, vh) := aK(\Pi N
p uh,\Pi 

N
p vh) + \nu SK((I  - \Pi N

p )uh, (I  - \Pi N
p )vh).

Lemma 2.10. Property (2.15) implies that there exist two constants 0< \alpha \ast < \alpha \ast 

independent of K such that the following local stability bounds are valid:

(2.17) \alpha \ast | vh| 2Y (K) \leq aKh (vh, vh)\leq \alpha \ast | vh| 2Y (K) \forall vh \in Vh(K).

Proof. We only show the upper bound as the lower bound follows analogously
leading to \alpha \ast :=min(1, c\ast ). We have

aKh (vh, vh) = \nu 
\bigm\| \bigm\| \nabla x\Pi 

N
p vh

\bigm\| \bigm\| 2
0,K

+ \nu SK((I  - \Pi N
p )vh, (I  - \Pi N

p )vh)

\leq 
\bigm| \bigm| \Pi N

p vh
\bigm| \bigm| 2
Y (K)

+ c\ast 
\bigm| \bigm| (I  - \Pi N

p )vh
\bigm| \bigm| 2
Y (K)

\leq max(1, c\ast )
\Bigl( \bigm| \bigm| \Pi N

p vh
\bigm| \bigm| 2
Y (K)

+
\bigm| \bigm| (I  - \Pi N

p )vh
\bigm| \bigm| 2
Y (K)

\Bigr) 
.

Pythagoras' theorem implies

aKh (vh, vh)\leq max(1, c\ast )| vh| 2Y (K).

This proves the upper bound in (2.17) with \alpha \ast =max(1, c\ast ).

The global discrete bilinear form associated with the spatial Laplace operator
reads

ah(uh, vh) :=
\sum 

K\in \scrT h

aKh (uh, vh) \forall uh, vh \in Yh.

Taking into account Proposition 2.9, an immediate consequence of (2.17) is the global
stability bounds

(2.18) \alpha \ast \| vh\| 2Y (\scrT h)
\leq ah(vh, vh)\leq \alpha \ast \| vh\| 2Y (\scrT h)

\forall vh \in Yh.

For sufficiently smooth functions, we have the following upper bounds.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/1

8/
24

 to
 1

92
.1

67
.7

4.
15

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



210 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

Proposition 2.11. For all v in H1(\scrT h), the following local and global bounds are
valid: for all K in \scrT h

aKh (v, v)\leq 3max(1,\widetilde c\ast )\nu \Bigl( 1+(1+ctr)c\Pi N
p

\Bigr) 
\times 
\Bigl( 
h - 2
K\bfx 

\| v\| 20,K+\| \nabla xv\| 20,K+h - 2
K\bfx 

h2
In\| \partial tv\| 

2
0,K

\Bigr) 
(2.19)

and

ah(v, v)\leq 3max(1,\widetilde c\ast )\nu \Bigl( 1+(1+ctr)c\Pi N
p

\Bigr) 
\times 
\sum 

K\in \scrT h

\Bigl( 
h - 2
K\bfx 

\| v\| 20,K+\| \nabla xv\| 20,K+h - 2
K\bfx 

h2
In\| \partial tv\| 

2
0,K

\Bigr) 
,

(2.20)

where \widetilde c\ast is the stability constant in (2.14), \nu is the thermal conductivity, ctr is the
constant appearing in the elemental trace (in time) inequality, and c\Pi N

p
is the inverse

estimate constant in (2.8).

Proof. The stability of the \Pi N
p projector entails

aK(\Pi N
p v,\Pi N

p v) = \nu 
\bigm\| \bigm\| \nabla x\Pi 

N
p v
\bigm\| \bigm\| 2
0,K

\leq \nu \| \nabla xv\| 20,K .

Using definition (2.16) and bound (2.14), we deduce that

aKh (v, v) = aK(\Pi N
p v,\Pi N

p v) + \nu SK((I  - \Pi N
p )v, (I  - \Pi N

p )v)\leq max(1,\widetilde c\ast )\nu (2.21)

\times 
\Bigl( 
\| \nabla xv\| 20,K + h - 2

K\bfx 

\bigm\| \bigm\| (I  - \Pi N
p )v

\bigm\| \bigm\| 2
0,K

+
\bigm\| \bigm\| \nabla x(I  - \Pi N

p )v
\bigm\| \bigm\| 2
0,K

+ h - 2
K\bfx 

h2
In

\bigm\| \bigm\| \partial t(I  - \Pi N
p )v

\bigm\| \bigm\| 2
0,K

\Bigr) 
.

Using the polynomial inverse estimate (2.7) with qp =\Pi N
p v, we can write

h - 2
K\bfx 

\bigm\| \bigm\| \Pi N
p v
\bigm\| \bigm\| 2
0,K

+
\bigm\| \bigm\| \nabla x\Pi 

N
p v
\bigm\| \bigm\| 2
0,K

+ h - 2
K\bfx 

h2
In

\bigm\| \bigm\| \partial t\Pi N
p v
\bigm\| \bigm\| 2
0,K

= h - 2
K\bfx 

\Bigl( \bigm\| \bigm\| \Pi N
p v
\bigm\| \bigm\| 2
0,K

+ h2
K\bfx 

\bigm\| \bigm\| \nabla x\Pi 
N
p v
\bigm\| \bigm\| 2
0,K

+ h2
In

\bigm\| \bigm\| \partial t\Pi N
p v
\bigm\| \bigm\| 2
0,K

\Bigr) 
\leq c\Pi N

p
h - 2
K\bfx 

\biggl( 
h2
K\bfx 

\bigm\| \bigm\| \nabla x\Pi 
N
p v
\bigm\| \bigm\| 2
0,K

+
\bigm\| \bigm\| \bigm\| \Pi 0,K

p - 1\Pi 
N
p v
\bigm\| \bigm\| \bigm\| 2
0,K

+ hIn

\bigm\| \bigm\| \bigm\| \Pi 0,K\bfx 

0 \Pi N
p v(\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,K

\biggr) 
.

The definition of \Pi N
p , and the stability of the L2 and \Pi N

p projectors entail

h - 2
K\bfx 

\bigm\| \bigm\| \Pi N
p v
\bigm\| \bigm\| 2
0,K

+
\bigm\| \bigm\| \nabla x\Pi 

N
p v
\bigm\| \bigm\| 2
0,K

+ h - 2
K\bfx 

h2
In

\bigm\| \bigm\| \partial t\Pi N
p v
\bigm\| \bigm\| 2
0,K

\leq c\Pi N
p
h - 2
K\bfx 

\Bigl( 
h2
K\bfx 

\| \nabla xv\| 20,K + \| v\| 20,K + hIn\| v(\cdot , tn - 1)\| 20,K
\Bigr) 
.

Applying a trace inequality along the time variable (with constant ctr) on the last
term yields

h - 2
K\bfx 

\bigm\| \bigm\| \Pi N
p v
\bigm\| \bigm\| 2
0,K

+
\bigm\| \bigm\| \nabla x\Pi 

N
p v
\bigm\| \bigm\| 2
0,K

+ h - 2
K\bfx 

h2
In

\bigm\| \bigm\| \partial t\Pi N
p v
\bigm\| \bigm\| 2
0,K

\leq (1 + ctr)c\Pi N
p

\Bigl( 
h - 2
K\bfx 

\| v\| 20,K + \| \nabla xv\| 20,K + h - 2
K\bfx 

h2
In\| \partial tv\| 

2
0,K

\Bigr) 
.

We insert this bound into (2.21) after applying the triangle inequality and obtain
(2.19). Adding over all elements gives (2.20).

Here and in the following, for a given v in L2(QT ), we shall write

v(n) := v| \Omega \times In
\forall n= 1, . . . ,N.
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SPACE-TIME VEM FOR THE HEAT EQUATION 211

For all uh, vh in Yh and K in \scrT h, K =Kx \times In, we set

bKh (uh, vh) :=

\left\{               

cH(\partial t\Pi 
 \star 
puh, vh)0,K + aKh (uh, vh)

+cH

\Bigl( 
\Pi  \star 

pu
(1)
h (\cdot ,0), v(1)h (\cdot ,0)

\Bigr) 
0,K\bfx 

if n= 1;

cH(\partial t\Pi 
 \star 
puh, vh)0,K + aKh (uh, vh)

+cH

\Bigl( 
\Pi  \star 

pu
(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1), v

(n)
h (\cdot , tn - 1)

\Bigr) 
0,K\bfx 

if 2\leq n\leq N.

(2.22)

The bilinear form bKh (\cdot , \cdot ) is computable through the DoFs. Actually, \Pi  \star 
pu

(n)
h (\cdot , tn - 1) =

u
(n)
h (\cdot , tn - 1) for 1 \leq n \leq N by the definition of \Pi  \star 

p in (2.6) and the definition of the
local VE spaces.

We define the discrete counterpart of the global bilinear form b(\cdot , \cdot ) introduced in
(1.3) as follows:

(2.23) bh(uh, vh) :=
\sum 

K\in \scrT h

bKh (uh, vh) \forall uh, vh \in Yh.

The third terms in the definition of bKh (uh, vh) in (2.22) stand for upwind fluxes for
the weak imposition of the zero initial condition for n = 1, or of time continuity for
2\leq n\leq N .

2.4.1. An admissible stabilization. Consider the following stabilization for
K =Kx \times In:

SK(uh, vh) := h - 2
K\bfx 

(\Pi 0,K
p - 1uh,\Pi 

0,K
p - 1vh)0,K + h - 1

K\bfx 

\sum 
F\in \scrF K

(\Pi 0,F
p uh,\Pi 

0,F
p vh)0,F

+ h - 2
K\bfx 

hIn (uh(\cdot , tn - 1), vh(\cdot , tn - 1))0,K\bfx 
.

(2.24)

This bilinear form is computable via the DoFs.

Proposition 2.12. The stabilization in (2.24) satisfies properties (2.13) and
(2.14).

Proof. Property (2.13) follows from the fact that SK(vh, vh) involves the squares
of all the DoFs. Furthermore, property (2.14) follows from the stability of the
L2 projectors and the trace inequality applied to the time-like and space-like facet
terms.

As pointed out in subsection 2.4, property (2.13) and the scaling argument in
Remark 2.2 imply that property (2.15) is satisfied as well.

2.5. The method. The VEM that we propose reads as follows:

(2.25) Find uh \in Yh such that bh(uh, vh) = (f,\Pi 0,QT

p - 1 vh)0,QT
\forall vh \in Yh.

The projector \Pi 0,QT

p - 1 makes the right-hand side computable and is L2 stable, which
is used in the proof of the well posedness of (2.25) in Theorem 3.3 below.

Under assumption (G1), the method can be solved in a time-marching fashion
by solving the counterpart of (2.25) restricted to the time-slab In, for n= 1, . . . ,N  - 
1, and then transmitting the information to the subsequent time-slab In+1 through
upwinding.
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x

t

x

t

x

t

Fig. 1. (a) Left panel: a mesh satisfying assumption (G1). (b) Central panel: a mesh with
nonmatching time-like facets. (c) Right panel: a mesh with nonmatching space-like facets.

2.6. A glimpse on more general meshes. The reasons why we required as-
sumption (G1) is that it is easier to present the construction of the VE spaces. We
refer to Figure 1(a) for an example of an admissible mesh in the sense of (G1). We can
weaken this assumption along two different avenues: we can allow for the following:

\bullet nonmatching time-like facets; see Figure 1(b);
\bullet nonmatching space-like facets; see Figure 1(c).

These generalizations are particularly convenient for space--time adaptivity, where
nonmatching time-like and space-like facets typically occur. In the definition of the
corresponding VE spaces, a few modifications would take place. In the case of non-
matching time-like facets (as in Figure 1(b)), VE functions have piecewise polynomial
Neumann traces. Nonmatching space-like facets (as in Figure 1(c)) have no effect on
the definition of the local VE spaces; see [11] for more details.

3. Well posedness of the virtual element method. In this section, we prove
well posedness of the method in (2.25). To this aim, we endow the trial space with a
suitable norm, which is defined by means of a VE Newton potential; see subsection
3.1. In subsection 3.2, we prove a discrete inf-sup condition. This proof extends that
of [18, Theorem 2.1] to our setting, where multiple variational crimes have to be taken
into account.

Before that, we prove a global Poincar\'e-type inequality for functions in the space
Yh.

Proposition 3.1. Let assumptions (G1)--(G2) be valid. Then, there exists a
positive constant CP independent of the mesh size h such that

(3.1) \| vh\| 0,QT
\leq CP \| vh\| Y (\scrT h)

\forall vh \in Yh.

Proof. It suffices to prove the counterpart of (3.1) over each time slab In. On
any time-like face F , we define the scalar jump [[vh]] as [[vh]]F \cdot nF .

2 We start from
the spatial Poincar\'e inequality in [5, eq. (1.3) for d \geq 2 and sect. 8 for d = 1] with
constant cPB and integrate it in time over the time slab In:

\| vh\| 20,\Omega \times In
\leq cPB

\left(  \sum 
K\in \scrT h,K\subset \Omega \times In

\| \nabla xvh\| 20,K +
\sum 

F\bfx \in \scrF \bfx 
h

h - 1
F\bfx 

\int 
In

\biggl( \int 
F\bfx 

[[vh]]dS

\biggr) 2

dt

\right)  .

For d= 1, the integral over the point Fx is the evaluation at Fx.
To conclude, we have to estimate the second term on the right-hand side. To this

aim, we prove estimates on each time-like facet and then collect them together. For

2We have that [[\cdot ]] is a scalar function whereas [[\cdot ]]F defined in (2.9) is a vector field.
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SPACE-TIME VEM FOR THE HEAT EQUATION 213

simplicity, we further assume that F = Fx \times In is an internal (time-like) facet shared
by two elements K1 =Kx,1\times In and K2 =Kx,2\times In. The case of a boundary time-like
facet can be dealt with similarly. Recall from the nonconformity of the space Yh (see
(2.10)) that \Pi 0,F

p [[vh]] = 0.
Using Jensen's inequality, we write

h - 1
F\bfx 

\int 
In

\Bigl( \int 
F\bfx 

[[vh]]dS
\Bigr) 2

dt\leq 
\int 
In

\int 
F\bfx 

[[vh]]
2dS dt =

\bigm\| \bigm\| [[vh]] - \Pi 0,F
p [[vh]]

\bigm\| \bigm\| 2
0,F

.

Denote the L2 projection onto \BbbP p(In) of the restriction of vh to Kj by qt,jp , j = 1,2.
Let qtp be defined on K1 \cup K2 piecewise as qtp| Kj

= qt,jp , j = 1,2. A standard trace

inequality in space with constant ctr, and the local Poincar\'e inequality (2.12) give

h - 1
F\bfx 

\int 
In

\Bigl( \int 
F\bfx 

[[vh]]dS
\Bigr) 2

dt\leq ctr

\Bigl( 
h - 1
K1,\bfx 

\bigm\| \bigm\| vh  - qtp
\bigm\| \bigm\| 2
0,K1

+ hK1,\bfx 

\bigm\| \bigm\| \nabla x(vh  - qtp)
\bigm\| \bigm\| 2
0,K1

+h - 1
K2,\bfx 

\bigm\| \bigm\| vh  - qtp
\bigm\| \bigm\| 2
0,K2

+ hK2,\bfx 

\bigm\| \bigm\| \nabla x(vh  - qtp)
\bigm\| \bigm\| 2
0,K2

\Bigr) 
\leq 2ctr

\biggl( 
max
K\in \scrT h

CK
P

\biggr) 2 \Bigl( 
hK1,\bfx 

\bigm\| \bigm\| \nabla x(vh  - qtp)
\bigm\| \bigm\| 2
0,K1

+ hK2,\bfx 

\bigm\| \bigm\| \nabla x(vh  - qtp)
\bigm\| \bigm\| 2
0,K2

\Bigr) 
\leq 2ctr

\biggl( 
max
K\in \scrT h

CK
P

\biggr) 2

max(hK1,\bfx , hK2,\bfx )

2\sum 
j=1

\| \nabla xvh\| 20,Kj
.

Summing over all the time-like facets of the nth time slab and recalling that the
number of (d - 1)-dimensional facets of each Kx is uniformly bounded with respect
to the meshsize (see assumption (G2)), we get the assertion.

3.1. A virtual element Newton potential. We define a VE Newton potential
\frakN h : \scrS p(\scrT h)\rightarrow Yh as follows: for any \phi h in \scrS p(\scrT h), \frakN h\phi h in Yh solves

ah(\frakN h\phi h, vh) = bh(\phi h, vh) - ah(\phi h, vh)

= cH

\Bigl[ 
(\partial t\phi h, vh)0,QT

+
\Bigl( 
\phi 
(1)
h (\cdot ,0), v(1)h (\cdot ,0)

\Bigr) 
0,\Omega 

+

N\sum 
n=2

\Bigl( 
\phi 
(n)
h (\cdot , tn - 1) - \phi 

(n - 1)
h (\cdot , tn - 1), v

(n)
h (\cdot , tn - 1)

\Bigr) 
0,\Omega 

\Bigr] 
\forall vh \in Yh.

(3.2)

Thanks to the stability bounds (2.18), the bilinear form ah(\cdot , \cdot ) is continuous and
coercive, and the continuity in the Y (\scrT h) norm of the functional on the right-hand
side of (3.2) follows from Proposition 3.1. Therefore, the VE Newton potential is well
defined.

We introduce the following norm on the sum space X + Yh: for all v in X + Yh,

\| v\| 2X(\scrT h)
:= \| v\| 2Y (\scrT h)

+
\bigm\| \bigm\| \frakN h(\Pi 

 \star 
pv)
\bigm\| \bigm\| 2
Y (\scrT h)

+
cH
2

\Bigl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pv

(1)(\cdot ,0)
\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \bigl( \Pi  \star 
pv

(n)  - \Pi  \star 
pv

(n - 1)
\bigr) 
(\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
\bigm\| \bigm\| \bigm\| \Pi  \star 

pv
(N)(\cdot , T )

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

\Bigr) 
.

(3.3)

Recalling the embedding X \lhook \rightarrow \scrC 0(0, T ;L2(\Omega )) in (2.11), we have that \Pi  \star 
p in (2.6) is

well defined for functions in X. In section 4 below, we shall present the convergence
analysis of the method with respect to the \| \cdot \| X(\scrT h)

norm.
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214 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

3.2. A discrete inf-sup condition and well posedness of the method. In
this section, we prove a discrete inf-sup condition in the spaces (Yh,\| \cdot \| X(\scrT h)

) for the
trial functions and (Yh,\| \cdot \| Y (\scrT h)

) for the test functions.

Proposition 3.2. There exists a positive constant \gamma I independent of \scrT h such that

(3.4) sup
0 \not =vh\in Yh

bh(uh, vh)

\| vh\| Y (\scrT h)

\geq \gamma I\| uh\| X(\scrT h)
\forall uh \in Yh.

Proof. For any uh in Yh, define wh :=\frakN h(\Pi 
 \star 
puh) in Yh. It suffices to prove that

bh(uh, uh + \delta wh)

\| uh + \delta wh\| Y (\scrT h)

\geq \gamma I\| uh\| X(\scrT h)

for a suitable real parameter \delta > 0, which will be fixed below.
The triangle inequality and the definition of the norm \| \cdot \| X(\scrT h)

in (3.3) imply

\| uh + \delta wh\| 2Y (\scrT h)
\leq 2

\Bigl( 
\| uh\| 2Y (\scrT h)

+\delta 2\| wh\| 2Y (\scrT h)

\Bigr) 
\leq 2max(1, \delta 2)\| uh\| 2X(\scrT h)

,

whence we deduce

(3.5) \| uh + \delta wh\| Y (\scrT h)
\leq 
\surd 
2max(1, \delta )\| uh\| X(\scrT h)

.

Next, recalling (2.23) and (2.22), we write

bh(uh, uh) =
\sum 

K\in \scrT h

\bigl( 
cH(\partial t\Pi 

 \star 
puh, uh)0,K + aKh (uh, uh)

\bigr) 
+ cH

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+ cH

N\sum 
n=2

\Bigl( 
\Pi  \star 

pu
(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1), u

(n)
h (\cdot , tn - 1)

\Bigr) 
0,\Omega 

.

(3.6)

For K =Kx \times In, we have

(\partial t\Pi 
 \star 
puh, uh)0,K

(2.6a)
= (\partial t\Pi 

 \star 
puh,\Pi 

 \star 
puh)0,K

=
1

2

\biggl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn)

\bigm\| \bigm\| \bigm\| 2
0,K\bfx 

 - 
\bigm\| \bigm\| \bigm\| \Pi  \star 

pu
(n)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,K\bfx 

\biggr) 
.

By (2.6b), we have u
(n)
h (\cdot , tn - 1) =\Pi  \star 

pu
(n)
h (\cdot , tn - 1). Simple calculations give\sum 

K\in \scrT h

(\partial t\Pi 
 \star 
puh, uh)0,K +

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\Bigl( 
\Pi  \star 

pu
(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1), u

(n)
h (\cdot , tn - 1)

\Bigr) 
0,\Omega 

=

N\sum 
n=1

\biggl( 
1

2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

 - 1

2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

\biggr) 
+
\bigm\| \bigm\| \bigm\| \Pi  \star 

pu
(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\biggl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

 - 
\Bigl( 
\Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1),\Pi 

 \star 
pu

(n)
h (\cdot , tn - 1)

\Bigr) 
0,\Omega 

\biggr) 

=
1

2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

1

2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
1

2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(N)
h (\cdot , T )

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

.
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SPACE-TIME VEM FOR THE HEAT EQUATION 215

Therefore, from (3.6) and (2.18), we get

bh(uh, uh)\geq \alpha \ast \| uh\| 2Y (\scrT h)
+

cH
2

\Bigl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \bigl( \Pi  \star 
pu

(n)
h  - \Pi  \star 

pu
(n - 1)
h

\bigr) 
(\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
\bigm\| \bigm\| \bigm\| \Pi  \star 

pu
(N)
h (\cdot , T )

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

\Bigr) 
.

(3.7)

Moreover, the definition of bh(\cdot , \cdot ) in (2.22) and (2.23), and the definition of the VE
Newton potential in (3.2) imply

(3.8) bh(uh, \delta wh) = \delta (ah(wh,wh) + ah(uh,wh)) .

Since (2.18) gives ah(wh,wh) \geq \alpha \ast \| wh\| 2Y (\scrT h)
, then Young's inequality entails, for all

positive \varepsilon ,

ah(uh,wh)\geq  - (ah(uh, uh))
1
2 (ah(wh,wh))

1
2 \geq  - \alpha \ast \| uh\| Y (\scrT h)

\| wh\| Y (\scrT h)

\geq  - \alpha \ast 

2\varepsilon 
\| uh\| 2Y (\scrT h)

 - \alpha \ast \varepsilon 

2
\| wh\| 2Y (\scrT h)

.

Inserting the two above inequalities into (3.8) yields

(3.9) bh(uh, \delta wh)\geq \delta 

\biggl( 
\alpha \ast  - 

\alpha \ast \varepsilon 

2

\biggr) 
\| wh\| 2Y (\scrT h)

 - \alpha \ast \delta 

2\varepsilon 
\| uh\| 2Y (\scrT h)

.

As a final step, we sum (3.7) and (3.9):

bh(uh, uh + \delta wh)

\geq 
\biggl( 
\alpha \ast  - 

\alpha \ast \delta 

2\varepsilon 

\biggr) 
\| uh\| 2Y (\scrT h)

+ \delta 

\biggl( 
\alpha \ast  - 

\alpha \ast \varepsilon 

2

\biggr) 
\| wh\| 2Y (\scrT h)

+
cH
2

\Bigl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
\bigm\| \bigm\| \bigm\| \Pi  \star 

pu
(N)
h (\cdot , T )

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

\Bigr) 
.

Taking 0< \varepsilon < (2\alpha \ast )/\alpha 
\ast and 0< \delta < (2\varepsilon \alpha \ast )/\alpha 

\ast , defining

\beta :=min

\biggl( 
\alpha \ast  - 

\alpha \ast \delta 

2\varepsilon 
, \delta 

\biggl( 
\alpha \ast  - 

\alpha \ast \varepsilon 

2

\biggr) \biggr) 
> 0,

and recalling (3.3) and (3.5), we can write

bh(uh, uh + \delta wh)

\geq \beta 
\Bigl( 
\| uh\| 2Y (\scrT h)

+ \| wh\| 2Y (\scrT h)

\Bigr) 
+

cH
2

\Bigl( \bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(1)
h (\cdot ,0)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \Pi  \star 
pu

(n)
h (\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)
h (\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
\bigm\| \bigm\| \bigm\| \Pi  \star 

pu
(N)
h (\cdot , T )

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

\Bigr) 
\geq min(1, \beta )\| uh\| 2X(\scrT h)

\geq min(1, \beta )\surd 
2max(1, \delta )

\| uh\| X(\scrT h)
\| uh + \delta wh\| Y (\scrT h)

.

The assertion follows with \gamma I :=min (1, \beta )/(
\surd 
2max(1, \delta )).

We are in a position to prove the well posedness of the method in (2.25).
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216 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

Theorem 3.3. There exists a unique solution uh to the method in (2.25) with the
following continuous dependence on the data:

\| uh\| X(\scrT h)
\leq \gamma  - 1

I CP \nu 
 - 1\| f\| 0,QT

,

where \gamma I is the discrete inf-sup constant in (3.4), CP is the Poincar\'e-type inequality
constant in (3.1), and \nu is the thermal conductivity.

Proof. The discrete inf-sup condition (3.4) implies uniqueness of the solution.
The existence follows from the uniqueness, owing to the finite dimensionality of Yh.
As for the stability bound, we apply again the inf-sup condition (3.4) and recall the
definition (2.25) of the method:

\| uh\| X(\scrT h)
\leq 1

\gamma I
sup

0\not =vh\in Yh

bh(uh, vh)

\| vh\| Y (\scrT h)

=
1

\gamma I
sup

0\not =vh\in Yh

(f,\Pi 0,QT

p - 1 vh)0,QT

\| vh\| Y (\scrT h)

.

The Cauchy--Schwarz inequality, the L2 stability of \Pi 0,QT

p - 1 , and the global Poincar\'e-
type inequality (3.1) give the assertion.

4. Convergence analysis. In this section, we analyze the convergence of the
method in (2.25). We start by introducing further technical tools in subsection 4.1,
which are typical of the nonconforming framework. Then, in subsections 4.2 and 4.3,
we develop an a priori error analysis in two steps: first, we prove a convergence result
\`a la Strang; next, we derive optimal convergence rates, by using interpolation and
polynomial approximation results, assuming sufficient regularity on the solution.

4.1. Technical results. Introduce the bilinear form \scrN h : L2
\bigl( 
0, T ;H

3
2+\varepsilon (\Omega )

\bigr) 
\times 

Yh \rightarrow \BbbR given by

(4.1) \scrN h(u, vh) := \nu 

N\sum 
n=1

\int 
In

\sum 
F\bfx \in \scrF \bfx 

h

\int 
F\bfx 

\nabla xu \cdot [[vh]]F dS dt.

This bilinear form encodes information on the nonconformity of the space Yh across
time-like facets.

On K = In \times Kx, define the local bilinear form

bK(w,v) :=

\int 
In

\int 
K\bfx 

(cH\partial tw v+ \nu \nabla xw \cdot \nabla xv)dx dt.

Lemma 4.1. Assume that the solution u to the continuous problem (1.4) belongs
to L2(0, T ;H

3
2+\varepsilon (\Omega )). Then, for all vh in Yh,

(4.2)
\sum 

K\in \scrT h

bK(u, vh) = (f, vh)0,QT
+\scrN h(u, vh).

Proof. Integrating by parts in space and recalling the definition of \scrN h in (4.1),
we can write\sum 

K\in \scrT h

bK(u, vh)

=
\sum 

K\in \scrT h

\int 
In

\Biggl( \int 
K\bfx 

(cH\partial tu - \nu \Delta xu)vhdx + \nu 
\sum 

F\bfx \in \scrF K\bfx 

\int 
F\bfx 

vh(nF\bfx \cdot \nabla xu)dS

\Biggr) 
dt

= (f, vh)0,QT
+\scrN h(u, vh),

which proves (4.2).
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SPACE-TIME VEM FOR THE HEAT EQUATION 217

We introduce another preliminary result, which characterizes the polynomial
inconsistency of the method in (2.25). To this aim, we define the bilinear form
\scrJ K : H1(\scrT h) \times Yh \rightarrow \BbbR given on each K = Kx \times In in \scrT h as follows: for all w in
H1(\scrT h), vh in Yh,

\scrJ K(w,vh):=

\left\{     
cH

\Bigl( 
\Pi  \star 

pw
(1)(\cdot ,0), v(1)h (\cdot ,0)

\Bigr) 
0,K\bfx 

if n= 1;

cH

\Bigl( \bigl( 
\Pi  \star 

pw
(n) - \Pi  \star 

pw
(n - 1)

\bigr) 
(\cdot , tn - 1), v

(n)
h (\cdot , tn - 1)

\Bigr) 
0,K\bfx 

if 2\leq n\leq N.

(4.3)

This bilinear form encodes the polynomial inconsistency of the method at space-like
facets, as stated in the following lemma.

Lemma 4.2. The local bilinear forms bKh (\cdot , \cdot ) satisfy

bKh (qp, vh) = bK(qp, vh) +\scrJ K(qp, vh) \forall qp \in \scrS p(\scrT h), \forall vh \in Vh(K), \forall K \in \scrT h.(4.4)

Proof. Thanks to the definition of the bilinear form aK(\cdot , \cdot ), the orthogonality
properties of the projector \Pi N

p , and the fact that the projectors \Pi  \star 
p and \Pi N

p preserve
polynomials of degree p, we have

bKh (qp, vh)

= cH(\partial t\Pi 
 \star 
pqp, vh)0,K+aK(\Pi N

p qp,\Pi 
N
p vh)+\nu SK((I - \Pi N

p )qp, (I - \Pi N
p )vh)+\scrJ K(\Pi  \star 

pqp, vh)

= cH(\partial t\Pi 
 \star 
pqp, vh)0,K + aK(qp,\Pi 

N
p vh) +\scrJ K(qp, vh)

= cH(\partial tqp, vh)0,K + aK(qp, vh) +\scrJ K(qp, vh) = bK(qp, vh) +\scrJ K(qp, vh).

This completes the proof.

4.2. A Strang-type result. We prove an a priori estimate for the method in
(2.25).

Theorem 4.3. Let u and uh be the solutions to (1.4) and (2.25), let u belong to
X \cap L2(0, T,H

3
2+\varepsilon (\Omega )) for some \varepsilon > 0, let uI in Yh be the DoF interpolant of u in Yh,

and let \gamma I be the discrete inf-sup constant appearing in (3.4). Then, we have

\| u - uh\| X(\scrT h)
\leq \| u - uI\| Y (\scrT h)

+ \gamma  - 1
I sup

0\not =vh\in Yh

\Biggl[ 
| (f  - \Pi 0,QT

p - 1 f, vh)0,QT
| 

\| vh\| Y (\scrT h)

+
| \scrN h(u, vh)| 
\| vh\| Y (\scrT h)

+ inf
qp\in \scrS p(\scrT h)

\sum 
K\in \scrT h

\bigl( 
bKh (u - qp, vh) - bK(u - qp, vh) +\scrJ K(qp, vh)

\bigr) 
\| vh\| Y (\scrT h)

\Biggr] 
.

(4.5)

Proof. By the triangle inequality, we have

\| u - uh\| X(\scrT h)
\leq \| u - uI\| X(\scrT h)

+ \| uI  - uh\| X(\scrT h)
=: T1 + T2.

Since \Pi  \star 
p is computable from the DoFs, we have that \Pi  \star 

p(u - uI) = 0 in each element.
Taking into account (3.3), this yields

T 2
1 = \| u - uI\| 2Y (\scrT h)

+
\bigm\| \bigm\| \frakN h

\bigl( 
\Pi  \star 

p(u - uI)
\bigr) \bigm\| \bigm\| 2

Y (\scrT h)
+

cH
2

\Bigl( \bigm\| \bigm\| \Pi  \star 
p(u - uI)(\cdot ,0)

\bigm\| \bigm\| 2
0,\Omega 

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \Pi  \star 
p(u - u

(n)
I )(\cdot , tn - 1) - \Pi  \star 

p(u - u
(n - 1)
I )(\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 2
0,\Omega 

+
\bigm\| \bigm\| \Pi  \star 

p(u - uI)(\cdot , T )
\bigm\| \bigm\| 2
0,\Omega 

\Bigr) 
= \| u - uI\| 2Y (\scrT h)

.
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218 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

The rest of this proof is devoted to estimate the term T2. The definition of uI implies

bh(uI , vh) = bh(u, vh) \forall vh \in Yh.

Using this property and the discrete inf-sup condition (3.4), we get

\| uI  - uh\| X(\scrT h)
\leq \gamma  - 1

I sup
0\not =vh\in Yh

bh(uI  - uh, vh)

\| vh\| Y (\scrT h)

= \gamma  - 1
I sup

0\not =vh\in Yh

bh(u - uh, vh)

\| vh\| Y (\scrT h)

.

We recall (2.25), add and subtract any qp in \scrS p(\scrT h), use the inconsistency property
(4.4), add and subtract u, recall the property of the nonconformity bilinear form
\scrN h(\cdot , \cdot ) in (4.2), and deduce that

bh(u - uh, vh) =
\sum 

K\in \scrT h

bKh (u, vh) - (f,\Pi 0,QT

p - 1 vh)0,QT

=
\sum 

K\in \scrT h

\bigl( 
bKh (u - qp, vh) + bKh (qp, vh)

\bigr) 
 - (f,\Pi 0,QT

p - 1 vh)0,QT

=
\sum 

K\in \scrT h

\bigl( 
bKh (u - qp, vh) + bK(qp, vh) +\scrJ K(qp, vh)

\bigr) 
 - (f,\Pi 0,QT

p - 1 vh)0,QT

=
\sum 

K\in \scrT h

\bigl( 
bKh (u - qp, vh) + bK(qp  - u, vh) + bK(u, vh) +\scrJ K(qp, vh)

\bigr) 
 - (f,\Pi 0,QT

p - 1 vh)0,QT

=
\sum 

K\in \scrT h

\bigl( 
bKh (u - qp, vh) - bK(u - qp, vh)+\scrJ K(qp, vh)

\bigr) 
+(f - \Pi 0,QT

p - 1 f, vh)0,QT
+\scrN h(u, vh).

The assertion follows from taking the infimum over all qp in \scrS p(\scrT h) and then the
supremum over all vh in Yh.

4.3. A priori error estimate. The aim of this section is to prove optimal
convergence rates for the method in (2.25). So far, we derived all estimates with
explicit constants, so as to track the use of different type of inequalities (Poincar\'e,
trace, inverse estimates, . . .). Furthermore, we kept separated the contributions of
hK\bfx and hIn . In this section, we shall not keep this level of detail. As a matter of
notation, we henceforth write a \lesssim b meaning that there exists a positive constant c
independent of the meshsize, such that a\leq cb. We also write a\simeq b if a\lesssim b and b\lesssim a
at once.

We prove error estimates under some regularity assumptions on the exact solution
and focus on the case of isotropic space--time meshes, i.e., assume that

(4.6) hK\bfx \simeq hIn \simeq hK \forall K =Kx \times In \in \scrT h.

In Theorem 4.3, we proved that the error of the method in (2.25) is bounded by the
sum of four terms of different flavour: (i) a VE interpolation error; (ii) a term involving
the discretization of the right-hand side f ; (iii) a term measuring the spatial noncon-
formity of the discrete space; (iv) a term involving polynomial error estimates, which
appears because of the temporal nonconformity and the polynomial inconsistency of
the discrete bilinear form. Based on that result, we prove the following theorem.

Theorem 4.4. Let assumptions (G1)--(G3) be valid, and let \scrT h be isotropic in the
sense of (4.6). Let u, the solution of (1.4), and f , the right-hand side of (1.4), belong to
Hp+1(\scrT h) and Hp(\scrT h), respectively, where p\geq 1 denotes the degree of approximation
of the method in (2.25). Let uh be the solution to (2.25). Then,

(4.7) \| u - uh\| X(\scrT h)
\lesssim hp(| u| p+1,\scrT h

+ | f | p,\scrT h
).
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SPACE-TIME VEM FOR THE HEAT EQUATION 219

Proof. We estimate the four terms on the right-hand side of (4.5) separately. The
assertion then follows by combining the four bounds we provide below.

Part (i) VE interpolation error. For any qp in \scrS p(\scrT h), the triangle inequality
implies

(4.8) \| u - uI\| Y (\scrT h)
\leq | u - qp| Y (\scrT h)

+ | qp  - uI | Y (\scrT h)
.

We focus on the second term on the right-hand side. For any K in \scrT h, (qp  - uI)| K
belongs to Vh(K). Therefore, the stability bounds (2.17) entail

| qp  - uI | 2Y (K) \lesssim aKh (qp  - uI , qp  - uI) \forall K \in \scrT h.

Since uI is the DoFs interpolant of u and ah(\cdot , \cdot ) is computed via the DoFs, the above
inequality also implies

| qp  - uI | 2Y (\scrT h)
\lesssim ah(qp  - uI , qp  - uI) = ah(qp  - u, qp  - u).

Furthermore, using the discrete continuity property (2.20), we arrive at

| qp  - uI | 2Y (\scrT h)
\lesssim 
\sum 

K\in \scrT h

\Bigl( 
h - 2
K \| u - qp\| 20,K + | u - qp| 21,K

\Bigr) 
.

Inserting this into (4.8) and using standard polynomial approximation results yield

\| u - uI\| Y (\scrT h)
\lesssim hp| u| p+1,\scrT h

.

Part (ii) Handling the variational crime on the right-hand side \bfitf . Using
the definition of \Pi 0,QT

p - 1 , standard polynomial approximation estimates, and the global
discrete Poincar\'e inequality (3.1) entail

(f  - \Pi 0,QT

p - 1 f, vh)0,QT
\leq 
\sum 

K\in \scrT h

\bigm\| \bigm\| \bigm\| f  - \Pi 0,K
p - 1f

\bigm\| \bigm\| \bigm\| 
0,K

\| vh\| 0,K \lesssim hp| f | p,\scrT h
\| vh\| 0,QT

\lesssim hp| f | p,\scrT h
\| vh\| Y (\scrT h)

.

Part (iii) Handling the variational crime of the time-like nonconformity.
We estimate

sup
0\not =vh\in Yh

| \scrN h(u, vh)| 
\| vh\| Y (\scrT h)

= sup
0\not =vh\in Yh

| \nu 
\sum 

F\in \scrF h

\int 
In

\int 
F\bfx 

\nabla xu \cdot [[vh]]FdS dt| 
\| vh\| Y (\scrT h)

.

We present estimates on a single facet F = Fx \times In. For the sake of simplicity,
we assume that F is an internal time-like facet shared by the elements K1 and K2.
Using the definition of the spatial nonconformity of the space Yh (see (2.10)) and the
properties of L2 projectors, for all qt,1p , qt,2p in \BbbP p(In), we write3\bigm| \bigm| \bigm| \bigm| \int 

In

\int 
F\bfx 

\nabla xu \cdot [[vh]]FdS dt

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \int 
In

\int 
F\bfx 

\nabla xu \cdot nF\bfx [[vh]]dS dt

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int 
In

\int 
F\bfx 

\bigl( 
\nabla xu \cdot nF\bfx  - \Pi 0,F

p (\nabla xu \cdot nF\bfx )
\bigr) 
[[vh]]dS dt

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \int 
In

\int 
F\bfx 

\bigl( 
\nabla xu \cdot nF\bfx  - \Pi 0,F

p (\nabla xu \cdot nF\bfx )
\bigr) \Bigl( 

(vh| K2
 - qt,2p ) - (vh| K1

 - qt,1p )
\Bigr) 
dS dt

\bigm| \bigm| \bigm| \bigm| .
3Here we use the scalar normal jump [[\cdot ]] defined in the proof of Proposition 3.1.
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220 S. GOMEZ, L. MASCOTTO, A. MOIOLA, AND I. PERUGIA

Next, use the Cauchy--Schwarz inequality, the triangle inequality, standard properties
of the L2 projector, a trace inequality, the local quasi-uniformity of the space--time
mesh, and arrive at\bigm| \bigm| \bigm| \bigm| \int 

In

\int 
F\bfx 

\nabla xu \cdot [[vh]]FdS dt

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm\| \bigm\| \nabla xu \cdot nF\bfx  - \Pi 0,F

p (\nabla xu \cdot nF\bfx )
\bigm\| \bigm\| 
L2(F )

\biggl( \bigm\| \bigm\| \bigm\| vh| K2
 - qt,2p

\bigm\| \bigm\| \bigm\| 
L2(F )

+
\bigm\| \bigm\| \bigm\| vh| K1

 - qt,1p

\bigm\| \bigm\| \bigm\| 
L2(F )

\biggr) 
\leq 
\bigm\| \bigm\| \bigm\| \nabla x

\Bigl( 
u - \Pi 0,K1

p+1 u
\Bigr) 
\cdot nF\bfx 

\bigm\| \bigm\| \bigm\| 
L2(F )

\biggl( \bigm\| \bigm\| \bigm\| vh| K2
 - qt,2p

\bigm\| \bigm\| \bigm\| 
L2(F )

+
\bigm\| \bigm\| \bigm\| vh| K1

 - qt,1p

\bigm\| \bigm\| \bigm\| 
L2(F )

\biggr) 
\lesssim 
\Bigl( 
h
 - 1

2

K1

\bigm| \bigm| \bigm| u - \Pi 0,K1

p+1 u
\bigm| \bigm| \bigm| 
Y (K1)

+ h\epsilon 
K1

\bigm| \bigm| \bigm| u - \Pi 0,K1

p+1 u
\bigm| \bigm| \bigm| 
3
2+\varepsilon ,K1

\Bigr) 
\times 
\biggl( \sum 

j=1,2

\Bigl( 
h
 - 1

2

Kj

\bigm\| \bigm\| vh  - qt,jp

\bigm\| \bigm\| 
0,Kj

+ h
1
2

Kj
| vh| Y (Kj)

\Bigr) \biggr) 
.

An application of (2.12) yields\bigm| \bigm| \bigm| \bigm| \int 
In

\int 
F\bfx 

\nabla xu \cdot [[vh]]FdS dt

\bigm| \bigm| \bigm| \bigm| 
\lesssim 

\biggl( \bigm| \bigm| \bigm| u - \Pi 0,K1

p+1 u
\bigm| \bigm| \bigm| 
Y (K1)

+ h
\epsilon + 1

2

K1

\bigm| \bigm| \bigm| u - \Pi 0,K1

p+1 u
\bigm| \bigm| \bigm| 
3
2+\varepsilon ,K1

\biggr) \sum 
j=1,2

| vh| Y (Kj)
.

Summing up over all the elements and using approximation properties of the L2

projector, we eventually get

sup
0\not =vh\in Yh

| \scrN h(u, vh)| 
\| vh\| Y (\scrT h)

\lesssim hp| u| p+1,\scrT h
.

Part (iv.a) Polynomial approximation error of \bfitb \bfitK (\cdot , \cdot ) type. Let qp be in
\scrS p(\scrT h). Using the Cauchy--Schwarz inequality twice and the definition of the bilinear
form bK(\cdot , \cdot ) give

bK(u - qp, vh) = cH (\partial t(u - qp), vh)0,K + \nu (\nabla x(u - qp),\nabla xvh)0,K

\lesssim | u - qp| 1,K(\| vh\| 0,K + | vh| Y (K)).

Summing up over all the elements, using an \ell 2 Cauchy--Schwarz inequality, and re-
calling the global Poincar\'e-type inequality (3.1), we can write

(4.9)
\sum 

K\in \scrT h

bK(u - qp, vh)\lesssim | u - qp| 1,\scrT h
\| vh\| Y (\scrT h)

.

Part (iv.b) Polynomial approximation error of \bfitb \bfitK \bfith (\cdot , \cdot ) +\bfscrJ \bfitK (\cdot , \cdot ) type.
Thanks to definitions (2.22) and (4.3) on each element K =Kx \times In in \scrT h, for all vh
in Yh, we have

bKh (u - qp, vh) +\scrJ K(qp, vh) = cH(\partial t\Pi 
 \star 
p(u - qp), vh)0,K

+ aKh (u - qp, vh) +\scrJ K(u, vh),
(4.10)

where qp is the same as in Part (iv.a). We first focus on the second term. Using the
stability bound (2.17) and the continuity property (2.19) with hK\bfx \simeq hIn , we arrive at
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SPACE-TIME VEM FOR THE HEAT EQUATION 221

aKh (u - qp, vh)\leq aKh (u - qp, u - qp)
1
2 aKh (vh, vh)

1
2

\lesssim 
\Bigl( 
h - 1
K \| u - qp\| 0,K + | u - qp| 1,K

\Bigr) 
| vh| Y (K).

Next, we deal with the first term on the right-hand side of (4.10). The Cauchy--
Schwarz inequality yields

(\partial t\Pi 
 \star 
p(u - qp), vh)0,K \leq 

\bigm\| \bigm\| \partial t\Pi  \star 
p(u - qp)

\bigm\| \bigm\| 
0,K

\| vh\| 0,K .

A polynomial inverse inequality gives

(4.11)
\bigm\| \bigm\| \partial t\Pi  \star 

p(u - qp)
\bigm\| \bigm\| 
0,K

\lesssim h - 1
K

\bigm\| \bigm\| \Pi  \star 
p(u - qp)

\bigm\| \bigm\| 
0,K

.

By using (2.8), the definition of \Pi  \star 
p, the stability of the L2 orthogonal projection, and

the trace inequality, we arrive at

\bigm\| \bigm\| \Pi  \star 
p(u - qp)

\bigm\| \bigm\| 
0,K

\lesssim 
\bigm\| \bigm\| \bigm\| \Pi 0,K

p - 1\Pi 
 \star 
p(u - qp)

\bigm\| \bigm\| \bigm\| 
0,K

+ h
1
2

K

\bigm\| \bigm\| \Pi 0,K\bfx 
p \Pi  \star 

p(u - qp)(\cdot , tn - 1)
\bigm\| \bigm\| 
0,K\bfx 

=
\bigm\| \bigm\| \bigm\| \Pi 0,K

p - 1(u - qp)
\bigm\| \bigm\| \bigm\| 
0,K

+ h
1
2

K

\bigm\| \bigm\| \Pi 0,K\bfx 
p (u - qp)(\cdot , tn - 1)

\bigm\| \bigm\| 
0,K\bfx 

\leq \| u - qp\| 0,K+h
1
2

K\| (u - qp)(\cdot , tn - 1)\| 0,K\bfx 

\lesssim \| u - qp\| 0,K+hK | u - qp| 1,K .

(4.12)

Therefore, we obtain

(\partial t\Pi 
 \star 
p(u - qp), vh)0,K \lesssim 

\Bigl( 
h - 1
K \| u - qp\| 0,K + | u - qp| 1,K

\Bigr) 
\| vh\| 0,K .

Finally, we estimate the third term on the right-hand side of (4.10). Since the initial
condition u(\cdot ,0) is zero, \scrJ K(u, vh) = 0 if n= 1. So, we consider the case n\geq 2:

\scrJ K(u, vh) = cH(\Pi  \star 
pu

(n)(\cdot , tn - 1) - \Pi  \star 
pu

(n - 1)(\cdot , tn - 1), v
(n)
h (\cdot , tn - 1))0,K\bfx 

\lesssim h
1
2

K

\biggl( \bigm\| \bigm\| \bigm\| u(\cdot , tn - 1) - \Pi  \star 
pu

(n)(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

+
\bigm\| \bigm\| \bigm\| u(\cdot , tn - 1) - \Pi  \star 

pu
(n - 1)(\cdot , tn - 1)

\bigm\| \bigm\| \bigm\| 
0,K\bfx 

\biggr) 
h
 - 1

2

K

\bigm\| \bigm\| \bigm\| v(n)h (\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

.

Proceeding as in Proposition 2.12, it is possible to show that

h
 - 1

2

K

\bigm\| \bigm\| \bigm\| v(n)h (\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

\lesssim | vh| Y (K).

Thus, we can focus on the two terms involving u. As for the first one, we use a trace
inequality along the time direction, add and subtract the same qp as above, recall
that \Pi  \star 

p preserves polynomials of degree at most p, use the triangle inequality, apply
the polynomial inverse estimate (4.11), and get

h
1
2

K

\bigm\| \bigm\| \bigm\| u(\cdot , tn - 1) - \Pi  \star 
pu

(n)(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

\lesssim 
\bigm\| \bigm\| u - \Pi  \star 

pu
\bigm\| \bigm\| 
0,K

+ hK

\bigm\| \bigm\| \partial t(u - \Pi  \star 
pu)
\bigm\| \bigm\| 
0,K

\leq \| u - qp\| 0,K + hK\| \partial t(u - qp)\| 0,K +
\bigm\| \bigm\| \Pi  \star 

p(u - qp)
\bigm\| \bigm\| 
0,K

+ hK

\bigm\| \bigm\| \partial t(\Pi  \star 
p(u - qp)

\bigm\| \bigm\| 
0,K

\leq \| u - qp\| 0,K + hK\| \partial t(u - qp)\| 0,K +
\bigm\| \bigm\| \Pi  \star 

p(u - qp)
\bigm\| \bigm\| 
0,K

.

Next, we apply estimate (4.12) and get

h
1
2

K

\bigm\| \bigm\| \bigm\| u(\cdot , tn - 1) - \Pi  \star 
pu

(n)(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

\lesssim \| u - qp\| 0,K + hK | u - qp| 1,K .
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For the second term involving u, we proceed analogously. Setting K \prime := Kx \times In - 1

and using the local quasi-uniformity of the space--time mesh, we get

h
1
2

K

\bigm\| \bigm\| \bigm\| u(\cdot , tn - 1) - \Pi  \star 
pu

(n - 1)(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 
0,K\bfx 

\lesssim \| u - qp\| 0,K\prime + hK\prime | u - qp| 1,K\prime .

Summing over all the elements, using standard manipulations (including \ell 2 Cauchy--
Schwarz inequalities), and applying the global Poincar\'e type inequality (3.1) give\sum 

K\in \scrT h

\bigl( 
bKh (u - qp, vh) +\scrJ K(qp, vh)

\bigr) 
(4.13)

\lesssim 
\sum 

K\in \scrT h

\Bigl( 
h - 2
K \| u - qp\| 2L2(K) + | u - qp| 21,K

\Bigr) 1
2 \| vh\| Y (\scrT h)

.

Conclusion of Part (iv). From (4.9) and (4.13), which are valid for any qp \in 
Vh(K), and standard polynomial approximation results, we obtain

sup
0\not =vh\in Yh

inf
qp\in \scrS p(\scrT h)

\sum 
K\in \scrT h

\bigl( 
bKh (u - qp, vh) - bK(u - qp, vh) +\scrJ K(qp, vh)

\bigr) 
\| vh\| Y (\scrT h)

\lesssim hp| u| p+1,\scrT h
.

This concludes Part (iv) and completes the whole proof.

5. Numerical results. In this section, we assess the error estimates proven in
Theorem 4.4. We developed an object-oriented MATLAB implementation to obtain
high-order approximations of space--time (1+1)- and (2+1)-dimensional problems. We
briefly mention some relevant computational aspects regarding the numerical results
below.

\bullet In case of inhomogeneous initial and/or boundary conditions, we set moments
at \Omega \times \{ 0\} and/or at \partial \Omega \times (0, T ) accordingly and modify the right-hand side.
This corresponds to a standard lifting procedure, where the lifting has all the
remaining moments equal to zero. In this way, in the presence of incompatible
initial and boundary data, no artificial compatibility condition is enforced on
the discrete solutions.

\bullet In Theorem 4.4, error bounds are provided in the \| \cdot \| X(\scrT h)
norm. Since the

virtual element solution uh to (2.25) is not known in closed form and the error
in the X(\scrT h) norm is not computable, we report the following associated error
quantities:

\scrE Y :=
\bigm\| \bigm\| u - \Pi N

p uh

\bigm\| \bigm\| 
Y (\scrT h)

, \scrE N :=
\bigm\| \bigm\| \Pi N

p (\frakN h\Pi 
 \star 
p(u - uh))

\bigm\| \bigm\| 
Y (\scrT h)

,

(\scrE U )2 :=
cH
2

\Biggl( \bigm\| \bigm\| \Pi  \star 
p(u - uh)(\cdot ,0)

\bigm\| \bigm\| 2
L2(\Omega )

+
\bigm\| \bigm\| \Pi  \star 

p(u - uh)(\cdot , T )
\bigm\| \bigm\| 2
L2(\Omega )

+

N\sum 
n=2

\bigm\| \bigm\| \bigm\| \Pi  \star 
p(u - uh)

(n)(\cdot , tn - 1) - \Pi  \star 
p(u - uh)

(n - 1)(\cdot , tn - 1)
\bigm\| \bigm\| \bigm\| 2
L2(\Omega )

\Biggr) 
.

(5.1a)

The X(\scrT h) norm is related to the sum of \scrE Y , \scrE N , and \scrE U . We also show the
error in the L2(QT ) norm, namely

(5.1b) \scrE L :=
\bigm\| \bigm\| u - \Pi  \star 

puh

\bigm\| \bigm\| 
L2(QT )

,

which is not covered by our theory.
\bullet In all experiments, we take cH = \nu = 1 and employ the stabilization in (2.24).
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Fig. 2. h-dependence of the errors in (5.1) for the patch tests with solution up in (5.2).

5.1. Results in (1+1)-dimension. We use tensor-product meshes and uni-
form partitions along the space and time directions.

5.1.1. Patch test. The discrete bilinear form bh(\cdot , \cdot ) in (2.23) is polynomial
inconsistent; see Lemma 4.2. However, thanks to the error estimates (4.7), the method
in (2.25) passes the patch test, i.e., up to round-off errors, polynomial solutions of
order p are approximated exactly.

We consider the following family of exact solutions on QT = (0,1)\times (0,1):

(5.2) up(x, t) =

\Biggl\{ 
tp/2xp/2 if p is even;

t(p - 1)/2x(p+1)/2 + t(p+1)/2x(p - 1)/2 if p is odd.

For any p\in \BbbN , up belongs to \BbbP p (QT ). In Figure 2, for p= 1, . . . ,5, we show the errors
in the approximation of up obtained using a sequence of meshes with hK\bfx = hIn =
5 \times 10 - 2/2i - 1, i = 1, . . . ,4, and approximation degree p. The scale of 10 - 10 in the
figures validates the patch test. The growth of the error observed while decreasing
the mesh size represents the actual effect of the condition number when solving the
linear systems stemming from (2.25).

5.1.2. Smooth solution. On the space--time domain QT = (0,1) \times (0,1), we
consider the problem with exact smooth solution

(5.3) u(x, t) = sin(t) sin(3\pi x).

In Figure 3, we show the rates of convergence of the errors in (5.1) obtained using
a sequence of meshes with hK\bfx = hIn = 0.2 \times 2 - i, for i = 1, . . . ,5, and different
approximation degrees p. We observe convergence of order \scrO (hp) for the error \scrE Y ,
of order \scrO (hp+ 1

2 ) for the error \scrE U , and of order \scrO (hp+1) for the errors \scrE N and \scrE L.
Such rates of convergence are in agreement with estimate (4.7) and the approximation
rates that might be expected from the norms in (5.1).

5.1.3. Singular solutions. We assess the convergence of the method for so-
lutions with finite Sobolev regularity. We use the same sequence of meshes as in
subsection 5.1.1. For QT = (0,1) \times (0,1) and \alpha >  - 1/2, we consider the singular
solutions

(5.4) u\alpha (x, t) = t\alpha sin(\pi x).
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Fig. 3. h-convergence of the errors in (5.1) for the test case with smooth solution (5.3). The
numbers in the yellow rectangles denote the experimental orders of convergence. (Figure in color
online.)

We have that u\alpha and \partial xu\alpha belong to H\alpha +1/2 - \epsilon (0,1;\scrC \infty (0,1)) for any \epsilon > 0. The
singularity occurs at the initial time. The errors in (5.1) are depicted in Figures 4
and 5 for \alpha = 0.55 and \alpha = 0.75. We observe convergence of order \scrO 

\bigl( 
hmin\{ p,\alpha +1/2\} \bigr) 

for the error \scrE Y , of order \scrO (h\alpha  - 1
2 ) for the error \scrE N , of order \scrO (h\alpha ) for the error \scrE U ,

and of order \scrO (h\alpha + 1
2 ) for the error \scrE L.

For a continuous finite element discretization of formulation (1.4), lower rates of
convergence are obtained; see [12, sect. 7.5.3].

5.1.4. Incompatible initial and boundary conditions. On the space--time
domain QT = (0,1) \times (0,1), we consider the heat equation problem (1.1) with zero
source term (f = 0), homogeneous Dirichlet boundary conditions (u = 0 on \partial \Omega \times 
(0, T )), and constant initial condition (u = 1 on \Omega \times \{ 0\} ). The corresponding exact
solution is given by the Fourier series

(5.5) u(x, t) =

\infty \sum 
n=0

4

(2n+ 1)\pi 
sin ((2n+ 1)\pi x) exp

\bigl( 
 - (2n+ 1)2\pi 2t

\bigr) 
.

Due to the incompatibility of the initial and boundary conditions, u is discontinuous
at (0,0) and (1,0), and does not belong to H1(QT ) but belongs to Hs

\bigl( 
0,1;H1

0 (0,1)
\bigr) 

for any s < 1/4; see [16, sect. 7.1]. Therefore, the rates of convergence obtained cannot
be predicted by Theorem 4.4.

In Figure 6, we show the errors obtained with p = 1,2 on a sequence of uniform
Cartesian meshes for the proposed VEM and on a sequence of structured triangular
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Fig. 4. h-convergence of the errors in (5.1) for the test case with singular solution u\alpha (5.4)
with \alpha = 0.55.

meshes for the continuous finite element method in [18]. The continuous finite element
method does not converge in the Y -norm, while the error \scrE Y of the proposed VEM
converges with order \scrO (h1/4). For the computation of the error, we truncate the
series (5.5) at n= 250.

5.1.5. Increasing the degree of approximation. We are also interested in
the performance of the p-version of the method, i.e., we fix a mesh and increase the
degree of approximation. This is worth investigating also in view of the design of hp
refinements. We consider the smooth solution test case from subsection 5.1.2 with a
fixed mesh with hIn = hK\bfx = 0.1. The results shown in Figure 7 in semilogy scale. We
observe the expected exponential convergence in terms of the square root of NDoFs

for all the VEM errors.

5.2. Results in (2+1)-dimension. We use tensor-product-in-time meshes
and uniform partitions of the time interval (0, T ), and discretize the spatial domain
\Omega with sequences of quadrilateral meshes such as that in Figure 8 (left panel). We
checked that the method passes the patch test also in the (2+1)-dimensional case.
We do not report the results for the sake of brevity.

On QT = (0,1)2 \times (0,1), we consider

(5.6) u(x, t) = exp( - t) sin(\pi x1) sin(\pi x2).

In Figure 8 (right panel), we display the rates of convergence using different values of
p and observe the expected rates of convergence for the error \scrE Y .
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Fig. 5. h-convergence of the errors in (5.1) for the test case with singular solution u\alpha (5.4)
with \alpha = 0.75.
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Fig. 6. h-convergence for the test case with exact solution (5.5) with incompatible initial and
boundary conditions.

6. Conclusions. We designed and analyzed a space--time VEM for the heat
equation based on a standard Petrov--Galerkin variational formulation. The advan-
tages of using the proposed space--time VEM over standard space--time finite element
methods are that it allows for decomposing the linear system stemming from the
method into smaller systems associated with different time slabs, can be modified
into a Trefftz variant, and permits the treatment of incompatible initial and boundary
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Fig. 7. p-convergence of the errors in (5.1) for the test case with smooth solution in (5.3).
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Fig. 8. Left panel: example of mesh for the 2-dimensional spatial domain used in the numerical
experiments. Right panel: h-convergence for the test case with smooth solution (5.6).

data. We proved well posedness of the method and optimal a priori error estimates.
Numerical results validate the expected rates of convergence.

In [11], the method introduced in this paper has been extended to more general
prismatic meshes with hanging facets and variable degrees of accuracy, enabling the
implementation of hp-adaptive mesh refinements. Tests of an adaptive procedure
driven by a residual-type error indicator are also presented there.
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