Dipartimento di Matematica "F. Casorati" Università degli studi di Pavia Via Ferrata 5, 27100 Pavia, Italy +39 0382 985656 - Room E15 andrea.moiola@unipv.it https://euler.unipv.it/moiola/ Directions: link to OSM, link to G.Maps |
Teaching |
Bio |
IDs |
Research |
Papers |
Preprints |
Notes |
Collaborators |
Slides |
Links |
Events
• Since July 2020 | Associate professor | University of Pavia | Department of Mathematics |
• July 2017 - June 2020 | Ricercatore (RTDB, equivalent to lecturer) | University of Pavia | Department of Mathematics |
• March 2013 - June 2017 | Senior research fellow (permanent post) | University of Reading | Department of Mathematics and Statistics |
• March 2012 - February 2013 | SNSF Fellowship | University of Reading | Supervised by Simon N. Chandler-Wilde |
• Sept. 2008 - November 2011 | PhD student | ETH Zürich | SAM - Supervised by Ralf Hiptmair and Ilaria Perugia |
ORCID ID: | 0000-0002-6251-4440 |
MathSciNet: | 931770 |
zbMATH: | moiola.andrea |
DBLP: | 75/9305 |
WoS ResearcherID: | K-6182-2015 |
Scopus Author ID: | 37049069900 |
arXiv: | moiola_a_1 |
Iris: | 11759 |
UniFind: | 667588 |
Google Scholar: | jZXSlW0AAAAJ |
S. Fraschini, G. Loli, A. Moiola, G. Sangalli,
An unconditionally stable space-time isogeometric method for the acoustic wave equation,
Comput. Math. Appl. (CAMWA)
169, 2024, pp. 205-222.
DOI: 10.1016/j.camwa.2024.06.009.
Preprint: arXiv:2303.07268.
[
·
XTIgA-Waves on GitHub, implemented by Sara Fraschini and Gabriele Loli]
A.M. Caetano, S.N. Chandler-Wilde, A. Gibbs, D.P. Hewett, A. Moiola,
A Hausdorff-measure boundary element method for acoustic scattering by fractal screens,
Numerische Mathematik,
156(2), 2024, pp. 463-532.
DOI: 10.1007/s00211-024-01399-7 (open access).
Preprint: arXiv:2212.06594.
[
·
IFSintegrals on GitHub, implemented by Andrew Gibbs.]
S. Gómez, A. Moiola,
A space-time DG method for the Schrödinger equation with variable potential,
Adv. Comput. Math.,
50(15), 2024.
DOI: 10.1007/s10444-024-10108-9 (open access).
Preprint: arXiv:2306.05780.
S. Gómez, L. Mascotto, A. Moiola, I. Perugia,
Space-time virtual elements for the heat equation,
SIAM J. Numer. Anal.,
62(1), 2024, pp. 199-228.
DOI: 10.1137/22M154140X.
Pdf file.
Preprint: arXiv:2212.05343.
E. Parolin, D. Huybrechs, A. Moiola,
Stable approximation of Helmholtz solutions by evanescent plane waves,
Math. Model. Numer. Anal. (M2AN),
7, 2023, pp. 3499-3536.
DOI: 10.1051/m2an/2023081 (open access).
Preprint: arXiv:2202.05658.
[
·
evanescent-plane-wave-approx on GitHub, implemented by Emile Parolin.]
T. Chaumont-Frelet, A. Moiola, E.A. Spence,
Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media,
J. Math. Pure. Appl., 179, 2023, pp. 183-218.
DOI: 10.1016/j.matpur.2023.09.004 (open access).
Preprint: arXiv:2301.07092.
S. Gómez, A. Moiola, I. Perugia, P. Stocker,
On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation,
Appl. Math. Lett., 146, 2023, 108824.
DOI: 10.1016/j.aml.2023.108824 (open access).
Preprint: arXiv:2306.09571.
L.M. Imbert-Gérard, A. Moiola, P. Stocker,
A space-time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients,
Math. Comput., 92(341), 2023, pp. 1211-1249.
DOI: 10.1090/mcom/3786.
Preprint: arXiv:2011.04617.
[
·
NGSTrefftz on GitHub, implemented by Paul Stocker.]
A. Gibbs, D.P. Hewett, A. Moiola,
Numerical quadrature for singular integrals on fractals,
Numer. Algorithms, 92, 2023, pp. 2071-2124.
DOI: 10.1007/s11075-022-01378-9 (open access).
Preprint: arXiv:2112.11793.
[
·
IFSintegrals on GitHub, implemented by Andrew Gibbs.]
R. Hiptmair, A. Moiola, E.A. Spence,
Spurious quasi-resonances in boundary integral equations for the Helmholtz transmission problem,
SIAM J. Appl. Math., 82(4), 2022, pp. 1446-1469.
DOI: 10.1137/21M1447052.
Pdf file.
Preprint: arXiv:2109.08530.
[
·
Link to Matlab routine.]
S. Gómez, A. Moiola,
A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation,
SIAM J. Numer. Anal., 60(2), 2022, pp. 688-714.
DOI: 10.1137/21M1426079.
Pdf file.
Preprint: arXiv:2106.04724.
A. Caetano, D.P. Hewett, A. Moiola,
Density results for Sobolev, Besov and Triebel-Lizorkin spaces on rough sets,
J. Funct. Anal., 281(3), 2021, 109019.
DOI: 10.1016/j.jfa.2021.109019.
Preprint: arXiv:1904.05420.
S.N. Chandler-Wilde, D.P. Hewett, A. Moiola, J. Besson,
Boundary element methods for acoustic scattering by fractal screens,
Numerische Mathematik, 147(4), 2021, 785-837.
DOI: 10.1007/s00211-021-01182-y (open access).
Preprint: arXiv:1909.05547.
P. Bansal, A. Moiola, I. Perugia, Ch. Schwab,
Space-time discontinuous Galerkin approximation of acoustic waves with point singularities,
IMA J. Numer. Anal., 41(3), 2021, pp. 2056-2109.
DOI: 10.1093/imanum/draa088
(free-access link).
Preprint: arXiv:2002.11575.
A. Gibbs, S.N. Chandler-Wilde, S. Langdon, A. Moiola,
A high frequency boundary element method for scattering by a class of multiple obstacles,
IMA J. Numer. Anal., 41(2), 2021, pp. 1197-1225.
DOI: 10.1093/imanum/draa025
(free-access link).
Preprint: arXiv:1903.04449.
K. McCusker, C.D. Westbrook, A. Moiola,
Analysis of the internal electric fields of pristine ice crystals and aggregate snowflakes, and their effect on scattering,
Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT),
230, June 2019, pp. 155-171.
DOI: 10.1016/j.jqsrt.2019.04.019.
A. Moiola, E.A. Spence,
Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions,
Math. Models Methods Appl. Sci. (M3AS),
29(02), 2019, pp. 317-354.
DOI: 10.1142/S0218202519500106.
Preprint: arXiv:1702.00745.
G.C. Diwan, A. Moiola, E.A. Spence,
Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?,
J. Comput. Appl. Math., 352, 2019, pp. 110-131.
DOI: 10.1016/j.cam.2018.11.035.
Preprint: arXiv:1806.05934.
A. Moiola, I. Perugia,
A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation,
Numerische Mathematik, 138(2) 2018, pp. 389-435.
DOI: 10.1007/s00211-017-0910-x
(read online at this link).
Preprint: arXiv:1610.08002.
S.N. Chandler-Wilde, D.P. Hewett, A. Moiola,
Sobolev spaces on non-Lipschitz subsets of Rn with application to boundary integral equations on fractal screens,
Integr. Equat. Oper. Th., 87(2) 2017, pp. 179-224.
DOI: 10.1007/s00020-017-2342-5
(read online at this link).
Preprint: arXiv:1607.01994.
D.P. Hewett, A. Moiola,
A note on properties of the restriction operator on Sobolev spaces,
Journal of Applied Analysis, 23(1) 2017, pp. 1-8.
DOI: 10.1515/jaa-2017-0001.
Preprint: arXiv:1607.01741.
D.P. Hewett, A. Moiola,
On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space,
Analysis and Applications, 15(5) 2017, pp. 731-770.
DOI: 10.1142/S021953051650024X.
Preprint: arXiv:1507.02698.
R. Hiptmair, A. Moiola, I. Perugia,
A survey of Trefftz methods for the Helmholtz equation.
In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations,
Springer Lect. Notes Comput. Sci. Eng.,
edited by G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis, 2016, pp. 237-278.
DOI: 10.1007/978-3-319-41640-3_8.
Preprint: arXiv:1506.04521.
F. Kretzschmar, A. Moiola, I. Perugia, S.M. Schnepp,
A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems,
IMA J. Numer. Anal., 36(4) 2016, pp. 1599-1635.
DOI: 10.1093/imanum/drv064.
Preprint: arXiv:1501.05253.
R. Hiptmair, A. Moiola, I. Perugia,
Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version,
Found. Comput. Math., 16(3) 2016, pp. 637-675.
DOI: 10.1007/s10208-015-9260-1.
Preprint: SAM Report 2013-31.
S.N. Chandler-Wilde, D.P. Hewett, A. Moiola,
Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples,
Mathematika, 61(2) 2015, pp. 414-443.
DOI: 10.1112/S0025579314000278.
Preprint: arXiv:1404.3599.
Corrigendum: Mathematika, 68(4) 2022, pp. 1393-1400. DOI:
10.1112/mtk.12155.
A. Moiola, E.A. Spence,
Is the Helmholtz equation really sign-indefinite?,
SIAM Review, 56(2) 2014, pp. 274-312.
DOI: 10.1137/120901301.
Pdf file.
Preprint: MPS-2012-23.
C.J. Howarth, P.N. Childs, A. Moiola,
Implementation of an interior point source in the ultra weak variational formulation through source extraction,
J. Comput. Appl. Math., 27 2014, pp. 295-306.
DOI: 10.1016/j.cam.2014.04.017.
Preprint: MPS-2013-11.
R. Hiptmair, A. Moiola, I. Perugia, Ch. Schwab,
Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-dGFEM,
Math. Model. Numer. Anal. (M2AN), 48 (3) 2014, pp. 727-752.
DOI: 10.1051/m2an/2013137 (free access).
Preprint: SAM Report 2012-38.
R. Hiptmair, A. Moiola, I. Perugia,
Trefftz discontinuous Galerkin methods for acoustic scattering on locally refined meshes,
Appl. Numer. Math., 79 2014, pp. 79-91.
DOI: 10.1016/j.apnum.2012.12.004.
Preprint: SAM Report 2012-06.
A. Moiola,
Plane wave approximation in linear elasticity,
Appl. Anal., 92(6) 2013, pp. 1299-1307.
DOI: link to journal.
Preprint: SAM Report 2011-20.
R. Hiptmair, A. Moiola, I. Perugia,
Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations,
Math. Comput., 82(281) 2013, pp. 247-268.
DOI: 10.1090/S0025-5718-2012-02627-5.
Preprint: SAM Report 2011-09.
R. Hiptmair, A. Moiola, I. Perugia,
Stability results for the time-harmonic Maxwell equations with impedance boundary conditions,
Math. Models Methods Appl. Sci. (M3AS), 21(11) 2011, pp. 2263-2287.
DOI: 10.1142/S021820251100574X.
Preprint: SAM Report 2010-39.
A. Moiola, R. Hiptmair, I. Perugia,
Plane wave approximation of homogeneous Helmholtz solutions,
Z. Angew. Math. Phys., 62(5) 2011, pp. 809-837.
DOI: 10.1007/s00033-011-0147-y.
Preprint: SAM Report 2009-27.
A. Moiola, R. Hiptmair, I. Perugia,
Vekua theory for the Helmholtz operator,
Z. Angew. Math. Phys., 62(5) 2011, pp. 779-807.
DOI: 10.1007/s00033-011-0142-3.
Preprint: SAM Report 2009-27.
R. Hiptmair, A. Moiola, I. Perugia,
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version,
SIAM J. Numer. Anal., 49(1) 2011, pp. 264-284.
DOI: 10.1137/090761057.
Pdf file.
Preprint: SAM Report 2009-20.
[NEW!]
L.-M. Imbert-Gérard, A. Moiola, C. Perinati, P. Stocker,
Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems,
arXiv:2408.00392, 2024.
[
·
NGSTrefftz on GitHub ·
documentation ·
zenodo.12821320,
implemented by Paul Stocker and Chiara Perinati.]
N. Galante, A. Moiola, E. Parolin,
Stable approximation of Helmholtz solutions in the ball using evanescent plane waves,
arXiv:2401.04016, 2024.
[
·
evanescent-plane-wave-approximation on GitHub, implemented by Nicola Galante.]
P. Bignardi, A. Moiola,
A space-time continuous and coercive formulation for the wave equation,
arXiv:2312.07268, 2023.
[
·
CoerciveWaveTests on GitHub, implemented by Paolo Bignardi.]
A.M. Caetano, S.N. Chandler-Wilde, X. Claeys, A. Gibbs, D.P. Hewett, A. Moiola,
Integral equation methods for acoustic scattering by fractals,
arXiv:2309.02184, 2023.
[
·
IFSintegrals on GitHub, implemented by Andrew Gibbs.]
A. Gibbs, S. Langdon, A. Moiola,
Numerically stable computation of embedding formulae for scattering by polygons,
arXiv:1805.08988, 2018.
A. Moiola,
Trefftz-discontinuous Galerkin methods for time-harmonic wave problems,
PhD dissertation, Seminar for Applied Mathematics, ETH Zürich, 2011 (link to pdf,
also available on the ETH e-collection),
DOI: 10.3929/ethz-a-006698757.