Hardness of Metric TSP instances

A computational study

E. Vercesi

Outline

- Introduction: Metric Traveling Salesman Problem (TSP)
- Difficulty of a TSP instance: literature review
- Predicting hardness: preliminary results

Main references:

V, E., Gualandi, S., Mastrolilli, M., & Gambardella, L. M. (2021). On the generation of Metric TSP instances with a large integrality gap by branch-and-cut. arXiv preprint *arXiv:2109.02454*. Under review at *Mathematical Programming Computation*.

Gambardella, L. M., Gualandi, S., Mastrolilli, M., & V, E. (2022). Hardness of metric TSP instances: a computational study. To be submitted to *AIROSpringer*.

Given *n* cities and a cost c_{ij} to go from city *i* to city *j*, for every city *i*, *j*, what is the shortest possible **tour** that visits each city exactly once and returns to the origin city?

Given *n* cities and a cost c_{ij} to go from city *i* to city *j*, for every city *i*, *j*, what is the shortest possible **tour** that visits each city exactly once and returns to the origin city?

Graph *G* with *n* **nodes** (= cities) and *m* **edges** (=links between cities)

Given *n* cities and a cost c_{ij} to go from city *i* to city *j*, for every city *i*, *j*, what is the shortest possible **tour** that visits each city exactly once and returns to the origin city?

Graph *G* with *n* **nodes** (= cities) and *m* **edges** (=links between cities)

Assumptions: metric properties of the cost vector:

- Completeness of the problem;
- ✓ No self-loop ($c_{ii} = 0$ for each $e = \{i, i\}, i \in V$)
- ✓ Symmetry ($c_{ij} = c_{ji}$ for each $e = \{i, j\}, i, j \in V$)
- ✓ Triangle inequalities ($c_{ij} \le c_{ik} + c_{jk}$ ∀1 ≤ *i* < *j* < *k* ≤ *n*)

 \rightarrow NP-hard problem! (Kannan and Monma, 1978)

...It depends!

- It depends on the number of nodes of the TSP instance;
- Cover image of this presentation: Optimal tour through 119614 stars from the HYG Database (~ 130 days of computer time) [https://www.math.uwaterloo.ca/tsp/star/index.html]

...It depends!

- It depends on the number of nodes of the TSP instance;
- Cover image of this presentation: Optimal tour through 119614 stars from the HYG Database (~ 130 days of computer time) [https://www.math.uwaterloo.ca/tsp/star/index.html]

Actually, what causes hardness it's still unclear...

Is TSP really hard?

- It depends on the used solver. State-of-art solver: concorde (Applegate et al., 1998);
- We have observed that different implementation of algorithms for TSP lead to differences between runtimes on different instances.
 - Instance *A* requires more time than instance *B* to be solved using concorde
 - Instance *B* requires more time than instance *A* to be solved using a custom implementation of TSP solver

Is TSP really hard?

- It depends on the used solver. State-of-art solver: concorde (Applegate et al., 1998);
- We have observed that different implementation of algorithms for TSP lead to differences between runtimes on different instances.
 - Instance *A* requires more time than instance *B* to be solved using concorde
 - Instance *B* requires more time than instance *A* to be solved using a custom implementation of TSP solver
- In the literature, we have both instances that are *easy* or *hard*;
- In the literature, there are instances with 30 nodes that require ~ 400 seconds or 0.02 seconds *in the same conditions*.

Is TSP really hard?

- It depends on the used solver. State-of-art solver: concorde (Applegate et al., 1998);
- We have observed that different implementation of algorithms for TSP lead to differences between runtimes on different instances.
 - Instance *A* requires more time than instance *B* to be solved using concorde
 - Instance *B* requires more time than instance *A* to be solved using a custom implementation of TSP solver
- In the literature, we have both instances that are *easy* or *hard*;
- In the literature, there are instances with 30 nodes that require ~ 400 seconds or 0.02 seconds *in the same conditions*.
- ? What is the main cause of hardness?

Predicting hardness: literature review

- Exact algorithms: Cheeseman et al. (1991), Gent and Walsh (1996), Osorio and Pinto (2003), Fischer et al. (2005), Schawe and Hartmann (2016).
- Heuristic methods: Hemert and Urquhart (2004), Smith-Miles et al. (2010), Cárdenas-Montes (2016).

Predicting hardness: literature review

- Exact algorithms: Cheeseman et al. (1991), Gent and Walsh (1996), Osorio and Pinto (2003), Fischer et al. (2005), Schawe and Hartmann (2016).
- Heuristic methods: Hemert and Urquhart (2004), Smith-Miles et al. (2010), Cárdenas-Montes (2016).

Main Limitations:

- Predictors only work for particular metric TSP (see e.g Euclidean TSP, nodes = coordinates in \mathbb{R}^k and distances computed with $||\cdot||_p$, p = 1, 2);
- Predictors that can only computed a posteriori;

Our contribution

- Introduce easy-to-compute scores for predicting hardness of a metric TSP instance using only the cost vector *c*;
- \checkmark Compute such scores for ~ 5500 metric TSP instances;
- ✓ Train a Decision Tree (DT) aiming to predict hardness;
- ✓ Test the DT to predict hardness.

- Introduce easy-to-compute scores for predicting hardness of a metric TSP instance using only the cost vector *c*;
- \checkmark Compute such scores for ~ 5500 metric TSP instances;
- Train a Decision Tree (DT) aiming to predict hardness;
- Test the DT to predict hardness.
- Quick look at the instances that generate the datasets

- Introduce easy-to-compute scores for predicting hardness of a metric TSP instance using only the cost vector *c*;
- \checkmark Compute such scores for ~ 5500 metric TSP instances;
- ✓ Train a Decision Tree (DT) aiming to predict hardness;
- Test the DT to predict hardness.
- Quick look at the instances that generate the datasets
- ➔ More focused look at the scores.

Random 2D - 3D nodes

Zhong (2021)

Hougardy and Zhong (2020)

V. , Gualandi, Mastrolilli, Gambardella (2021)

Random 2D - 3D nodes

Zhong (2021)

Hougardy and Zhong (2020)

V. , Gualandi, Mastrolilli, Gambardella (2021)

Random 2D - 3D nodes

Hougardy and Zhong (2020)

Some statistics on the dataset

- 5446 Metric TSP instances: 5174 hard, 272 easy;
- 1 hard instance every 19 easy ones ⇐ hard instances are outliers in the metric TSP space;
- From 10 to 499 nodes.

Normalized Standard Deviation (std)

- Modification of a score proposed by Cheeseman et al. (1991), that relies on the *standard deviation of the cost matrix*
- Author only considered Euclidean instances on $[0,1]^2$
- Author evaluated different instance with a fixed number of nodes
- Author found that harder instances are such that

$$s_1(n) \leq std(c) \leq s_2(n)$$

We compute the standard deviation on the *normalized* matrix

$$\mathsf{std}(\mathbf{c}) = \sqrt{\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (\overline{c}_{ij} - \overline{c})^2}, \quad \overline{c}_{ij} = \frac{c_{ij}}{\max(\mathbf{c})}, \quad \overline{c} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \overline{c}_{ij}$$

Tight Triangle Inequality (TTI) index

- In metric TSP, it holds that $c_{ij} \leq c_{ik} + c_{jk}$ for all $i, j, k \in \{1, \dots, n\}$
- For every triple (*i*,*j*,*k*), it can be proven that at most one of the following holds:

$$c_{ij} = c_{ik} + c_{jk}$$
 $c_{ik} = c_{ij} + c_{jk}$ $c_{jk} = c_{ik} + c_{ij}$

If for a lot of triples it holds one of the above, different strategies may be adopted for finding the optimal tour. We define a new score

$$\mathsf{TTI}(\mathbf{c}) = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} \mathbf{1}_{c_{ij}=c_{ik}+c_{jk}} + \mathbf{1}_{c_{ik}=c_{ij}+c_{jk}} + \mathbf{1}_{c_{jk}=c_{ij}+c_{ik}}}{m(n-2)}$$

Skewness (sk)

- Plot histograms of *c* for various instances
- We observe that hard instances have a right-skewed distribution;
- Costs in easy instances are barely uniformly distributed
- **Q** Computation of the *skewness* as a predictor of hardness:

$$\mathsf{sk}(\mathbf{c}) = \frac{\frac{1}{m} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\overline{\mathbf{c}}_{ij} - \overline{\mathbf{c}})^{3}}{\left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (\overline{\mathbf{c}}_{ij} - \overline{\mathbf{c}})^{2}\right]^{3/2}} \quad \overline{\mathbf{c}} \text{ sample mean}$$

Note: Skewness has been also considered in Correa et al. (2015):

- In combination with other scores
- With such scores it wasn't so effective

Training phase

Dataset - generic row

instance_name, std(c), TTI(c), sk(c), hard
 We train a decision tree 100 times with random training and validation set (using sckit-learn (Pedregosa et al., 2011))

- \checkmark 66% of data for the training set, 33% for the validation
- \checkmark Choose the best tree according to F1-score on the validation set

$$F1 = rac{\mathsf{TH}}{\mathsf{TH} + rac{1}{2}(\mathsf{FH} + \mathsf{FE})}$$

Best F1-score on the training set: 99.86%
 Best F1-score on the validation set: 97.63%

The Decision Tree

- Positive sk(c) plus high TTI(c) imply hard instances
- Positive sk(c) plus low
 TTI(c) require high std(c)
 to be classified as hard

Unseen data - Easy

Instance	Time	Hard?	Pred Hard?
att532	7.01	No	No
ali535	2.23	No	No
si535	3.79	No	No
pa561	25.85	No	No
p654	1.90	No	No
rat575	23.17	No	No
gr666	9.32	No	No
si1032	2.99	No	No
rand_10.tsp	0.04	No	No
rand_40.tsp	0.01	No	Yes
rand_11.tsp	0.03	No	Yes
rand_25.tsp	0.02	No	No
rand_28.tsp	0.01	No	Yes
rand_35.tsp	0.10	No	No
rand_16.tsp	0.02	No	Yes

- Metric TSPLIB instances not used in the training set;
- ✓ Random instances.

Unseen data - Hard

п	Time	Hard?	Pred Hard?
15	2.631	Yes	Yes
15	3.081	Yes	Yes
15	2.703	Yes	Yes
20	17.948	Yes	Yes
20	9.797	Yes	Yes
20	6.768	Yes	Yes
25	84.877	Yes	Yes
25	101.340	Yes	Yes
25	95.112	Yes	Yes
30	156.553	Yes	Yes
30	124.638	Yes	Yes
30	95.964	Yes	Yes
35	524.868	Yes	Yes
35	133.196	Yes	Yes
35	889.248	Yes	Yes

- Use the instance generator in In V, Gualandi, Mastrolilli, Gambardella.
- ✓ Generate 3 instances for each $n \in \{15, 20, 25, 30, 35\}.$

Conclusion and future perspectives

Conclusions

- Although TSP is an NP-hard problem, not all the instances are actually hard to solve for the state of art solver (concorde)
- There is computational evidence that some scores, computed from cost vector, are capable of partially predicting the hardness of an instance before actually solving it.

Future perspectives

- Scores yet available in the literature may be adapted and generalized;
- Scores can be used to train a *generative model*
- Scores can be used as a baseline for the study new cuts for the B&C method for the TSP.

Thank you for your attention

This work was made possible thanks to the fruitful collaboration between UNIPV and USI

Given *n* cities and a cost c_{ij} to go from city *i* to city *j*, for every city *i*, *j*, what is the shortest possible route that visits each city exactly once and returns to the origin city?

This problem can be modelled with a weighted complete graph, $K_n = (V, E)$

Metric property of the costs:

$$c_{i,i} = 0 \qquad \forall i \in V$$

$$c_{i,j} = c_{j,i} \qquad \forall i, j \in V$$

$$c_{i,j} \le c_{i,k} + c_{j,k} \qquad \forall i, j, k \in V$$

Undirected edges \rightarrow set $e = \{i, j\}$ Number of edges $m := \frac{n(n-1)}{2}$

Mathematical Model

 $\mathbf{x} \in \mathbb{R}^{m}$, edge incidence vector of 0 and 1 that represents a tour $x_{e} = 0$ if the edge is picked in the tour, 1 otherwise $1 \le e \le m$ $\mathbf{c} \in \mathbb{R}^{m}$, vector of costs that satisfies the metric properties A set \mathcal{T} of all the possible incidence tours, \mathbf{x} vectors.

Solve

$$\min_{x \in \mathcal{T}} \boldsymbol{c}^T \cdot \boldsymbol{x}$$

Mathematical Model

 $\mathbf{x} \in \mathbb{R}^{m}$, edge incidence vector of 0 and 1 that represents a tour $x_{e} = 0$ if the edge is picked in the tour, 1 otherwise $1 \le e \le m$ $\mathbf{c} \in \mathbb{R}^{m}$, vector of costs that satisfies the metric properties A set \mathcal{T} of all the possible incidence tours, \mathbf{x} vectors.

Solve

$$\min_{x \in \mathcal{T}} \boldsymbol{c}^T \cdot \boldsymbol{x}$$

Problem:

$$\mathcal{T}| = \frac{(n-1)!}{2}$$

Mathematical Model: Integer Linear Programming (ILP)

Most used mathematical model: Dantzig et al. (1954)

$$\begin{split} \Sigma &:= \{ S \subset V : 3 \le |S| \le n-3 \} \\ S \subset V, \, \delta(S) &:= \{ \{i,j\} : i \in S, j \not\in S \} \\ & \text{min } \mathbf{c}^T \cdot \mathbf{x} \\ \text{subject to } \sum_{e \in \delta(v)} x_e = 2 \quad \forall v \in V \quad \text{Degree constraints} \\ & \sum_{e \in \delta(S)} x_e \ge 2 \quad \forall S \in \Sigma \quad \text{Subtour elimination constraints} \\ & x_e \in \{0,1\} \quad \forall e \in E \end{split}$$

Best known solving procedure for integer programs: **branch-and-cut** (Padberg and Rinaldi, 1991), efficiently implemented in concorde (Applegate et al., 1998)

Mathematical Model: Subtour Elimination Problem (SEP)

$$\begin{split} \Sigma &:= \{ S \subset V : 3 \le |S| \le n-3 \} \\ S \subset V, \ \delta(S) &:= \{ \{i,j\} : i \in S, j \not\in S \} \\ & \text{min } \mathbf{c}^T \cdot \mathbf{x} \\ \text{subject to } \sum_{e \in \delta(V)} x_e = 2 \quad \forall v \in V \quad \text{Degree constraints} \\ & \sum_{e \in \delta(S)} x_e \ge 2 \quad \forall S \in \Sigma \quad \text{Subtour elimination constraints} \\ & 0 \le \mathbf{x}_e \le 1 \quad \forall e \in E \end{split}$$

The optimal value is a lower bound for the ILP optimal value, and the starting point of the branch and cut algorithm. LP problem can be efficiently solved.

Percentage of Equal Edges (PEE) index

- In Vercesi et al. (2021) it is conjectured that the number of edges with the same cost influences the difficulty of an instance
- The more regular the structure is, the harder the instance
- We try to encode this concept in a score called *Percentage of Equal Edges*-index
- Percentage of edges equal to the most frequent edge
- Let *c*^{*} be the most frequent cost

$$PPE(\mathbf{c}) = \frac{\sum_{i=1}^{n} \sum_{j=i+1}^{n} \mathbf{1}_{c_{ij}=c^*}}{m}$$

Integer Programming Formulation

- One variable $x_e \in \{0, 1\}$ for each edge *e* (See, e.g Dantzig et al. (1954))
- Thus, one $\pmb{x} \in \mathbb{R}^m$ for each tour

$$\mathbf{X} = egin{cases} x_{e} = 0 & e ext{ is not in the tour} \ x_{e} = 1 & e ext{ is tour} \end{cases}$$

Search space

$$\boldsymbol{P} := \{ \boldsymbol{x} \in \mathbb{R}^m \mid \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \} \cap \{0, 1\}^m$$

for a suitable **A** matrix.

• Problem:

• NP-Hard problem! (Kannan and Monma (1978))

How to solve an ILP? Branch-and-Cut (B&C)

Picture from Mitchell (1988)

- Start by solving one *relaxation* of the given problem \rightarrow enlarge the search space.
- Relaxation that provides a *lower bound* (minimization framework)
- Solve a tree of easier sub-problems (with possibily non integer solution)
- Add extra-constraints to the sub-problems (*cuts*)
- Prune the leaves of the tree according to some deductions on the value of the problem /solution
- Stop when you find an integer optimal solution

Instance generator in Vercesi et al. (2021)

- Let **c**₀ a TSP instance
- Let **x**₀ a solution of the Subtour Elimination Problem (Linear relaxation)
- We solve

Obtaining **c** as a solution It is possible to prove that

$$IG_{c_0} \leq IG_{c}$$

We also have computational evidence that the instances obtained in such ways are hard to solve

- State-of-art library for symmetric TSP
- Metric and non metric, picked only the metric ones.
- Easy!

Benoit and Boyd (2008)

- Metric instances;
- Defined by 3 fixed parameters (a, b, c), related with both the weight and the number of nodes
- Picked instances with $n \le 100$
- Easy!

- Metric instances;
- Only depends to the number of nodes;
- Picked instances with $n \le 100$
- Hard!

Hougardy (2014)

- Euclidean instances in \mathbb{R}^2
- One instance for each *n* number of nodes.
- Picked instances with $n \le 100$
- Easy!

Hougardy and Zhong (2020)

- Euclidean instances in \mathbb{R}^2
- Depends on 2 parameters (*m*, *n*), related with the number of nodes on each edge
- Picked instances with $n \leq 200$

• Hard!

Zhong (2021)

- Rectilinear instances in \mathbb{R}^3
- Depends on 3 parameters (*i*,*j*,*k*), related with the number of nodes on each edge
- Picked instances with $n \le 100$

• Hard!

V, Gualandi, Mastrolilli, Gambardella

 $orall ar{oldsymbol{z}} \in \mathscr{T}_n$ $\langle i, j, k \in V$ $\{i, j\} \in E.$

- Not a family, but a *generator* of metric instances;
- Published 41 hard-to-solve instances
- All the instances have $n \le 79$

• Hard!

Random Euclidean / Rectilinear 2D - 3D instances

- Random generate $10 \le n \le 500$
- Random generate $p \in \{1, 2\}$
- Random generate $k \in \{2, 3\}$
- Random generate n vectors in \mathbb{R}^k
- Compute costs using the *L^p* norm
- Easy!
- Contribute to the dataset with 5000 instances