
Hardness of Metric TSP instances
A computational study
E. Vercesi

PhD Spring Workshop 2022

Outline

• Introduction: Metric Traveling Salesman Problem (TSP)
• Difficulty of a TSP instance: literature review
• Predicting hardness: preliminary results

Main references:

� V, E., Gualandi, S., Mastrolilli, M., & Gambardella, L. M. (2021). On
the generation of Metric TSP instances with a large integrality gap
by branch-and-cut. arXiv preprint arXiv:2109.02454. Under review
at Mathematical Programming Computation.

� Gambardella, L. M., Gualandi, S., Mastrolilli, M., & V, E. (2022).
Hardness of metric TSP instances: a computational study. To be
submitted to AIROSpringer.

1

INTRODUCTION

2

Metric TSP

Given n cities and a cost cij to go from city i to city j, for every city i, j,
what is the shortest possible tour that visits each city exactly once and
returns to the origin city?

Graph G with n nodes (= cities) andm edges (=links between cities)

Assumptions: metric properties of the cost vector:
! Completeness of the problem;
! No self-loop (cii = 0 for each e = {i, i} , i ∈ V)
! Symmetry (cij = cji for each e = {i, j} , i, j ∈ V)
! Triangle inequalities (cij ≤ cik + cjk ∀1 ≤ i < j < k ≤ n)
→ NP-hard problem! (Kannan and Monma, 1978)

2

Metric TSP

Given n cities and a cost cij to go from city i to city j, for every city i, j,
what is the shortest possible tour that visits each city exactly once and
returns to the origin city?

Graph G with n nodes (= cities) andm edges (=links between cities)

Assumptions: metric properties of the cost vector:
! Completeness of the problem;
! No self-loop (cii = 0 for each e = {i, i} , i ∈ V)
! Symmetry (cij = cji for each e = {i, j} , i, j ∈ V)
! Triangle inequalities (cij ≤ cik + cjk ∀1 ≤ i < j < k ≤ n)
→ NP-hard problem! (Kannan and Monma, 1978)

2

Metric TSP

Given n cities and a cost cij to go from city i to city j, for every city i, j,
what is the shortest possible tour that visits each city exactly once and
returns to the origin city?

Graph G with n nodes (= cities) andm edges (=links between cities)

Assumptions: metric properties of the cost vector:
! Completeness of the problem;
! No self-loop (cii = 0 for each e = {i, i} , i ∈ V)
! Symmetry (cij = cji for each e = {i, j} , i, j ∈ V)
! Triangle inequalities (cij ≤ cik + cjk ∀1 ≤ i < j < k ≤ n)
→ NP-hard problem! (Kannan and Monma, 1978)

2

Is TSP really hard?

…It depends!

• It depends on the number of nodes of the TSP instance;
• Cover image of this presentation: Optimal tour through 119614
stars from the HYG Database (∼ 130 days of computer time)
[https://www.math.uwaterloo.ca/tsp/star/index.html]

Actually, what causes hardness it’s still unclear…

3

https://www.math.uwaterloo.ca/tsp/star/index.html

Is TSP really hard?

…It depends!

• It depends on the number of nodes of the TSP instance;
• Cover image of this presentation: Optimal tour through 119614
stars from the HYG Database (∼ 130 days of computer time)
[https://www.math.uwaterloo.ca/tsp/star/index.html]

Actually, what causes hardness it’s still unclear…

3

https://www.math.uwaterloo.ca/tsp/star/index.html

Is TSP really hard?

• It depends on the used solver. State-of-art solver: concorde
(Applegate et al., 1998);

• We have observed that different implementation of algorithms for
TSP lead to differences between runtimes on different instances.

- Instance A requires more time than instance B to be solved
using concorde

- Instance B requires more time than instance A to be solved
using a custom implementation of TSP solver

• In the literature, we have both instances that are easy or hard;
• In the literature, there are instances with 30 nodes that require

∼ 400 seconds or 0.02 seconds in the same conditions.
? What is the main cause of hardness?

4

Is TSP really hard?

• It depends on the used solver. State-of-art solver: concorde
(Applegate et al., 1998);

• We have observed that different implementation of algorithms for
TSP lead to differences between runtimes on different instances.

- Instance A requires more time than instance B to be solved
using concorde

- Instance B requires more time than instance A to be solved
using a custom implementation of TSP solver

• In the literature, we have both instances that are easy or hard;
• In the literature, there are instances with 30 nodes that require
∼ 400 seconds or 0.02 seconds in the same conditions.

? What is the main cause of hardness?

4

Is TSP really hard?

• It depends on the used solver. State-of-art solver: concorde
(Applegate et al., 1998);

• We have observed that different implementation of algorithms for
TSP lead to differences between runtimes on different instances.

- Instance A requires more time than instance B to be solved
using concorde

- Instance B requires more time than instance A to be solved
using a custom implementation of TSP solver

• In the literature, we have both instances that are easy or hard;
• In the literature, there are instances with 30 nodes that require
∼ 400 seconds or 0.02 seconds in the same conditions.

? What is the main cause of hardness?

4

Predicting hardness: literature review

� Exact algorithms: Cheeseman et al. (1991), Gent and Walsh (1996),
Osorio and Pinto (2003), Fischer et al. (2005), Schawe and
Hartmann (2016).

� Heuristic methods: Hemert and Urquhart (2004), Smith-Miles et al.
(2010), Cárdenas-Montes (2016).

Main Limitations:

$ Predictors only work for particular metric TSP (see e.g Euclidean
TSP, nodes = coordinates in Rk and distances computed with ||·||p,
p = 1, 2);

$ Predictors that can only computed a posteriori;

5

Predicting hardness: literature review

� Exact algorithms: Cheeseman et al. (1991), Gent and Walsh (1996),
Osorio and Pinto (2003), Fischer et al. (2005), Schawe and
Hartmann (2016).

� Heuristic methods: Hemert and Urquhart (2004), Smith-Miles et al.
(2010), Cárdenas-Montes (2016).

Main Limitations:

$ Predictors only work for particular metric TSP (see e.g Euclidean
TSP, nodes = coordinates in Rk and distances computed with ||·||p,
p = 1, 2);

$ Predictors that can only computed a posteriori;

5

Our contribution

! Introduce easy-to-compute scores for predicting hardness of a
metric TSP instance using only the cost vector c;

! Compute such scores for ∼ 5500metric TSP instances;
! Train a Decision Tree (DT) aiming to predict hardness;
! Test the DT to predict hardness.

 Quick look at the instances that generate the datasets
 More focused look at the scores.

6

Our contribution

! Introduce easy-to-compute scores for predicting hardness of a
metric TSP instance using only the cost vector c;

! Compute such scores for ∼ 5500metric TSP instances;
! Train a Decision Tree (DT) aiming to predict hardness;
! Test the DT to predict hardness.
 Quick look at the instances that generate the datasets

 More focused look at the scores.

6

Our contribution

! Introduce easy-to-compute scores for predicting hardness of a
metric TSP instance using only the cost vector c;

! Compute such scores for ∼ 5500metric TSP instances;
! Train a Decision Tree (DT) aiming to predict hardness;
! Test the DT to predict hardness.
 Quick look at the instances that generate the datasets
 More focused look at the scores.

6

DATASET

7

TSPLIB (1995) Benoit and Boyd (2008) Hougardy (2014)

Hougardy and Zhong (2020) Zhong (2021)
V. , Gualandi,

Mastrolilli, Gambardella (2021) Random 2D - 3D nodes

TSPLIB (1995) Benoit and Boyd (2008) Hougardy (2014)

Hougardy and Zhong (2020) Zhong (2021)
V. , Gualandi,

Mastrolilli, Gambardella (2021) Random 2D - 3D nodes

TSPLIB (1995) Benoit and Boyd (2008) Hougardy (2014)

Hougardy and Zhong (2020) Zhong (2021)
V. , Gualandi,

Mastrolilli, Gambardella (2021) Random 2D - 3D nodes

TSPLIB (1995) Benoit and Boyd (2008) Hougardy (2014)

Hougardy and Zhong (2020) Zhong (2021)
V. , Gualandi,

Mastrolilli, Gambardella (2021) Random 2D - 3D nodes

TSPLIB (1995) Benoit and Boyd (2008) Hougardy (2014)

Hougardy and Zhong (2020) Zhong (2021)
V. , Gualandi,

Mastrolilli, Gambardella (2021) Random 2D - 3D nodes

Some statistics on the dataset
• 5446Metric TSP instances: 5174 hard, 272 easy;
• 1 hard instance every 19 easy ones⇐ hard instances are outliers in
the metric TSP space;

• From 10 to 499 nodes.

0 100 200 300 400 500
n

0

100

200

300

400

500

600

700
Distribution of the number of nodes in the dataset

8

FEATURES

9

Normalized Standard Deviation (std)

• Modification of a score proposed by Cheeseman et al. (1991), that
relies on the standard deviation of the cost matrix

• Author only considered Euclidean instances on [0, 1]2

• Author evaluated different instance with a fixed number of nodes
• Author found that harder instances are such that

s1(n) ≤ std(c) ≤ s2(n)

 We compute the standard deviation on the normalized matrix

std(c) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

(cij − c)2, cij =
cij

max(c)
, c = 1

n2

n∑
i=1

n∑
j=1

cij

10

Tight Triangle Inequality (TTI) index

• In metric TSP, it holds that cij ≤ cik + cjk for all i, j, k ∈ {1, . . . ,n}
• For every triple (i, j, k), it can be proven that at most one of the
following holds:

cij = cik + cjk cik = cij + cjk cjk = cik + cij

 If for a lot of triples it holds one of the above, different strategies
may be adopted for finding the optimal tour. We define a new
score

TTI(c) =
∑n

i=1

∑n
j=i+1

∑n
k=j+1 1cij=cik+cjk + 1cik=cij+cjk + 1cjk=cij+cik

m(n− 2)

11

Skewness (sk)

• Plot histograms of c for various instances
• We observe that hard instances have a right-skewed distribution;
• Costs in easy instances are barely uniformly distributed
 Computation of the skewness as a predictor of hardness:

sk(c) =
1
m
∑n

i=1

∑n
j=i+1(cij − c)3[

1
n
∑n

i=1

∑n
j=i+1(cij − c)2

]3/2 c sample mean

� Note: Skewness has been also considered in Correa et al. (2015):
- In combination with other scores
- With such scores it wasn’t so effective

12

DECISION
TREE

13

Training phase

! Dataset - generic row
instance_name, std(c), TTI(c), sk(c), hard

! We train a decision tree 100 times with random training and
validation set (using sckit-learn (Pedregosa et al., 2011))

! 66% of data for the training set, 33% for the validation
! Choose the best tree according to F1-score on the validation set

F1 =
TH

TH+ 1
2
(FH+ FE)

! Best F1-score on the training set: 99.86%
! Best F1-score on the validation set: 97.63%

13

TheDecision Tree

! Positive sk(c) plus high
TTI(c) imply hard
instances

! Positive sk(c) plus low
TTI(c) require high std(c)
to be classified as hard

14

Unseen data - Easy

Instance Time Hard? Pred Hard?
att532 7.01 No No
ali535 2.23 No No
si535 3.79 No No
pa561 25.85 No No
p654 1.90 No No

rat575 23.17 No No
gr666 9.32 No No
si1032 2.99 No No

rand_10.tsp 0.04 No No
rand_40.tsp 0.01 No Yes
rand_11.tsp 0.03 No Yes
rand_25.tsp 0.02 No No
rand_28.tsp 0.01 No Yes
rand_35.tsp 0.10 No No
rand_16.tsp 0.02 No Yes

! Metric TSPLIB instances not
used in the training set;

! Random instances.

15

Unseen data - Hard

n Time Hard? Pred Hard?
15 2.631 Yes Yes
15 3.081 Yes Yes
15 2.703 Yes Yes
20 17.948 Yes Yes
20 9.797 Yes Yes
20 6.768 Yes Yes
25 84.877 Yes Yes
25 101.340 Yes Yes
25 95.112 Yes Yes
30 156.553 Yes Yes
30 124.638 Yes Yes
30 95.964 Yes Yes
35 524.868 Yes Yes
35 133.196 Yes Yes
35 889.248 Yes Yes

! Use the instance generator in
In V, Gualandi, Mastrolilli,
Gambardella.

! Generate 3 instances for each
n ∈ {15, 20, 25, 30, 35}.

16

CONCLUSION

17

Conclusion and future perspectives

Conclusions
! Although TSP is an NP-hard problem, not all the instances are

actually hard to solve for the state of art solver (concorde)
! There is computational evidence that some scores, computed

from cost vector, are capable of partially predicting the hardness
of an instance before actually solving it.

Future perspectives
 Scores yet available in the literature may be adapted and
generalized;

 Scores can be used to train a generative model
 Scores can be used as a baseline for the study new cuts for the
B&C method for the TSP.

17

Thank you for your attention
This work was made possible thanks to the fruitful collaboration between UNIPV and USI

Questions?
Comments?

Metric TSP
Given n cities and a cost cij to go from city i to city j, for every city i, j,
what is the shortest possible route that visits each city exactly once
and returns to the origin city?

This problem can be modelled with a weighted complete graph,
Kn = (V, E)
Metric property of the costs:

ci,i = 0 ∀i ∈ V
ci,j = cj,i ∀i, j ∈ V
ci,j ≤ ci,k + cj,k ∀i, j, k ∈ V

Undirected edges→ set e = {i, j}
Number of edgesm := n(n−1)

2

17

Mathematical Model

x ∈ Rm, edge incidence vector of 0 and 1 that represents a tour
xe = 0 if the edge is picked in the tour, 1 otherwise 1 ≤ e ≤ m
c ∈ Rm, vector of costs that satisfies the metric properties
A set T of all the possible incidence tours, x vectors.

Solve
min
x∈T

cT · x

Problem:
|T | = (n− 1)!

2

17

Mathematical Model

x ∈ Rm, edge incidence vector of 0 and 1 that represents a tour
xe = 0 if the edge is picked in the tour, 1 otherwise 1 ≤ e ≤ m
c ∈ Rm, vector of costs that satisfies the metric properties
A set T of all the possible incidence tours, x vectors.

Solve
min
x∈T

cT · x

Problem:
|T | = (n− 1)!

2

17

Mathematical Model: Integer Linear Programming (ILP)
Most used mathematical model: Dantzig et al. (1954)

Σ := {S ⊂ V : 3 ≤ |S| ≤ n− 3}
S ⊂ V, δ(S) := {{i, j} : i ∈ S, j ̸∈ S}

min cT · x

subject to
∑
e∈δ(v)

xe = 2 ∀v ∈ V Degree constraints

∑
e∈δ(S)

xe ≥ 2 ∀S ∈ Σ Subtour elimination constraints

xe ∈ {0, 1} ∀e ∈ E

Best known solving procedure for integer programs: branch-and-cut
(Padberg and Rinaldi, 1991), efficiently implemented in concorde
(Applegate et al., 1998)

17

Mathematical Model: Subtour Elimination Problem
(SEP)

Σ := {S ⊂ V : 3 ≤ |S| ≤ n− 3}
S ⊂ V, δ(S) := {{i, j} : i ∈ S, j ̸∈ S}

min cT · x

subject to
∑
e∈δ(v)

xe = 2 ∀v ∈ V Degree constraints

∑
e∈δ(S)

xe ≥ 2 ∀S ∈ Σ Subtour elimination constraints

0 ≤ xe ≤ 1 ∀e ∈ E
The optimal value is a lower bound for the ILP optimal value, and
the starting point of the branch and cut algorithm.
LP problem can be efficiently solved.

17

Percentage of Equal Edges (PEE) index

• In Vercesi et al. (2021) it is conjectured that the number of edges
with the same cost influences the difficulty of an instance

• The more regular the structure is, the harder the instance
• We try to encode this concept in a score called Percentage of Equal
Edges-index

• Percentage of edges equal to the most frequent edge
• Let c∗ be the most frequent cost

PPE(c) =
∑n

i=1

∑n
j=i+1 1cij=c∗

m

17

Integer Programming Formulation

• One variable xe ∈ {0, 1} for each edge e (See, e.g Dantzig et al. (1954))

• Thus, one x ∈ Rm for each tour

x =

{
xe = 0 e is not in the tour
xe = 1 e is tour

• Search space
P := {x ∈ Rm | Ax ≤ b} ∩ {0, 1}m

for a suitable Amatrix.

• Problem:

min cTx
x ∈ P.

• NP-Hard problem! (Kannan and Monma (1978))
17

How to solve an ILP? Branch-and-Cut (B&C)

Picture from Mitchell (1988)

! Start by solving one relaxation of the given
problem→ enlarge the search space.

! Relaxation that provides a lower bound
(minimization framework)

! Solve a tree of easier sub-problems (with
possibily non integer solution)

! Add extra-constraints to the sub-problems
(cuts)

! Prune the leaves of the tree according to
some deductions on the value of the problem
/solution

! Stop when you find an integer optimal
solution

17

Instance generator in Vercesi et al. (2021)

• Let c0 a TSP instance
• Let x0 a solution of the Subtour Elimination Problem (Linear
relaxation)

• We solve

H-OPT(x̄(h)) := min
∑
{i,j}∈E

x̄(h)ij cij (1)

s.t.
∑
{i,j}∈E

z̄ijcij ≥ 1 ∀z̄ ∈ Tn (2)

cij ≤ cik + cjk ∀i, j, k ∈ V (3)
cij ≥ 0 ∀{i, j} ∈ E. (4)

17

Instance generator in Vercesi et al. (2021)

Obtaining c as a solution
It is possible to prove that

IGc0 ≤ IGc

We also have computational evidence that the instances obtained
in such ways are hard to solve

17

TSPLIB

• State-of-art library for symmetric TSP
• Metric and non metric, picked only
the metric ones.

• Easy!

17

Benoit and Boyd (2008)

• Metric instances;
• Defined by 3 fixed
parameters (a,b, c),
related with both the
weight and the number
of nodes

• Picked instances with
n ≤ 100

• Easy!

17

U3

• Metric instances;
• Only depends to the number
of nodes;

• Picked instances with n ≤ 100

• Hard!

18

Hougardy (2014)

• Euclidean instances in R2

• One instance for each n
number of nodes.

• Picked instances with n ≤ 100

• Easy!

18

Hougardy and Zhong (2020)

• Euclidean instances in R2

• Depends on 2 parameters
(m,n), related with the number
of nodes on each edge

• Picked instances with n ≤ 200

• Hard!

18

Zhong (2021)

x

0.0
0.1

0.2

0.3

y

0.00 0.02 0.04 0.06 0.08 0.10

z

0.0
0.2
0.4
0.6
0.8
1.0

• Rectilinear instances in R3

• Depends on 3 parameters
(i, j, k), related with the number
of nodes on each edge

• Picked instances with n ≤ 100

• Hard!

18

V, Gualandi, Mastrolilli, Gambardella

• Not a family, but a generator of
metric instances;

• Published 41 hard-to-solve
instances

• All the instances have n ≤ 79

• Hard!

18

Random Euclidean / Rectilinear 2D - 3D instances

• Random generate 10 ≤ n ≤ 500

• Random generate p ∈ {1, 2}
• Random generate k ∈ {2, 3}
• Random generate n vectors in Rk

• Compute costs using the Lp norm
• Easy!
• Contribute to the dataset with 5000
instances

18

