

Multimodal Route Planning

Claudio Tomasi, Stefano Gualandi, Davide Duma, Martina Fischetti, Juan Nicolás Ibáñez

> Spring Workshop March 17, 2022

Motivation

- Accessibility Index
- Graphs and Shortest Path Problem
- Multimodal networks
- Algorithms and case study

- European Green Deal
 - Climate neutrality by 2050
- Transport as key player
 - Major user of energy
 - Significant contributor to greenhouse gas emission
- Public transport more sustainable
- Large amount of data
 - Accessibility-to-opportunities measures
 - Time-dependent schedule-based routing problem

- Analysis of entire rail network in Europe
 - How many people have access to services by trains
- Routing problem solution to get answers
 - Time-dependent
 - Schedule-based
 - Multimodal
- GOAL: Extension to all kinds of transport supply
 - Not only trains
 - Complement analysis of public transport performance
 - Computationally challenging

NIVERSITÀ DI PAVIA

> Multimodal Accessibility Index

- "The ease and convenience of reaching some destination"
- Measure that provides an indicator of accessibility
 - Density of the public transport networks
 - Reachability for a given area
- Depending on network infrastructure
 - Proximity and diversity of the public transport network
 - Frequency of service at accessible nodes

Literature Review

- Dijkstra, Edsger W., "A note on two problems in connexion with graphs" Numerische mathematik 1.1 (1959)
- Delling, Daniel, et al. "Round-based public transit routing" Transportation Science 49.3 (2015)
- Witt, Sascha. "Trip-based public transit routing" *Algorithms-ESA* (2015)
- Dibbelt, Julian, et al. "Connection scan algorithm" Journal of Experimental Algorithmics (JEA) 23 (2018)
- Baum, Moritz, et al. "UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution" *arXiv preprint arXiv:1906.04832* (2019)

Mathematical structures modelling pairwise relations between objects

 $\bullet \ G = (V, E)$

- V set of vertices (e.g., bus stops)
- E set of edges, i.e., e = (v, w), with associated length
- Path as sequence of edges joining a sequence of vertices
 - Length of a path is the sum of its edge length

Shortest Path Problem

- Given a directed graph, find path with minimum costs connecting points
- Depending on what we need, we employ different query types
 - one-to-one for simple source-to-destination
 - one-to-all for isochrone maps
 - all-to-one for choosing the best starting point
 - all-to-all for computing a reachability matrix

- Algorithm to find shortest paths¹
 - e.g., in road networks
- one-to-all type of query
 - Source in input
 - At the end, a shortest path cost associated to each node
- Data structure for storing and querying partial solutions sorted by distance from the start
 - ► $O(|V|^2 + |E|)$ using an array
 - $O((|E| + |V|) \log |V|)$ using an adjacency list

S: {}

Claudio Tomasi

Claudio Tomasi

NIVERSITÀ DI PAVIA

> Schedule Based Networks

- Network structure time-dependent
- Public transport timetable
 - Set of stops
 - Set of routes
 - Set of trips
- Accessibility only at specific points in time
- Appropriate modeling to enable a fast computation of journeys
 - Sequences of trips a traveler can take.
 - Not only simple paths minimizing the cost, but several optimization criteria to get the desired solution

Multimodal Networks Integrated transportation network

- Unrestricted networks (road, etc..)
- Schedule-based public transport service
- Overlapping of graph vertices and stops
- Permit multimodal query
 - Considering a preference on the vehicle
 - Optimizing the transfers between routes
 - Graph algorithm not the best choice anymore

- Round-Based Public Transit Routing²
 - Non-Dijkstra approach
 - Directly exploitation of timetable, without graph modelling
 - Works in rounds (iterations)
- Standard RAPTOR
 - For two given stops, computes optimal journeys, minimizing the arrival time number of transfers
- Extensions
 - McRAPTOR for several criteria
 - rRAPTOR for range queries (departure time window)

For each iteration, we have three phases

- For all available stops, it finds the trips associated to them that can be boarded at a given time
- Find all the stops reachable using those trips and compute the time needed to reach them, updating their labels
- At each round, add a new transfer, i.e., footpaths between nearby stops, in the total number of transfers allowed

European Commission

Numerical Results

	London	Switzerland	Germany
Stops	19'682	25'125	243'167
Routes	1'995	13'786	230'225
Trips	114'508	350'006	2'381'394
Stop Events	4'508'644	4'686'865	48'380'936

- RAPTOR query performance
 - ► London 5.2 ms
 - Switzerland 12.3 ms
 - ► Germany 344.5 ms

EU-wide queries

- Tackle the challenge of multimodal routing problems
- all-to-all queries for accessibility information
- Smart implementation for fast computation
- Results
 - Understanding how to define transport policy
 - Add/remove/modify connections

Thank you for your attention