Multimodal Route Planning

Claudio Tomasi, Stefano Gualandi, Davide Duma, Martina Fischetti, Juan Nicolás Ibáñez

- Motivation

- European Green Deal
- Climate neutrality by 2050
- Transport as key player
- Major user of energy
- Significant contributor to greenhouse gas emission
- Public transport more sustainable
- Large amount of data
- Accessibility-to-opportunities measures
- Time-dependent schedule-based routing problem
- Analysis of entire rail network in Europe
- How many people have access to services by trains

- Routing problem solution to get answers
- Time-dependent
- Schedule-based
- Multimodal
- GOAL: Extension to all kinds of transport supply
- Not only trains
- Complement analysis of public transport performance
- Computationally challenging

■ "The ease and convenience of reaching some destination"

- Measure that provides an indicator of accessibility
- Density of the public transport networks
- Reachability for a given area
- Depending on network infrastructure
- Proximity and diversity of the public transport network
- Frequency of service at accessible nodes
- Dijkstra, Edsger W., "A note on two problems in connexion with graphs" Numerische mathematik 1.1 (1959)

- Delling, Daniel, et al. "Round-based public transit routing" Transportation Science 49.3 (2015)
- Witt, Sascha. "Trip-based public transit routing" Algorithms-ESA (2015)
- Dibbelt, Julian, et al. "Connection scan algorithm" Journal of Experimental Algorithmics (JEA) 23 (2018)
- Baum, Moritz, et al. "UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution" arXiv preprint arXiv:1906.04832 (2019)
- Mathematical structures modelling pairwise relations between objects
- $G=(V, E)$
- V set of vertices (e.g., bus stops)
- E set of edges, i.e., $e=(v, w)$, with associated length
- Path as sequence of edges joining a sequence of vertices
- Length of a path is the sum of its edge length
- Given a directed graph, find path with minimum costs connecting points
- Depending on what we need, we employ different query types
- one-to-one for simple source-to-destination
- one-to-all for isochrone maps
- all-to-one for choosing the best starting point
- all-to-all for computing a reachability matrix

- Algorithm to find shortest paths ${ }^{1}$
- e.g., in road networks
- one-to-all type of query
- Source in input
- At the end, a shortest path cost associated to each node
- Data structure for storing and querying partial solutions sorted by distance from the start
- $O\left(|V|^{2}+|E|\right)$ using an array
- $O((|E|+|V|) \log |V|)$ using an adjacency list
${ }^{(1)}$ Dijkstra, Edsger W., "A note on two problems in connexion with graphs." (1959)

$S:\{ \}$

$$
Q: \begin{aligned}
& A B C D E \\
& \hline 0 \infty \infty \infty \infty
\end{aligned}
$$

$$
S:\{A\}
$$

$$
S:\{A, C\}
$$

$$
S:\{A, C\}
$$

- Network structure time-dependent
- Public transport timetable
- Set of stops
- Set of routes
- Set of trips
- Accessibility only at specific points in time
- Appropriate modeling to enable a fast computation of journeys
- Sequences of trips a traveler can take.
- Not only simple paths minimizing the cost, but several optimization criteria to get the desired solution
- Integrated transportation network
- Unrestricted networks (road, etc..)
- Schedule-based public transport service

■ Overlapping of graph vertices and stops

- Permit multimodal query
- Considering a preference on the vehicle
- Optimizing the transfers between routes
- Graph algorithm not the best choice anymore
- Round-Based Public Transit Routing ${ }^{2}$
- Non-Dijkstra approach
- Directly exploitation of timetable, without graph modelling
- Works in rounds (iterations)

RAPTOR

Algorithm

- Standard RAPTOR
- For two given stops, computes optimal journeys, minimizing the arrival time number of transfers
- Extensions
- McRAPTOR for several criteria
- rRAPTOR for range queries (departure time window)
${ }^{(2)}$ Delling, Daniel, et al. "Round-based public transit routing." Transportation (2015)
- For each iteration, we have three phases

- For all available stops, it finds the trips associated to them that can be boarded at a given time
- Find all the stops reachable using those trips and compute the time needed to reach them, updating their labels
- At each round, add a new transfer, i.e., footpaths between nearby stops, in the total number of transfers allowed

RAPTOR

Algorithm

	London	Switzerland	Germany
Stops	19’682	25’125	$243 ' 167$
Routes	1'995	13×786	230'225
Trips	114’508	350'006	2'381'394
Stop Events	4'508'644	4'686'865	48'380'936
RAPTOR query performance			
- London 5.2 ms			
> Switzerland 12.3 ms			
> Germany 344.5 ms			

- EU-wide queries

- Tackle the challenge of multimodal routing problems
- all-to-all queries for accessibility information
- Smart implementation for fast computation
- Results
- Understanding how to define transport policy
- Add/remove/modify connections

Thank you for your attention

