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• From the Boltzmann equation with uncertainties to the multiagent
systems

• Kinetic models for tumour growth

• Calibration of the model from clinical data

• Numerical results
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The Boltzmann
equation



Boltzmann equation & multiagent systems

The Boltzmann equation1 (1872) describes the behaviour of a rarefied
gas, i.e., a physical system composed of many interacting particles.

∂

∂t
f(t, x, v) + v · ∇xf(t, x, v) =

1

ϵ
Q(f, f)(t, x, v).

Interacting multiagent systems2 (from ∼ 2000): systems composed of a
huge number of interacting and autonomous agents who, as a result of
their mutual interactions, exhibit emerging collective behaviour.

Different research fields ranging from biological context (tumour
growth model, epidemiology, genomic) to socio-economic dynamics
(wealth distribution, traffic flow, opinion dynamics, pedestrian model).

1C. Cercignani, 1988; G. Dimarco, R. Caflisch, L. Pareschi, 2010.
2L. Pareschi, G. Toscani, 2013; B. Düring, P.A. Markowich, J.-F. Pietschmann, M.-T. Wolfram,

2009; J.A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, 2010; P. Degond, S. Motsch, 2008.
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Uncertainty Quantification

UQ: parameters as random variables z ∈ Rd collecting all the sources of
uncertainties

∂

∂t
f(t, x, v, z) + v · ∇xf(t, x, v, z) =

1

ϵ
Q(f, f)(t, x, v, z), z ∼ p(z)

From a numerical point of view we have to face the increase of
dimensionality: curse of dimensionality.

3 / 17



Other approaches for tumour growth

Some literature:

• first order ODE-based models: Gompertz3, von Bertalanffy4, logistic
growth

• PDE-based models5, deterministic description of a tumour
spheroid: free boundary problem6, diffuse interface approach7

3L. Norton, 1988; J. West, P.K. Newton, 2019.
4G.B. West, J.H. Brown, B.J. Enquist, 2001.
5V. Cristini, J. Lowengrub, 2010.
6H.M. Bryne, M.A. Chaplain, 1995.
7P. Colli, A. Signori, J. Sprekels, 2021; C.M. Elliott, H. Garcke, 1996; G. Schimperna, 2007; A.

Agosti, P. Ciarletta, H. Garcke, M. Hinze, 2020.
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The model



The model - free growth

Space-homogeneous Boltzmann equation, with free growth collisional
operator

∂tf(t, x, z) = QG(f)(t, x, z).

Microscopic interaction8: for a given volume x ∈ R+ of cancer cells, we
characterise an elementary variation x → x′, with δ(z) ∈ [−1, 1],
µ(z) ∈ (0, 1), λ(z) ∈ [0, 1) as

x′ = x+Φϵ
δ(x/xL, z)x+xηϵ, Φϵ

δ(y, z) = µ
1− eϵ(y

δ−1)/δ

(1 + λ)eϵ(yδ−1)/δ + 1− λ
, y =

x

xL
,

being xL the carrying capacity.

8L. Preziosi, G. Toscani, and M. Zanella, 2021.
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ODE-based model

In the regime ϵ ≪ 1, the microscopic
variation is coherent with
well-known tumour growth
ODE-based models: Gompertz9

(δ → 0+) and von Bertalanffy10 (δ < 0)
models:

lim
ϵ→0+

Φϵ
δ(x/xL, z)

ϵ
=

µ

2δ

(
1−

(
x

xL

)δ
)

9L. Norton, 1988; J. West, P.K. Newton, 2019.
10G.B. West, J.H. Brown, B.J. Enquist, 2001.
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Fokker-Planck asymptotics

In the regime ϵ ≪ 1, the microscopic variation in quasi invariant: grazing
limit11, we derive a Fokker-Planck-type equation:

∂tf(t, x, z) = ∂x

[
−Φδ(x/xL, z)xf(t, x, z) +

σ2

2
∂x(x

2f(t, x, z))

]

whose steady states in the case δ(z) < 0 are fat-tailed Amoroso-type
distributions

f∞(x, z) =
|δ|

Γ(k/|δ|)
θk

xk+1
exp

{
−
(
θ

x

)|δ|
}
, k(z) =

1

γδ
+1, θ(z) = xL(z)

(
1

γδ2

)1/|δ|

11C. Villani, 1998-2002. G. Toscani, 2006
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The model - control growth

We insert into the kinetic equation a new collisional operator
QC(f)(t, x, z)

∂tf(t, x, z) = QG(f)(t, x, z) +QC(f)(t, x, z)

associated to the microscopic deterministic and controlled volume
variation12 x → x′′, with target volume xd > 0

x′′ = x+ ϵS(x)u u = arg min
u∈U

{(x′′ − xd)
2 + ϵκ|u|p} p = 1, 2.

S(x) > 0 is a selective function, κ is the penalization and u is the control.

12A.M., G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M.
Zanella, 2022.
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Fokker-Planck asymptotics (again)

Controlled Fokker-Planck-type equation in the case p = 2

∂tf(t, x, z) =∂x

[
−Φδ(x/xL, z)xf(t, x, z) +

σ2

2
∂x(x

2f(t, x, z))

]
+

1

κ
∂x
[
S2(x)(x− xd)f(t, x, z)

]

whose steady states in the case δ(z) < 0 are

f∞(x, z) =C(z)

(
1

x

) 1

γ|δ|
+2

exp

{
− 2

σ2δ2

(
x

xL

)δ
}

× exp

{
− 2

σ2κ

∫
S2(x)(x− xd)

x2
dx

}
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Uncertainty damping

Uncertainty damping (p = 2): for all z ∈ Rd

and a penalization κ → 0+:

|m∞(z)− xd| ≤
κµ

1− λ− κµ
xd if S(x) = 1

|m∞(z)− xd| ≤
κµ

1− λ
if S(x) =

√
x

Numerical result (spoiler): at fixed time
T > 0 the function Gκ(z) quantifies the
”distance” from the target volume xd

Gκ(z) =

∫
R+

(x− xd)
2f(T, x, z)dx
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Model
calibration



Parameters estimation13

For each subject we solve the
minimization problem, adopting the
von Bertalanffy growth model with
Θ = (a, q, xL):

min
Θ

∑
h∈Hi

|xi(th)− x̂i(t
h)|+ β∥Θ∥L1

 ,

with th time point at which the tumour
sizes are evaluated, xi(ts) theoretical
value, x̂i(ts) measured volume, and Hi

subject-based number of observations
of the tumour volume.

13Clinical data (brain tumour, primary glioblastoma) collected from 2011 to 2021 at IRCCS
Mondino.
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Parameters distribution

We construct the associated histograms and we determine the
theoretical distributions that better reproduce each of them by
maximising the proper likelihood function: a, q, xL are Beta-distributed
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Numerical
results



Numerical approach

• Direct Simulation Monte Carlo (DSMC) with collocation for the
Boltzmann equation

• Stochastic-Galerkin for the Fokker-Planck equation

These methods are spectrally accurate in the random parameters space
and stable.
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Large time distribution (left) & evolution of the mean
volume (right), uncontrolled scenario
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Evolution of the mean volume in the controlled scenario
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Large time distribution in the controlled scenario
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