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Introduction



Model problem

Let Ω = F(Ω̂), where F is an isogeometric map, and Ω̂ = [0, 1]d, with
d ∈ N. Given T ∈ R+, we consider:

utt − div(c2∇u) = 0, in Ω× [0, T].

Introducing v := c∇u and ϕ := ut, this leads to the equations:{
vt = c∇ϕ in Ω× [0, T],
ϕt = div(cv) in Ω× [0, T].

The problem will be find v ∈ V = H(c,div; Ω) and ϕ ∈ Q = L2(Ω) such
that:∫

Ω

vt · w dx = −
∫
Ω

div(cw) ϕ dx+
∫
∂Ω

cϕw · ndΓ︸ ︷︷ ︸
=0

∀w ∈ V,

∫
Ω

ϕtψ dx =
∫
Ω

div(cv) ψ dx, ∀ψ ∈ Q.
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Isogeometric framework

The isogeometric map F : Ω̂ → Ω, is a parameterization of the
geometry of the physical domain.

Usually indicated by

F :=
∑
i∈J

ciB̂i,p.

a linear combination of B-splines (or NURBS) of degree p.
Example

Q KF

Figure 1: Mesh M̂ in the parametric domain, and its imageM on the
physical domain.
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Univariate B-splines

Example

Figure 2: An example of univariate B-spline basis functions.
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Project the equations



Modified problem

We introduce Π1 : V→ Vh and Π2 : Q→ Qh, and consider:

ϕt = Π2(div(cv))

The modified problem reads: find v ∈ V and ϕ ∈ Q such that:∫
Ω

vt · w dx = −
∫
Ω

Π2(div(cw))ϕ dx, ∀w ∈ V,

ϕt = Π2(div(cv)).
(1)

We retrieve the conservation of total Energy, that is:

E(t) := 1
2

∫
Ω

|v|2 + ϕ2dx = E0.

Alen Kushova On a conservative isogeometric scheme for the wave equation 5 / 11



Modified problem

We introduce Π1 : V→ Vh and Π2 : Q→ Qh, and consider:

ϕt = Π2(div(cv))

The modified problem reads: find v ∈ V and ϕ ∈ Q such that:∫
Ω

vt · w dx = −
∫
Ω

Π2(div(cw))ϕ dx, ∀w ∈ V,

ϕt = Π2(div(cv)).
(1)

We retrieve the conservation of total Energy, that is:

E(t) := 1
2

∫
Ω

|v|2 + ϕ2dx = E0.

Alen Kushova On a conservative isogeometric scheme for the wave equation 5 / 11



Modified problem

We introduce Π1 : V→ Vh and Π2 : Q→ Qh, and consider:

ϕt = Π2(div(cv))

The modified problem reads: find v ∈ V and ϕ ∈ Q such that:∫
Ω

vt · w dx = −
∫
Ω

Π2(div(cw))ϕ dx, ∀w ∈ V,

ϕt = Π2(div(cv)).
(1)

We retrieve the conservation of total Energy, that is:

E(t) := 1
2

∫
Ω

|v|2 + ϕ2dx = E0.

Alen Kushova On a conservative isogeometric scheme for the wave equation 5 / 11



How to choose Πi?

We ask Π1 and Π2 to commute with the following diagram:

H(c, div; Ω) L2(Ω)

Vh Qh,

div

Π1 Π2

div

(2)

that is
Π2(div(cv)) = div(Π1(cv)).

Isogeometric De Rham complex

• Vh and Qh are suitable pushforwards of spline spaces over Ω̂;
• Πi are suitable pullbacks of Tensor-Product univariate
quasi-interpolants π̂p; [Beirão da Veiga et al., 2014]

• We took the quasi-interpolants described in [Lee et al., 2000]
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Examples

Push-forward:

Figure 3: Left: two multivariate B-splines over the parametric domain Ω̂.
Right: push-forward of the two B-splines with the Piola transformations.
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Examples

Univariate quasi-interpolants from [Lee et al., 2000]:
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f(x) = sin(2πx)
f(x) on breakpoints
f(x) on midpoints

Figure 4: Example of point-wise evaluation of f(x) = sin(2πx) for projection
with π̂2. The explicit formula is λi,2(f) = − 1

2 f(ξi+1) + 2f(ξi+1.5)−
1
2 f(ξi+2).
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Semi-discrete mixed formulation

The space semi-discretization of the modified problem (1) is: find
v ∈ Vh and ϕ ∈ Qh, such that∫

Ω

vt · wh dx = −
∫
Ω

div(Π1(cwh))ϕ dx, ∀wh ∈ Vh,

ϕt = Π2(div(cv)).
(3)

Note:
• This semi-discretization + Crank-Nicolson in time is Energy
preserving;

• We are changing the test functions !
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Numerical results



Numerical simulations

Solutions:
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Numerical solution for Dirichlet homogeneous boundary conditions
at T = 1. Mesh width h = 0.0156 and k = 5e− 04. Coefficient
c = sin(2πx1)sin(2πx2) + 2. Solutions computed with GeoPDEs
[Vázquez, 2016].
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Numerical simulations

Convergence rates:
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Left: errors in ∥ · ∥∞,2 norm for solutions with (Q.I.) and (G) methods
with homogeneous Dirichlet boundary conditions. Right: errors with
∥ · ∥2,2 norm for the same problems.
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Numerical simulations

Energy conservation:
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Energy conservation plots for Dirichlet homogeneous boundary
conditions. Mesh width h = 0.0312, while T = 300 and two different
partitions with k1 = 0.2 and k2 = 0.01.
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Conclusive remarks



Relevant remarks
• We have a new discretization scheme that hides the
(non-constant) coefficients into the test functions;

• We achieve optimal convergence rates as in a standard
Galerking discretization;

• We preserved the total Energy of the system for long time
simulations;

• To assemble the matrices, we have to compute the projections
Π1(cwh) letting vary Wh in the set of basis functions of Vh. This
projections are local.

Open problems:
• Analytical error estimates?
• Minimal hypothesis on c?
• Parallel computation?
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