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Introduction



Model problem

Let Q = F($), where F is an isogeometric map, and Q = [0, 1]¢, with
d € N. Given T € R*, we consider:

ug — div(c®Vu) = 0, in Q x [0,T].
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Model problem

Let Q = F($), where F is an isogeometric map, and Q = [0, 1]¢, with
d € N. Given T € R*, we consider:

ug — div(c®Vu) = 0, in Q x [0,T].
Introducing v := cVu and ¢ := uy, this leads to the equations:

Vi = cVo in Q x [O,T],
¢r = div(cv) inQ x [0,T].
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Model problem

Let Q = F($), where F is an isogeometric map, and Q = [0, 1]¢, with
d € N. Given T € R*, we consider:

ug — div(c®Vu) = 0, in Q x [0,T].
Introducing v := cVu and ¢ := uy, this leads to the equations:

Vi = cVo in Q x [O,T],
¢r = div(cv) inQ x [0,T].

The problem will be find v € V = H(c, div; Q) and ¢ € Q = [*(Q) such
that:

/vadx:f/ div(cw)¢dx+/ cow - ndlr Yw eV,
Q Q i)

=0

/ o) dX = / div(ev) ¥ dx, Y € Q.
Q Q

Alen Kushova On a conservative isogeometric scheme for the wave equation 2 / 1



Isogeometric framework

The isogeometric map F : 2 — Q, is a parameterization of the
geometry of the physical domain.
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Isogeometric framework

The isogeometric map F : 2 — Q, is a parameterization of the
geometry of the physical domain. Usually indicated by

JF = Z Ciéi,p-

i€)

a linear combination of B-splines (or NURBS) of degree p.

Example

v

Figure 1: Mesh M in the parametric domain, and its image M on the
physical domain.
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Univariate B-splines

Example
4 B-spline basis of degree 3 on non-uniform open knot vector
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Figure 2: An example of univariate B-spline basis functions.
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Project the equations




Modified problem

We introduce " : V — V,, and M? : Q — Qy, and consider:

¢r = N?(div(cv))
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Modified problem

We introduce " : V — V,, and M? : Q — Qy, and consider:
¢r = N?(div(cv))
The modified problem reads: find v e Vand ¢ € Q such that:

/vt~wdx = 7/ N?(div(cw))g dx, Yw €V,
Ja Q

or = MP(div(cv)).
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Modified problem

We introduce M": V — V,, and N? : Q — Qy, and consider:
¢r = N?(div(cv))
The modified problem reads: find v e Vand ¢ € Q such that:
/Qvt cwdx = — /Q N?(div(cw))g dx, Yw €V,
| or = MP(div(cv)).

We retrieve the conservation of total Energy, that is:

:
()= 5 /Q V7 + ¢2dx = Eo.
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How to choose N'?

We ask M" and N? to commute with the following diagram:

H(c, div; Q) — & 12(Q)
o o (2)
v, —& 4 Q,

that is
N?(div(cv)) = div(M'(cv)).
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How to choose N'?

We ask M" and N? to commute with the following diagram:

H(c, div; Q) — & 12(Q)

m 2

div
Vy ———— Qp,

that is
N?(div(cv)) = div(M'(cv)).

Isogeometric De Rham complex

-V}, and @y, are suitable pushforwards of spline spaces over €

- M’ are suitable pullbacks of Tensor-Product univariate
quasi-interpolants #,; [Beirao da Veiga et al., 2014]

- We took the quasi-interpolants described in [Lee et al., 2000]
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Examples

Push-forward:

Figure 3: Left: two multivariate B-splines over the parametric domain Q.
Right: push-forward of the two B-splines with the Piola transformations.
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Univariate quasi-interpolants from [Lee et al., 2000]:

—  f(X) = sin(2nx)
f(x) on breakpoints

u
e f(x) on midpoints

0 0.2 0.4 0.6 0.8 1
X

Figure 4: Example of point-wise evaluation of f(x) = sin(2nx) for projection
with #,. The explicit formula is () = %f(g,-ﬁ) 4 2f(Erns) — %f(g,ﬁ).
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Semi-discrete mixed formulation

The space semi-discretization of the modified problem (1) is: find
v eV, and ¢ € Qp, such that

/vt-wh dx = —/ div(N'(cwp))¢ dx,  Ywy, € Vy,
Q Q

oy = M2(div(cv)).

3)
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Semi-discrete mixed formulation

The space semi-discretization of the modified problem (1) is: find
v eV, and ¢ € Qp, such that

/v[-wh dx = —/ div(N'(cwp))¢ dx,  Ywy, € Vp,
Q Q

dr = M2(div(cv)).

Note:

- This semi-discretization + Crank-Nicolson in time is Energy
preserving;

- We are changing the test functions !
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Numerical results




Numerical simulations

Solutions:

___Numerical solution at T = 0 ___Numerical solution at T = 1

0 0.5 1 15 2

Numerical solution for Dirichlet homogeneous boundary conditions
at T =1. Mesh width h = 0.0156 and k = 5e — 04. Coefficient

¢ = sin(2mxq)sin(2mx;) + 2. Solutions computed with GeoPDEs
[Vazquez, 2016].
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Numerical simulations

Convergence rates:

10! h-convergence in 2D h-convergence in 2D
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Left: errors in || - ||s,2 norm for solutions with (Q.I.) and (G) methods
with homogeneous Dirichlet boundary conditions. Right: errors with
|| - |l2.2 norm for the same problems.
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Numerical simulations

Energy conservation:
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Energy conservation plots for Dirichlet homogeneous boundary
conditions. Mesh width h = 0.0312, while T = 300 and two different
partitions with ky = 0.2 and k, = 0.01.
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Conclusive remarks




Relevant remarks

- We have a new discretization scheme that hides the

(non-constant) coefficients into the test functions;

- We achieve optimal convergence rates as in a standard

Galerking discretization;

- We preserved the total Energy of the system for long time

simulations;

- To assemble the matrices, we have to compute the projections

M'(cwy,) letting vary Wy, in the set of basis functions of V. This
projections are local.
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Relevant remarks

- We have a new discretization scheme that hides the
(non-constant) coefficients into the test functions;

- We achieve optimal convergence rates as in a standard
Galerking discretization;

- We preserved the total Energy of the system for long time
simulations;

- To assemble the matrices, we have to compute the projections
M'(cwy,) letting vary Wy, in the set of basis functions of V. This
projections are local.

Open problems:
- Analytical error estimates?
- Minimal hypothesis on c?
- Parallel computation?
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