On a conservative isogeometric scheme for the wave equation

PhD Spring Workshop 2022

Alen Kushova

- 1. Introduction
- 2. Projections
- 3. Numerical results
- 4. Conclusions

Introduction

Model problem

Let $\Omega = \mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega} = [0, 1]^d$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^+$, we consider:

$$u_{tt} - \operatorname{div}(c^2 \nabla u) = 0, \text{ in } \Omega \times [0, T].$$

Model problem

Let $\Omega = \mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega} = [0, 1]^d$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^+$, we consider:

$$u_{tt} - \operatorname{div}(c^2 \nabla u) = 0$$
, in $\Omega \times [0, T]$.

Introducing $\mathbf{v} \coloneqq c \nabla u$ and $\phi \coloneqq u_t$, this leads to the equations:

$$\begin{cases} \mathbf{v}_t = c\nabla\phi & \text{ in } \Omega \times [0, T], \\ \phi_t = \operatorname{div}(c\mathbf{v}) & \text{ in } \Omega \times [0, T]. \end{cases}$$

Model problem

Let $\Omega = \mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega} = [0, 1]^d$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^+$, we consider:

$$u_{tt} - \operatorname{div}(c^2 \nabla u) = 0, \text{ in } \Omega \times [0, T].$$

Introducing $\mathbf{v} \coloneqq c \nabla u$ and $\phi \coloneqq u_t$, this leads to the equations:

$$\begin{cases} \mathbf{v}_t = c \nabla \phi & \text{in } \Omega \times [0, T], \\ \phi_t = \operatorname{div}(c \mathbf{v}) & \text{in } \Omega \times [0, T]. \end{cases}$$

The problem will be find $\mathbf{v} \in V = \mathbf{H}(c, \operatorname{div}; \Omega)$ and $\phi \in Q = L^2(\Omega)$ such that:

$$\begin{split} \int_{\Omega} \mathbf{v}_t \cdot \mathbf{w} \, \mathrm{d}\mathbf{x} &= -\int_{\Omega} \operatorname{div}(c\mathbf{w}) \ \phi \, \mathrm{d}\mathbf{x} + \underbrace{\int_{\partial \Omega} c\phi \mathbf{w} \cdot \mathbf{n} \mathrm{d}\Gamma}_{=\mathbf{0}} & \forall \mathbf{w} \in V, \\ \int_{\Omega} \phi_t \psi \, \mathrm{d}\mathbf{x} &= \int_{\Omega} \operatorname{div}(c\mathbf{v}) \ \psi \, \mathrm{d}\mathbf{x}, & \forall \psi \in Q. \end{split}$$

Isogeometric framework

The isogeometric map $\mathcal{F}:\hat{\Omega}\to\Omega$, is a parameterization of the geometry of the physical domain.

Isogeometric framework

The isogeometric map $\mathcal{F}: \hat{\Omega} \to \Omega$, is a parameterization of the geometry of the physical domain. Usually indicated by

$$\mathcal{F} \coloneqq \sum_{i \in J} c_i \hat{\mathcal{B}}_{i,p}.$$

a linear combination of B-splines (or NURBS) of degree **p**.

Example

Figure 1: Mesh $\widehat{\mathcal{M}}$ in the parametric domain, and its image $\mathcal M$ on the physical domain.

Univariate B-splines

Example

Figure 2: An example of univariate B-spline basis functions.

Project the equations

We introduce $\Pi^1 : V \to V_h$ and $\Pi^2 : Q \to Q_h$, and consider:

 $\phi_t = \Pi^2(\operatorname{div}(c\mathbf{v}))$

We introduce $\Pi^1 : V \to V_h$ and $\Pi^2 : Q \to Q_h$, and consider:

 $\phi_t = \Pi^2(\mathsf{div}(c\mathbf{V}))$

The modified problem reads: find $\mathbf{v} \in V$ and $\phi \in Q$ such that:

$$\int_{\Omega} \mathbf{v}_t \cdot \mathbf{w} \, \mathrm{d}\mathbf{x} = -\int_{\Omega} \Pi^2(\operatorname{div}(c\mathbf{w}))\phi \, \mathrm{d}\mathbf{x}, \quad \forall \mathbf{w} \in V,$$

$$\phi_t = \Pi^2(\operatorname{div}(c\mathbf{v})).$$
 (1)

We introduce $\Pi^1 : V \to V_h$ and $\Pi^2 : Q \to Q_h$, and consider:

 $\phi_t = \Pi^2(\mathsf{div}(c\mathbf{V}))$

The modified problem reads: find $\mathbf{v} \in V$ and $\phi \in Q$ such that:

$$\int_{\Omega} \mathbf{v}_t \cdot \mathbf{w} \, \mathrm{d}\mathbf{x} = -\int_{\Omega} \Pi^2(\operatorname{div}(c\mathbf{w}))\phi \, \mathrm{d}\mathbf{x}, \quad \forall \mathbf{w} \in V,$$

$$\phi_t = \Pi^2(\operatorname{div}(c\mathbf{v})).$$
(1)

We retrieve the conservation of total Energy, that is:

$$E(t) := \frac{1}{2} \int_{\Omega} |\mathbf{v}|^2 + \phi^2 \mathrm{d}\mathbf{x} = E_0.$$

How to choose Π^i ?

We ask Π^1 and Π^2 to commute with the following diagram:

that is

 $\Pi^2(\operatorname{div}(c\mathbf{v})) = \operatorname{div}(\Pi^1(c\mathbf{v})).$

(2)

How to choose Π^i ?

We ask Π^1 and Π^2 to commute with the following diagram:

that is

 $\Pi^2(\operatorname{div}(c\mathbf{v})) = \operatorname{div}(\Pi^1(c\mathbf{v})).$

Isogeometric De Rham complex

- V_h and Q_h are suitable pushforwards of spline spaces over $\hat{\Omega}$;
- Π^i are suitable pullbacks of Tensor-Product univariate quasi-interpolants $\hat{\pi}_p$; [Beirão da Veiga et al., 2014]
- We took the quasi-interpolants described in [Lee et al., 2000]

(2)

Examples

Push-forward:

Figure 3: Left: two multivariate B-splines over the parametric domain $\hat{\Omega}$. Right: push-forward of the two B-splines with the Piola transformations.

Examples

Univariate quasi-interpolants from [Lee et al., 2000]:

Figure 4: Example of point-wise evaluation of $f(x) = sin(2\pi x)$ for projection with $\hat{\pi}_2$. The explicit formula is $\lambda_{i,2}(f) = -\frac{1}{2}f(\xi_{i+1}) + 2f(\xi_{i+1,5}) - \frac{1}{2}f(\xi_{i+2})$.

The space semi-discretization of the modified problem (1) is: find $\mathbf{v} \in V_h$ and $\phi \in Q_h$, such that

$$\int_{\Omega} \mathbf{v}_t \cdot \mathbf{w}_h \, \mathrm{d}\mathbf{x} = -\int_{\Omega} \mathrm{div}(\Pi^1(c\mathbf{w}_h))\phi \, \mathrm{d}\mathbf{x}, \quad \forall \mathbf{w}_h \in V_h,$$

$$\phi_t = \Pi^2(\mathrm{div}(c\mathbf{v})).$$
(3)

The space semi-discretization of the modified problem (1) is: find $\mathbf{v} \in V_h$ and $\phi \in Q_h$, such that

$$\int_{\Omega} \mathbf{v}_t \cdot \mathbf{w}_h \, \mathrm{d}\mathbf{x} = -\int_{\Omega} \mathrm{div}(\Pi^1(c\mathbf{w}_h))\phi \, \mathrm{d}\mathbf{x}, \quad \forall \mathbf{w}_h \in V_h,$$

$$\phi_t = \Pi^2(\mathrm{div}(c\mathbf{v})).$$
 (3)

Note:

- This semi-discretization + Crank-Nicolson in time is Energy preserving;
- We are changing the test functions !

Numerical results

Numerical simulations

Solutions:

Numerical solution for Dirichlet homogeneous boundary conditions at T = 1. Mesh width h = 0.0156 and k = 5e - 04. Coefficient $c = sin(2\pi x_1)sin(2\pi x_2) + 2$. Solutions computed with GeoPDEs [Vázquez, 2016].

Numerical simulations

Convergence rates:

Left: errors in $\|\cdot\|_{\infty,2}$ norm for solutions with (Q.I.) and (G) methods with homogeneous Dirichlet boundary conditions. *Right:* errors with $\|\cdot\|_{2,2}$ norm for the same problems.

Numerical simulations

Energy conservation:

Energy conservation plots for Dirichlet homogeneous boundary conditions. Mesh width h = 0.0312, while T = 300 and two different partitions with $k_1 = 0.2$ and $k_2 = 0.01$.

Conclusive remarks

Relevant remarks

- We have a new discretization scheme that hides the (non-constant) coefficients into the test functions;
- We achieve optimal convergence rates as in a standard Galerking discretization;
- We preserved the total Energy of the system for long time simulations;
- To assemble the matrices, we have to compute the projections $\Pi^1(c\mathbf{w}_h)$ letting vary \mathbf{W}_h in the set of basis functions of V_h . This projections are local.

Relevant remarks

- We have a new discretization scheme that hides the (non-constant) coefficients into the test functions;
- We achieve optimal convergence rates as in a standard Galerking discretization;
- We preserved the total Energy of the system for long time simulations;
- To assemble the matrices, we have to compute the projections $\Pi^1(c\mathbf{w}_h)$ letting vary \mathbf{W}_h in the set of basis functions of V_h . This projections are local.

Open problems:

- Analytical error estimates?
- Minimal hypothesis on c?
- Parallel computation?

References

Beirão da Veiga, L., Buffa, A., Sangalli, G., and Vázquez, R. (2014). Mathematical analysis of variational isogeometric methods. *Acta Numerica*, 23:157.

📔 Lee, B.-G., Lyche, T., and Mørken, K. (2000).

Some examples of quasi-interpolants constructed from local spline projectors.

Mathematical methods for curves and surfaces: Oslo, pages 243–252.

Vázquez, R. (2016).

A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0.

Computers and Mathematics with Applications, 72(3):523–554.

