On a conservative isogeometric scheme for the wave equation

PhD Spring Workshop 2022

Alen Kushova

Table of contents

1. Introduction
2. Projections
3. Numerical results
4. Conclusions

Introduction

Model problem

Let $\Omega=\mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega}=[0,1]^{d}$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^{+}$, we consider:

$$
u_{t t}-\operatorname{div}\left(c^{2} \nabla u\right)=0, \text { in } \Omega \times[0, T] .
$$

Model problem

Let $\Omega=\mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega}=[0,1]^{d}$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^{+}$, we consider:

$$
u_{t t}-\operatorname{div}\left(c^{2} \nabla u\right)=0, \text { in } \Omega \times[0, T] .
$$

Introducing $v:=c \nabla u$ and $\phi:=u_{t}$, this leads to the equations:

$$
\begin{cases}\mathrm{v}_{\mathrm{t}}=c \nabla \phi & \text { in } \Omega \times[0, T] \\ \phi_{t}=\operatorname{div}(c \mathrm{v}) & \text { in } \Omega \times[0, T]\end{cases}
$$

Model problem

Let $\Omega=\mathcal{F}(\hat{\Omega})$, where \mathcal{F} is an isogeometric map, and $\hat{\Omega}=[0,1]^{d}$, with $d \in \mathbb{N}$. Given $T \in \mathbb{R}^{+}$, we consider:

$$
u_{t t}-\operatorname{div}\left(c^{2} \nabla u\right)=0, \text { in } \Omega \times[0, T] .
$$

Introducing $v:=c \nabla u$ and $\phi:=u_{t}$, this leads to the equations:

$$
\begin{cases}\mathrm{v}_{t}=c \nabla \phi & \text { in } \Omega \times[0, T] \\ \phi_{t}=\operatorname{div}(c \mathrm{v}) & \text { in } \Omega \times[0, T] .\end{cases}
$$

The problem will be find $\mathrm{v} \in \mathrm{V}=\mathrm{H}(c, \operatorname{div} ; \Omega)$ and $\phi \in Q=L^{2}(\Omega)$ such that:

$$
\begin{aligned}
& \int_{\Omega} \mathrm{v}_{\mathrm{t}} \cdot \mathrm{wd} \mathrm{~d} \mathbf{x}=-\int_{\Omega} \operatorname{div}(\mathrm{cw}) \phi \mathrm{d} \mathbf{x}+\underbrace{\int_{\partial \Omega} \mathrm{c} \phi \mathrm{w} \cdot \mathrm{nd} \Gamma}_{=0} \quad \forall \mathrm{w} \in \mathrm{~V}, \\
& \int_{\Omega} \phi_{\mathrm{t}} \psi \mathrm{~d} \mathbf{x}=\int_{\Omega} \operatorname{div}(\mathrm{cv}) \psi \mathrm{d} \mathbf{x}, \forall \psi \in Q .
\end{aligned}
$$

Isogeometric framework

The isogeometric map $\mathcal{F}: \hat{\Omega} \rightarrow \Omega$, is a parameterization of the geometry of the physical domain.

Isogeometric framework

The isogeometric map $\mathcal{F}: \hat{\Omega} \rightarrow \Omega$, is a parameterization of the geometry of the physical domain. Usually indicated by

$$
\mathcal{F}:=\sum_{i \in J} \mathrm{c}_{\mathrm{i}} \hat{B}_{\mathrm{i}, \mathrm{p}} .
$$

a linear combination of B-splines (or NURBS) of degree p.

Example

Figure 1: Mesh $\widehat{\mathcal{M}}$ in the parametric domain, and its image \mathcal{M} on the physical domain.

Univariate B-splines

Example

Figure 2: An example of univariate B-spline basis functions.

Project the equations

Modified problem

We introduce $\Pi^{1}: V \rightarrow V_{h}$ and $\Pi^{2}: Q \rightarrow Q_{h}$, and consider:

$$
\phi_{t}=\Pi^{2}(\operatorname{div}(c \mathrm{cv}))
$$

Modified problem

We introduce $\Pi^{1}: V \rightarrow V_{h}$ and $\Pi^{2}: Q \rightarrow Q_{h}$, and consider:

$$
\phi_{t}=\Pi^{2}(\operatorname{div}(c v))
$$

The modified problem reads: find $v \in V$ and $\phi \in Q$ such that:

$$
\begin{align*}
\int_{\Omega} \mathrm{v}_{\mathrm{t}} \cdot \mathrm{wd} \mathrm{~d} & =-\int_{\Omega} \Pi^{2}(\operatorname{div}(\mathrm{cw})) \phi \mathrm{dx}, \quad \forall \mathrm{w} \in \mathrm{~V}, \tag{1}\\
\phi_{t} & =\Pi^{2}(\operatorname{div}(\mathrm{cv})) .
\end{align*}
$$

Modified problem

We introduce $\Pi^{1}: V \rightarrow V_{h}$ and $\Pi^{2}: Q \rightarrow Q_{h}$, and consider:

$$
\phi_{t}=\Pi^{2}(\operatorname{div}(c v))
$$

The modified problem reads: find $v \in V$ and $\phi \in Q$ such that:

$$
\begin{align*}
\int_{\Omega} \mathrm{v}_{\mathrm{t}} \cdot \mathrm{wd} \mathrm{~d} & =-\int_{\Omega} \Pi^{2}(\operatorname{div}(\mathrm{cw})) \phi \mathrm{dx}, \quad \forall \mathrm{w} \in \mathrm{~V}, \tag{1}\\
\phi_{t} & =\Pi^{2}(\operatorname{div}(\mathrm{cv})) .
\end{align*}
$$

We retrieve the conservation of total Energy, that is:

$$
E(t):=\frac{1}{2} \int_{\Omega}|\mathbf{v}|^{2}+\phi^{2} d \mathbf{x}=E_{0} .
$$

How to choose Π^{i} ?

We ask Π^{1} and Π^{2} to commute with the following diagram:

that is

$$
\Pi^{2}(\operatorname{div}(c v))=\operatorname{div}\left(\Pi^{1}(c v)\right)
$$

How to choose Π^{i} ?

We ask Π^{1} and Π^{2} to commute with the following diagram:

that is

$$
\Pi^{2}(\operatorname{div}(c v))=\operatorname{div}\left(\Pi^{1}(c v)\right)
$$

Isogeometric De Rham complex

- V_{h} and Q_{h} are suitable pushforwards of spline spaces over $\hat{\Omega}$;
- Π^{i} are suitable pullbacks of Tensor-Product univariate quasi-interpolants $\hat{\pi}_{p}$; [Beirão da Veiga et al., 2014]
- We took the quasi-interpolants described in [Lee et al., 2000]

Examples

Push-forward:

Figure 3: Left: two multivariate B-splines over the parametric domain $\hat{\Omega}$. Right: push-forward of the two B-splines with the Piola transformations.

Examples

Univariate quasi-interpolants from [Lee et al., 2000]:

Figure 4: Example of point-wise evaluation of $f(x)=\sin (2 \pi x)$ for projection with $\hat{\pi}_{2}$. The explicit formula is $\lambda_{i, 2}(f)=-\frac{1}{2} f\left(\xi_{i+1}\right)+2 f\left(\xi_{i+1.5}\right)-\frac{1}{2} f\left(\xi_{i+2}\right)$.

Semi-discrete mixed formulation

The space semi-discretization of the modified problem (1) is: find $v \in V_{h}$ and $\phi \in Q_{h}$, such that

$$
\begin{align*}
\int_{\Omega} \mathrm{v}_{\mathrm{t}} \cdot \mathrm{w}_{\mathrm{h}} \mathrm{~d} \mathbf{x} & =-\int_{\Omega} \operatorname{div}\left(\Pi^{1}\left(c w_{h}\right)\right) \phi \mathrm{d} \mathbf{x}, \quad \forall \mathrm{w}_{h} \in \mathrm{~V}_{h}, \tag{3}\\
\phi_{t} & =\Pi^{2}(\operatorname{div}(\mathrm{cv})) .
\end{align*}
$$

Semi-discrete mixed formulation

The space semi-discretization of the modified problem (1) is: find $v \in V_{h}$ and $\phi \in Q_{h}$, such that

$$
\begin{align*}
\int_{\Omega} \mathrm{v}_{\mathrm{t}} \cdot \mathrm{w}_{\mathrm{h}} \mathrm{~d} \mathbf{x} & =-\int_{\Omega} \operatorname{div}\left(\Pi^{1}\left(c w_{h}\right)\right) \phi \mathrm{d} \mathbf{x}, \quad \forall \mathrm{w}_{h} \in V_{h}, \tag{3}\\
\phi_{t} & =\Pi^{2}(\operatorname{div}(c \mathrm{v})) .
\end{align*}
$$

Note:

- This semi-discretization + Crank-Nicolson in time is Energy preserving;
- We are changing the test functions !

Numerical results

Numerical simulations

Solutions:

Numerical solution for Dirichlet homogeneous boundary conditions at $T=1$. Mesh width $h=0.0156$ and $k=5 e-04$. Coefficient $c=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)+2$. Solutions computed with GeoPDEs [Vázquez, 2016].

Numerical simulations

Convergence rates:

Left: errors in $\|\cdot\|_{\infty, 2}$ norm for solutions with (Q.I.) and (G) methods with homogeneous Dirichlet boundary conditions. Right: errors with $\|\cdot\|_{2,2}$ norm for the same problems.

Numerical simulations

Energy conservation:

Energy conservation plots for Dirichlet homogeneous boundary conditions. Mesh width $h=0.0312$, while $T=300$ and two different partitions with $k_{1}=0.2$ and $k_{2}=0.01$.

Conclusive remarks

Relevant remarks

- We have a new discretization scheme that hides the (non-constant) coefficients into the test functions;
- We achieve optimal convergence rates as in a standard Galerking discretization;
- We preserved the total Energy of the system for long time simulations;
- To assemble the matrices, we have to compute the projections $\Pi^{1}\left(c w_{h}\right)$ letting vary W_{h} in the set of basis functions of V_{h}. This projections are local.

Relevant remarks

- We have a new discretization scheme that hides the (non-constant) coefficients into the test functions;
- We achieve optimal convergence rates as in a standard Galerking discretization;
- We preserved the total Energy of the system for long time simulations;
- To assemble the matrices, we have to compute the projections $\Pi^{1}\left(c w_{h}\right)$ letting vary W_{h} in the set of basis functions of V_{h}. This projections are local.

Open problems:

- Analytical error estimates?
- Minimal hypothesis on c?
- Parallel computation?

References

五
Beirão da Veiga，L．，Buffa，A．，Sangalli，G．，and Vázquez，R．（2014）． Mathematical analysis of variational isogeometric methods． Acta Numerica，23：157．
囯 Lee，B．－G．，Lyche，T．，and Mørken，K．（2000）．
Some examples of quasi－interpolants constructed from local spline projectors．
Mathematical methods for curves and surfaces：Oslo，pages
243－252．
風 Vázquez，R．（2016）．
A new design for the implementation of isogeometric analysis in Octave and Matlab：GeoPDEs 3．0．
Computers and Mathematics with Applications，72（3）：523－554．

Thank You!

