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Research interests

My research is mainly focused on statistical learning in biomedical context, from a methodological and applied point of view.
In particular, | deal with health analytics for complex data in medicine.

The most part of my activity is concerned with modelling data coming from integration of clinical surveys and administrative databanks. This
data drove her scientific interest towards the study of frailty Multi State Models and Stochastic processes for disease progression, as well as
Mathematical Modeling (Multilevel models and Bayesian nonparametric hierarchical models) for Evaluation of Healthcare Processes.
Moreover, | deepened the study of depth measures for (multivariate) Functional Data and Functional Data Analysis applied to
Pharmacoepidemiological setting for addressing research issues concerning the analysis of complex data like vital signs or time varying
covariates describing drugs intake or biomarker evaluation within personalized predictive models.

In the last years, | enlarged her interests to the study of Machine Learning and Representation Learning techniques, aimed at including
fingerprints that patients provide in terms of genomic or medical imaging data into predictive models for personalized medicine.
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Background: Precision Medicine to support clinical decisions

» The medical practice is currently undergoing a transformative era, shifting the paradigm from the primarily
reactive medicine of the past to a more proactive and predictive medicine, and trying to outdo the traditional
one-size-fits-all approach designed for the average patient.

Standard Framework

Standard Non Adverse
Responders Responders  Responders

» This new paradigm takes the name of Precision Medicine.

Rather than treating a disease, the attention now is moving toward streating the individual patients.

In other words, this methodological framework seeks to include a range of personal data in order to build a
Patient Representation, that combined with a tailored modelling can answer relevant clinical research questions
and support clinical decisions.




Background: Precision Medicine to support clinical decisions

Precision Medicine
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» The power of precision medicine lies in its ability to guide healthcare decisions toward the most effective
treatment for each individual, and thus, improve care quality, while reducing the need for unnecessary
diagnostic testing and therapies.




Background: Precision Medicine to support clinical decisions

» There are essentially two ways for supporting decision making in healthcare:
o Supporting the Policy Making with Real World Evidence

o Supporting Clinicians with advanced analytics to exploit the potential of Al in medicine
» The synthesis of the two is still far to come, but represents the main challenge of the healthcare research.

» Today: focus on and on challenges related to dealing with complex high dimensional data coming from
modern clinical practice => explore situations where the use of advanced analytics designed on complex, multi
modal and multi omics data allows for an effective support of clinical decision making in the oncological setting.

» Examples:

1. Joint use of Functional Data Analysis within a time-to-event framework as a tool for risk stratification and

personalized prediction, motivated by a real problem where the overall survival of patients affected by chronic
conditions, in a pharmacoepidemiological setting.

2. Use of Machine Learning techniques for predicting the development of toxicity adverse events due to
radiotherapy in prostate cancer patients, starting from genomic information.

3. Assessment of the potential of the virtualy biopsy in predictive the treatment response of the patients.




Healthcare Real World Data & Patient Representation
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Health Analytics @ MOX

Representation Machine Learning Functional Data - )
Learning Analysis 1 17
;o
LL s
fTiiil
‘z il Nonparametric Statistics
Pharmacoepidemiology -III l. _l II
olsm o+
8[25]8 Ia-
A
Mixed Effect Models
[ICU;}\
T\
Ex L o9
Multistate I\/Iodels\ / 00000000

Survival Analysis




Block |

Data sources: Clinical Registries and Administrative Data

Methods: Functional Data Analysis — Stochastic Process Theory — Survival Modelling



Why Heart Failure

*  Heart Failure (HF) is widespread all over the world (especially for > 65 years) Reg ione
* HF is chronic disease characterized by a high morbidity and mortality Lombardia
* Advances in therapy are changing the prognosis and improving survival with
v'reduction in symptoms v'decrease in the rate of hospitalizations v’ prevention of premature death
Two key characteristics in HF treatment: 1?'_ Re-hospitalizations s Drugs consumption
Angiotensin-Converting Enzyme (ACE) inhibitors

T=1 l o A Beta-Blocking (BB) agents
| _ Anti-Aldosterone (AA) agents

Domande che traducono supporto alle decisioni:
Gestione «ottimale» del pz cronico (tanti) passa da

- Sua capacita di essere aderente a terapia
- Comprensione di come questo influisce su endpoint primari e secondari (ie sopravvivenza e riospedalizzazioi)

=> Quantificazione consente valutazioni economiche, costo/efficacia e quindi informa le policies in sanita

How does proper/improper adherence to medication affect survival in Heart Failure?
What is the impact of re-hospitalizations and subsequent drugs consumption on survival?




Why drugs?

® ACE subclasses o AA subclasses
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Spreafico et al. (2020)
Adherence to disease-modifying therapy in patients hospitalized for Heart Failure: findings from a community-based study.
American Journal of Cardiovascular Drugs, 20: 179-190




Data & Information retrieval

Heart Failure Complex data integration among different administrative databases:

project anagraphic, hospital discharge cards (SDO), pharmacological registries
Regione h Person.al. Hospitalizations Pharmaceutical
Lombardia characteristics P purchases
' Como | Sondrio” /2 ‘IQI‘ i
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» Four time-varying processes: Re-hospitalizations and drugs purchases
[Angiotensin-Converting Enzyme (ACE) inhibitors + Angiotensin Receptor Blockers (ARB), Beta Blockers (BB), Anti-

Aldosterone (AA) agents]
» Time-to-event outcome: Long-term survival

Dataset
Anonymous
information from
Lombardy Region
administrative
RWD about 4,541
new-incident
patients
hospitalized in
2006-2012 with
primary
diagnosis of HF.




Data & Information retrieval

@ How can we model the processes of re-hospitalizations and subsequent drugs consumption over time in HF patients?
What is their impact on long-term survival?

- <+ = e Processes of re-hospitalizations and drug purchases == stochastic process with recurrent events.
oo

o oo o => Need to model the trajectories of the compensators underlying the processes.

itk o,

 Administrative Real-World Data (RWD) -> Real-time monitoring of
population-based records

* Patients’ clinical history of hospitalizations or drugs consumption could be
reconstructed using:

+) i.  administrative data related to admission to hospital (Hospital

' Discharge Charts);

ii.  pharmaceutical purchases registries.

» Develop methodologies able to extract from RWD additional information related to these

events in a novel and tailored way, properly taking into account their possibly time-varying
nature.

Mazzali et al. (2016). Methodological issues on the use of administrative data in healthcare research: the case
of heart failure hospitalizations in Lombardy Region, 2000 to 2012. BMC Health Services Research, 16 (1): 234




Research Questions

Drugs intake, treatments, biomarkers

Characterizing the association between time-varying are all processes that change over time
covariates and time-to-event outcomes — NK -
(e.g. death) is a challenging problem in the actual u d" Time-varying covariates K m
clinical/healthcare setting d .

Modulated effect on patient’s health status and
disease progression

Idea: representation of dynamic covariates in terms of functional data + dimensionality reduction
to plug them into Cox type regression models.

/\/\ Time-varying < Stochastic processes theory Functional Data Analysis > Time-to-event ¥
covariates models .

R [ Representation ] [ Modelling ] M

Appropriate dynamic Proper modelling of
characterization of the dynamic covariates in a
time-varying processes time-to-event

under study framework




Functional modeling of recurrent events on time-to-event processes

Administrative Time-varying Functional Dimensionality Survival
databases recurrent events representations Reduction Analysis
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Retrieve functional trajectories of the compensators of such Multivariate Functional Linear Cox
processes (which may represent the rate at which events Regression Model {/V/FLCRM} M

happen) by means of Functional Data Analysis theory.

To quantify the association between the

Spreafico, M., leva, F. (2021). Functional modeling of recurrent events on time-to-event processes. ) )
functional compensators and time-to-death.

Biometrical Journal. doi: 10.1002/bimj.202000374




Counting process formulation

= + = ? Concurrent event processes: re-hospitalizations, drugs purchases.
oo
Olgolo
o O
0 [D-Ell =] d' Proper modeling of the concurrent process enables a useful quantification of the
‘ effects of the concurrent process on the dynamics of the outcome.
A counting processis a stochastic process * The stochastic intensity process A(t) of the counting process N(t)
{N(t),t = 0} with values that are non- adapted to a filtration {F, t = 0} is:
negative, integer, and non-decreasing: 1
N(t) = 0, with jumps of size +1. A(t) = }33(1) EE IN(t+ h) — N(t)|F]
Counting process Compensator Martingale residual

* Counting process

formulation for ' %/' — A counting process where
Recurrent Events : - F —|— : jumps may have different size
(Doob-Meyer \HJ\/\,W — can be mode!ed asa p0|'nt
R ) f - process, assuming that a given
decomposition): S T i R distribution regulates the size
of the jumps.

N() = A = /U As)ds + M)




Cumulative hazard function of MPP intensity

o Marked Point Process (MPP): couple of processes /ﬁh)(t m(h)) /lgh)(t)f.(h) (mgh)) HP: conditional independence
describing the behavior of jumps and marks, whose . T 1g l l of jump times and marks
intensity for individual i related tO proCeSS h may be ------------------------------------------------- : 'LLLLLLEN '.....----------t ----------------
modeled as follows Conditional Ground  Multivariate density

intensity function Intensity of the marks m( )

e Let Ni(h)(t) be the stochastic process which counts the observed events of type h € H for the i-th individual (i = 1, ..., n) with possibly censored
observations of multiple events. The following distribution for the conditional intensity function is assumed:

marks <> covariates
2P (6m) = v 02 exp { B0+ 7 70} =20 S0

Idea: reconstruction of the hazard function of the marked counting process
(i.e., the compensator) that describes the time-varying event of interest

Cumulative hazard t NP
: h h T (h h h h h h
function or Ag )(t) = / /lg )(s)ds = > exp {ﬁ(h)rxg () +y P2 )(fi,j—l)} lAg )(mm( (J) )) — Al )(ri(’j)_l)]
Compensator 0 j=1

= h =type of recurrent event process ®= i =individual index

—+M (n) m ; ;
= x™(t) = covariates of the with coefficients B 0=ty <ty <. <t N (> SAUENCE of jump times
]

. z(h)(t) = covariates related to the marks m( )

with coefficients ™ . Agh)(t) = fot Agh)(s)ds is the cumulative baseline hazard function



Realizations of each compensator A" (t) and relative estimate A (t)

For each recurrent event process h € H, let 0 = ti(g) < ti(’;) < .. < t,(};,)(h)( ) be the sequence of jump times related to process Ni(h)(t)
’ ’ LN (T

for individual i, with T being the censoring time (possibly equal for all individuals or not)

t [
Agh)(t) = / /11@ (s)ds = / th)(s)iéh) (s) exp { ﬁ(h)Txgh) (5) + Y(MTZEM (s)}ds
0 0

(h)
N;— (£) min(tg?,r)

= 2 /(h) Ro(syexp { B0 1y -0) + 7' 21y 50) fds
j=1 L,
N (@)
= Z exp {ﬁ(h)TXEh)(ti,j—l) + J/(h)ngh)(tg,j_l)} l/\éh) (min(tg}), t)) — Agh)(ti(ﬁ.)_l)l
L P
Partial likelihood estimation Breslow estimators
(E ), T’(h)) Constrainej smoothing
! A ()
N(o)

A (h (T . (h ~()T _(h ~(h . h 2 (h h
Ag )(t) = Z exp {ﬁ(h) xg )(fi,j—1) + ¢ zg )(ti,j_l)} [A(() )(mm(ti(,j),t)) —A(() )(tg’j)_l)]
j=1




MPP approach for drug purchases and HF re-hospitalizations

Drug purchases (ACE or BB or AA) and HF re-hospitalizations events can be seen as a marked point processes (MPPs) with:
* jump times equal to event times

* jump marks equal to the duration of the prescription or length of stay in hospital

Purchase of ACE Purchase of BB
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Four types of recurrent event processes: h € H = {ACE, BB, AA, HF}



Functional compensators of drug purchases and HF re-hospitalizations MPPs

* Four time-varying processes (MPPs): drug purchases (ACE or BB or AA) and HF re-hospitalizations

* Functional compensators of the MPPs: {K(ih)} = {KEACE),KE-BB), KE-AA), KEHF)}

heH
Purchase of ACE Purchase of BB

o= 15 15
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gl §° functional data used to
© w . . .
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v Expected number of events by time t, given the covariates = Dynamic evolution of the events risk

R v Higher the curve - higher the cumulative risk of a new event

v The variability of the compensators across different patients reflects the variability of the realizations of their recurrent events.



Multivariate Functional Linear Cox Regression Model for long-term survival
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Multivariate Functional Linear Cox Regression Model

includes the functional compensators {th)}h ” with H = {ACE, BB, AA, HF}
S

in the classical Cox model using the following form:

To
n; <t‘wi, {Agh)} ) =1,(t) expi0Tw; + z A(ih) (s)a™(s)ds
heH heH J,

*  Patient’sindex: i € {1,...,N} \
Eventindex:h € H = {ACE BB,AA,HF}

*  no(t) = baseline hazard function

* w; = vector of baseline covariates with
regression parameters @

. {[\(ih)} realizations of the functional
heH

compensators for the i-th individual, with

\ functional regression parameters a (s) /

- Functional Principal Component ‘
Analysis  (FPCA) applied to
compensators ends up with a
Cox type regression model where

the FPC scores figl) are treated
as standard covariates.

( ‘wl, (h) ) ng(t) exp {BTool +Z z Ech)a,((h)} M
h H heH bdg=1

"w; and Kjare chosen by cross-validation




FPCA on functional compensators

§ | EPCA Dimensionality reduction to summarise information emerging
' from the functional compensators to a finite set of covariates,
L Components across the four while losing a minimum part of the information
) : time-varying processes have
D similar shapes

Dynamic
evolution of the — .

Component 1,98.6%

events risk

FPC I: Different events risk
N2
A patient with a high score is likely to
experience more events than a patient
with a low score.
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1 1

-0.05
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FPC II: Different events timing

N2
A patient with a high score is likely to

experience more events in the first part of the
_ year and less events in the last months of the
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Multivariate Functional Linear Cox Regression Model for long-term survival

According to the highest median Concordance Index, the selected MFLCRM was the following:

N (tlw;, {Aghj }h H) = 1,(t) exp {Slage1 + 6,gender; +a(ACE)f(ACE) (BB)f(BB)
€

M
(AA) (AA) HF hos HF hos HF hos HF hos
i ( p) f( p) 1 ( p) f( p)
Hazard Ratios
1.254 Higher risk of death for:
A
% * elder patients (6% each year)
1.067 :
Gender (Male) ) * male patients
0.008 e patients having experienced many hospitalizations
* ACE score 1 *
j4b]
2 - 0.996 Lower risk of death for:
o score 1 'E
é 1.do1 * patients assuming more ACE inhibitors
AA score 1 t * patients assuming more BB agents
- 1 1-%16 * patients who had many hospitalizations at the beginning of
seore the year and few in the end correspond to the ones who have
0773 . oy . .
HFscore2 N alregdy exper!enced a critical phas_e Qf the disease .and
survived from it (effect of the hospitalizations trend over time)
0.7 0.9 1.1 1.3

HR




Block | — take home messages

« Starting from the need for novel and tailored methodologies capable of extracting additional information from Real-World
Data (e.g., Administrative Data), our method is able to characterize the association between time-varying covariates and
time-to-event data.

* New methodology based on stochastic processes theory and Functional Data Analysis able to effectively extract and
resume information from functional data, intended as trajectories of compensators representing recurrent events.
—> Marked Point Process formulation for Recurrent Events

* Functional compensators contains information about different events risk and different events timing.
— Highlight trends and variations in the shape of the processes over time

* One of the first attempts in literature of merging potential of Functional Data Analysis and Survival Analysis.

* Flexible methodology to quantify the effect of personal behaviours and therapeutic patterns on survival.
- New insights for personalized treatment

PB: Observation period and immortal time bias




Block Il

Data sources: genomic/epigenomic data, SNPs, expression data

Methods: Deep Sparse Autoencoders — Network Theory — [temset Rule Mining



Research Question

» Precision medicine framework often has the need to model the relationship between some phenotypic trait or
health outcome and one or more omics-based information sources.

» However, irrespectively of the clinical inquiry, raw genotype data (and -omics data, in general) naturally carry
characteristics that hinder the applicability of most traditional statistical and biostatistical methods.

» Indeed, traditional approaches often rely on strict assumptions (s.a. independence between predictors, linear
and additive effect on the outcome, normally distributed predictors, etc) that are unrealistic to model the
complexity of the genotype, and oftentimes suffer some practical facets of these information sources and of
their real-world application settings.

» Need for development of methodologies that construct effective biological system complexity-aware
representations to enhance and complement interpretable and robust statistical approaches to classification,
regression or survival modeling

=> map the input into informative and manageable spaces where complexities are resolved
=> tackle the complexity of genomic data (unbalanceness, interactions, high dimensionality, computational
scalability,...), extracting meaningful information (feature selection,)




RadPrecise: personalize radiotherapy

* Prostate cancer is the most diffused cancer affecting the male population in Europe

« Complications (toxicity side effects) resulting from radiotherapy in the long run may arise, but
are veryrare

- Traditional methods (Normal Tissue Complication Probability Models, NTCP) based on patients’ phenotypic
characteristics and treatment details fail in stratifying the treated population.

DATA, COHORT & OUTCOMES SNP Treatment Follow-Up clinical data

genotyping Information Patient Reported Outcomes

1405 patients were included

Y
43 SNPs from literature i@ @

. =

5 endpoints: g N\
- rectal bleeding 11.7%,
- urinary frequency 4%,

- haematuria 5.5%,
- nocturia 7.8%, RE U§ I E
- decreased urinary stream 17.1%.

BASELINE RADIOTHERAPY  ENDOFRT 3m om 12m 24m



RadPrecise: personalize radiotherapy

- Including genotype information may aid treatment outcome modeling and allow

[}
‘ l;
personalized treatment planning
=
A

Combined model to stratify patients and drive treatment decision-making

Validating genetic risk factors (SNPs) Building a SNP-SNP interaction-aware Combine the Polygenic Risk Score (PRSi)
previously identified in literature as Radiation Toxicity Score to stratify with clinical covariates in NTCPs for
related to late toxicity after radiotherapy patients with higher risk of late toxicity personalized treatment planning.

FEATURE (SNP) SELECTION INTERACTION REPRESENTATION MODELING




RadPrecise: personalize radiotherapy

METHODOLOGICAL PROBLEM SETTING

1.

o ®
o '0
Validating '. '
genetic risk factors (SNPs) .'. o

Ail

) * The method need to be scalable to very high dimensionalities

*  We seek to find differences in features (SNPs) between two strongly

imbalanced groups, with a

* very small minority class sample size.

* We want to consider complex non-linear interactions between SNPs

* Data can be noisy (imputed SNPs)

OUR SOLUTION

What characteristics (features) make the

underrepresented population appear as an outlier of

Imbalanced
Classification Problem Outlier Detection Task

the overall population?

Massi M.C., Gaspereni F., leva F. et al. (2020). A Deep Learning Approach Validates Genetic Risk Factors for Late
Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort, Frontiers in Oncology, Vol. 10 : 2033

&




RadPrecise: personalize radiotherapy

AutoEncoders to characterize outliers

1. Train a Deep Sparse Autoencoder (DSAE) to learn how to

2.

3.

reconstruct majority class observations.

=> The learnt data distribution does not include the
characterization aspects of minority class instances

Test the model on majorityand minorityclasses

The model is expected to make higher Reconstruction
Errors (RE) on anomalous observations (minority class)
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RadPrecise: personalize radiotherapy

AutoEncoders (AE) are Neural Networks trained to reconstruct their input.

They are powerful non-linear dimensionality reduction models

Input Layer Encoder Decoder Output Layer ) )
Complex and non-linear mapping that models

interrelationships between features

&

Learns the most relevant aspects of the input

&8¢

Can be used for outlier detection...
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The bottleneck layer forces the model to learn a representation of the
input that is reduced in dimensionality and informative enough to

p)
reconstruct the input precisely ...how?



RadPrecise: personalize radiotherapy
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RadPrecise: personalize radiotherapy

ODDS RATIO SNPs to validate p-value
[Kerns et al.] DSAEE 85t quantile [REQUITE]
3,2 rs7366282 0.05
: 17599026 .
« Cohort of 1,296 patients 3,12 ” 0.61
2,66 rs10209697 0.86
. . . . 2,41 rs8098701 0.48
* 55 (4.2%) of which experiencing Late Toxicit ’
( 6) P 9 y 1,8 rs10101158 0.70
0,51 rs342442 0.79
« 9 SNPs identified in literaturel® for this endpoint 0,51 rs6003982 0.63
0,49 rs4997823 0.44
TOTAL SELECTED 7/
TOTAL VALIDATED 4
Table. Association between SNPs and  percenTace VAL/SEL 57.14%
toxicity endpoint when using logistic o cnrace SEL/TOT 16.28%

regressionon REQUITE cohort
Table 2. in green SNPs selected by DSAEE




RadPrecise: personalize radiotherapy

2 PROBLEM
- The DSAE accounted for SNPs interactions to perform feature selection, but we have no direct access to such
Polygenic Risk Scoring information for later use.

Most relevant SNPs filtered by DSAEE

| ROC Curve
{ \ 10
T Z n
Z Z T S Z Area under the curve: 0.66
N 5 & =° 08 -
2 22
0.6 -
11|11 E Statistics at optimality:
211 11212 ¥, « Odds-ratio: 2.74
1 2 1 2 1 - SEHSitiUity: 6364%‘;1
1|2 11211 ag | » Specificity: 61.00%
« Neqg. predictivity: 97 .43%
112(1(1|2)2 00 . . . . « Pos. predictivity: 6.74%
0.0 02 0.4 0.6 0.8 10
1 - specificity

Ilgnoring interaction terms results in classifiers with bad performances
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z 2
£ z 2 3 2 2z 3 Z 2 3z Risk SNP-allele sets List (Lg)
[T w o= N w»n o & = 93 T ORy
2 2|2 2 2]2 1Tolo SNPy:2,SNPs: 21.34 ShPa32-ShPna
1(1(1(1 11111 SNPs:2,SNPy: 2 12.03 | sNP7i1-SNP1o: -SNPg::
000 SNP,:1,SNPyp:2,SNP,:2 |1.34 SNP2: -SNP10: -SNPg:1
2/1]0]1]2)2 2|1])0]1]2)2 11 0 ,
1(2(2|1(2]|1 1|2 11211 10 0 SNPy:1,SNP1o: 2, SNPg:, | o 000 Protection SNP-allele sets List (Ly)
1(2(1|1(2]|1 1|2 1211 1.0 1 SNPy: SNP3:2-SNP23:1
. ~ SNPz2:2-SNP1o:
1(2(1(1(2]|2 12 1212 1/1/0 R:={T €Z|ORp >1} K| sNPaz: -SNP1o: -sNPg:
R . S5NP2:2-SNP10:2-SNPg:2
P:={T I|ORy <1}
For each patient i we define the two scores RS; and P§;, as the
ol A
percentage of risk or protection SNP-sets in x;. RS PS5 o
0.89 | 0.03
Fit a Logistic Model of the form: 0.20 0.56 = ------------
log(P(y=1)) = aRS + BPS +y 0.9710.04
0.10 | 0.78
Once obtained a and 8, the combined Interaction-aware PRS is 0.09 | 0.95 )
0.56 | 0.23 PRSi =a RS+ B PS = =
PRSi = aRS + BPS t t

Franco N.R., Massi M.C., leva F. et al. (2021) Development of a method for generating SNP
interaction-aware polygenic risk scores for radiotherapy toxicity, Radiotherapy and Oncology
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PRSi classification performance Risk and Protection SNP-sets

3 5 Rl @O0 @ @ O @@ RS T T e e “erey °

8 R 9O 00 000 000 ” @ OO O VO 0@

N QO OO OO O_® P @A A A K A AN K

21 M OO AR S %% o % o8 S8 o

TRee ele 5T % Res e e ¢ o o |

1o ROC Curve 1 Ré . . . ’ : <>. P6 ol . il . —m
: . 5 R O A A 0 L TR e 7 e 2 T I
| : I s S R OO @ QOO @ n1  EB O O OO D g
. El o SR @UOU OV 2 5 OO POV w2

[ i ¥ R10 OQPOQO® c 0 @ @ @ 99 @

I % 2 r @QOOO_ L O® - g Pl @@ OV o0

: -1 R12 @@ @D L TRae, ey e

o ' RI3 X XA A A A A £ 900 < 000 09

02 : AUC = 0.78 ] R4 @@ @ OO® 0@ PL A A A AR

: RIS X AD@ A A A A A P15 @ APO A A DA

Areaundermecuwe:o'sﬁ : W ;O O MM = WO Ny @B @M~ W W O M M < O Ny O oM~

o 00 . ' ' ' =3 1 ' r SR EFE R BLRga2RIRANRg

00 02 04 06 08 10 With Without FEEESRIES AN S BESLEIIRECRNS

1- fi toxicity toxicity R B I T e e R = B B e e

specificity %EEEEEEEE PR R E"‘"mrﬁu'ﬂﬂrzﬂ T

SNPs SNPs

- Distributions of PRSi differed significantly in patients with/without toxicity with AUCs ranging from 0.61 to 0.78.
- PRSi performed better than the classical Polygenic Risk Score based on SNPs additive effect

- Readable and interpretable list of predictive interactions
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3 Combined NTCP model with PRSi and clinical/dosimetric data
Combined Modeling —> Evaluation of added value of the genetic information
RESULTS

Late Urinary Frequency grade 22 . .
Probability of grade >=2 urinary frequency

OR Combined model 45
Late urinary frequency grade = 2 OR OR combined ==== Clinical/dosimetric model : :
R = - clinical/dosimetric PRSi P R s B PRSI w0 —risk PRSi = -2
. mode £ 35 | —risk PRSi = -1
Bladder maximum dose ‘ 1.09 11 % . risk PRSi= O
alpha/beta=1.5 Gy (1 Gy increase) 2 —risk PRSI = +1
baseline urinary freguency symptoms )5 27 %‘ g 2 —risk PRSi = +2
(no symptoms vs mild) 5 S 20
diabetes 1.65 18 215
prostatectomy 2.1 2.3 % 10
Polygenic risk score with SNP-allele interaction (PRSi) 2.7 2.9 T s
7 0
AUC 0.64 0.78 0.83 e 70 72 74 7 78 8 8 8 8 8 90
100-Specificity Maximum dose to the bladder (Gy, equivalent to 2 Gy/fraction, alpha/beta=1.5 Gy)
CONCLUSIONS
Toxicity probability depends on
- PRSi, i.e. genetic background of the patient: can’t be changed, should be acknowledged T. Rancati, M. Massi, et al (2021). "PH-0656 Prediction of
- Maximum dose to the bladder: this could be optimized for personalized treatment toxicity after prostate cancer RT: the value of a SNP-interaction

polygenic risk score", Radiotherapy and Oncology




EPIC: non-invasive prediction of cancer development

EPIC StUdy Breast Cancer survival modeling from DNA Methylation Data

iﬁ gj} %j} gjz Oyears g?fuz}

@]

496 subjects

50% diagnosed with Breast Cancer
Time to Event (Diagnosis)

o Clinical Baseline Information

o Genome-wide DNA Methylation Profile
450,000 features (CpG sites)

2
1194-98 RECRUITMENT
(healthy volunteers) 10110
ollol
__ 1oiol
Blood Samples §
3 (stored at -80°C)

DNA methylation data (DNAmM) can be codified as:
A. Continuous 3 values [0,1]
B. Categorical epimutation data

Hypermethylation
- (1] —> CpG ISLAND

No Epimutation

o
- E [0]

0/0{0|1(-1/0(0]O0

s —i 0 0

T

1/{0{0|0|1|-1|1}0

Hypomethylation

[-1]

—> CpG ISLAND




EPIC: non-invasive prediction of cancer development

What differs in terms of DNA methylation patterns between patients with an early or a cancer diagnosis w.r.t. the healthy control population?

Huge dimensionality, noisy categorical data, sparse information
Failure of traditional Survival Models with or without regularization

-

O J¢

2 _3\ e o6 o
1 1 Differential

5-10years >10years Matching controls Network

C o CpG lIsland CpG Island n CpGIsland n CpG Island n
Oo-vuccurrence ndn
Networks
CpGlsland 1 CpGlsland 1 CpGlsland 1

CpGlIsland 1

Breast Cancer
Cohort

Analysis




EPIC: non-invasive prediction of cancer development

Controls Network Cases Network Differential Network
=] =
e © ® @
® ®

Comparing network topologies
(i.e. degrees of vertices, modularities, network flow, etc.)

Controls Network Cases Network Differential Network

O C @:@):@%O@
D D = D
6 ® ®®

Comparing weighted group-specific networks for edge-specific weight differences




EPIC: non-invasive prediction of cancer development

What differs in terms of DNA methylation patterns between patients with an early or a

36090114-36038308
)

1320647179206 49188
T 4138058703 Sen0181

s

12253

<5 years

2azermolF NS 70 1
i ER12G T8 Y1500,
R -
eyl - A b5

o I oot

Jasms i semiom szusoiso kafier
¥ [

510858 16 10059846

Ssaasearr it
i50hi0 172506103, 5o
e

nr.ummuma.u v

‘amxi

T

1
i
1 nms;.,mﬂ]
1010209700 EAEHETE Y TR
1663251651711
22 1mamsg. 1703

"
3185420785 \su‘mn

e

”‘%s‘ix@i om0

15.65904333.04908737
LNz S1ssmasoe s rses A
®i31179814, 131 PRI 22025070

sa0te 13

ﬂngsaqn

17, 4a0aaag coBeBERTOR ST

o
s,
T

s ww"‘g’fmmuﬁav

1372710003727 3474
12/8884350 4890472 Db

7 ,5xizm...anm¢\ammmmm

l« '»m a&umasl’ (TS 21

g ol

b mnmw_gmmum

2
ST 160252
[rE—

TR T3 81064713 105 b3 M3
IS
lgf\ 'Jﬂr!j!?hh?ﬂ;n—
h s '-w'm TatiRMing az2eraz0
del

it e 2452104

aoisarizigs oariasen
192015427 132020208

un:‘}}*f?}f{iﬁim 15 vzens

o 1 avarinier
1598703711 04795181

095177
B{ESLULISIITIES g sonaney 1308433
20060040703

RN s
12T DG 210022122432
i Isones
B 1z s ssonans

15 72 ARSI 0

Saspanigarfins,
e—
o s M‘&g@mm s
e IR |,yxem;

;N,m 4

105180843.10 543

570864113 70900045

ehasan o 1839507 PU—
12:48026567 40027352

ameasa I
dasaparrresss -
V. 1ozt

amrseessaneass 1

S p———
PRTRBA TN s 552545 -

ranncey PRI SIS,

scsnansy ARV Tiearors 00

100161236 100162161

2333154

LumnpgT T
A e

g
Larat0bag e e

¥
o WM s e

Zas122713 18220653
ETAME T
s s

2330223 233083
tecs2a 00 10

22604

135712 SaAn

5113439647 134398430
s

10:84821439.04523885

160:124831898 128893807

JURCETTEvmRtoeTEny

1612000734 2016868

i
4
1
=

>10 years

100050806

3131175814131 76671

6:1390043-1235088.

727226638

354179772:54132401

45084650 25085276

1
1TaiTs9azAatiease

15:10523244.19524335.
55357717068

117ss 03z v sen

a82170872-82172086

10:101261949- 1283966

20 30046390- 30088725

60140
7.2n173397- 277780

ZTheA0SA0L TRa1152

s susses 1 42803410
A heow e 1o0s1 S E2800-10523085

a0 1212002
e
R Horoazs

arasen 1asaiia
e wm o161

kY 65007 re=y
B 2 e sz

P — i@zawlsmﬂw. ! n S
Ea— N
yuwm\ Nt nums@g,
Up‘lw'ms

asa65737 54650
8| 5’1‘1.@;
oot /|| A4 a'i;eu:iss:-anew

r17Ten
,rwx.rmm“n 14932675 “
nn-mmnmmsm. “r SO s 150
*'i 2 u)vnw e rin ntu; M3A2880
b 18T T o2 aae1 70

manw . ,’

N I asasszo1z obganin <L
;mfnssmﬂiwmm Al “"'V””‘*;W.m.,ﬁ,..,.
B i I ataslies_asinres i
&?iﬁ?wm"

B ”“““i‘n’i‘iﬂ%}m& 1 muumﬁ@f?&
17:46066901 2808700 001 156-65903117 z‘:’ﬁm 2
S oo ste1e13

e e o 20005478 200037919
i ;5-;»zmmw<>ﬁ!ﬁi goritas
sy
615 2T70lEAHAS 13 Bos0St0 L

1775308394 7538

1154G56844-1 54656343

252609

7331007.17331205
Wﬁm

147069607.14 787250+

' i,
um;MWW
513077082 A 0TOANR R 577

ASTE i

2810156032

I3

EETr e O

R
401 1umsmg.nmmwwmmm’w

1 qnwnulll“-%lﬁﬁﬂ‘ W‘qm

P a0
p Cranenss siuoish

s1sseaneianiie :
ysidioptitl Wﬂb’ibm

- ;n;.;m { \
05501 SBEHRT T 4121530

830915167230 218169182
1337432458.37473560
Iy Tu306529.03707a9%
L.‘wmm mmma isssazild

o ks )
nns || ST

HTTaSLESTATAN

35011751,9881 151

175056653505 7745

161717935-61219732 14
1
538331686 30330 71

1031 By 1ROz

osL13285 b 7“#!‘1%5&‘?}55‘3“

zaso
a1sae19sebise :

wnemesszerzr
1451403058.51805603

J
1A Rowad0n1z

2170084781 170563184

4122905720-222906142

18:55038124 55030861

©68932117.099T4 21 ¥

11:2113471-2118070

cancer diagnosis w.r.t. the healthy control population?

2:171386384-171387643

2y
5-10 years —

To:93989312 93930284

12.63460428-63461712 .
siasaa3213 38263 / :

1:9095450-20955393 ¥
HITTHasisEE 14953675

M_ 42 o;mm -

Laraga0nz; ﬂl‘“‘”"‘
= 12540

e

R
oo _a-lam;n Y

12:4765705p 47661817 i 1572212648 72208800

11:2118160-2 I BAPIAS4,32T6 37262

11:44288908-44290148

20:13148671-13150815

5100671197 100022873

L5:88904535-63908737




EPIC: non-invasive prediction of cancer development

Survival data is comprised of three elements: a patient’s baseline data x, a failure event time 7, and an event indicator E.
The hazard function is the probability an individual will not survive beyond t, given they have already survived up to time t.

Cox Proportional Hazards model (CoxPH)

Log-risk
We cannot assume the data as-is satisfies the linear
A(th) = AO (t) . eh(X): AO (t) . e(ﬁlx1+ﬁzx2+ A BMXM)
[

Easily int tabl del proportional hazards condition
Baseline hazard >ty Interpretable mode - We should include high-order interaction terms

Non-linear Survival Analysis

Output=0.4 Output=0.4

T
— rge-o5 . |
EE oo

Non-linear features Linear T Age =65 —»
(representations) Combination h9( ) Model Sex=F —»

1 J |nput BP =180 —
Neural Network (8) BMI = 40 —»

I Loss in interpretability

— BP =180 -
[— BMI =40 -

Model Input importance in
determining the Output

We can exploit powerful non-linear models and then trace back the effect
of each input thanks to explanation methods.




EPIC: non-invasive prediction of cancer development

Feature Aggregation Deep (non-linear) Survival Modeling CpG Islands Importance Ranking
F1 O O O O _ RN Island CpG_1
F2 & O 0O AN | . I E3 ¢F3 Island CpG_12
Fa OO O OFA RN C_____1F5 Island CpG_145
s O—0O OO ! AN [ F4
* / T CIF2
&%"J‘]ﬂ J;% Multiple Hidden Cox Layer Average feature importance
Representation layers Shaolev Val (P
dple dlues i
CpG Islands piey J
Validation: Weighted Pathway Enrichment Analysis
Ranked CpG Islands Ranked Gene List Pathway List N Path A | |
Path1: Gene 1, Gene 3, Gene 45 Path M I
athl: Gene 1, Gene 3, Gene 45, ...
—_— Path2: Gene 4, Gene 200, ... > Path B L1 1
Bl
Island CpG_357 ‘ ¢F22 Gene 4 Path Y[
sland CpG_159 Gene 5 ' ) a

- log(p-value)




Block Il — take home messages

» Through ML and proper representations of the input data we can account for, and alleviate, data and
context-specific complexities, overcoming the limitations of the traditional approaches to several precision
medicine-oriented analyses of biological and medical data.

» Exploiting a Deep Representation Learning (RL) model as abuilding block of our ensemble algorithm allows
to model the complex non-linear interactions between all genetic features together and their relationship with
the phenotype while performing feature selection, accounting for high-order interaction between SNPs.

» Co-Occurrence Network-based algorithm for categorical and extremely sparse genotype data, tailored to deal
with imbalanced settings such as studies seeking rare variants’ association with Extreme Phenotypes.

» Several of the methods we presented have the ability to manage data sources that are different in nature,
I.e. omics but also unstructured medical data in general. Indeed, by picking the right tool to represent each
data type-specific view, and by finding the best way to combine them, we will aim at building truly 360
degree Patient Representations, that have the potential to being informative and effective in dealing with all
the facets of the complex system of biological and clinical information each of those patients embodies.




Block Il

Data sources: Medical Imaging

Methods: Trees — Concolutional Neural Netwotks — Depth Measures — Penalized
Regressions — Survival Clustering



The standard scenario

@  Resistant clones
@ Sensitive clones

Late diagnosis and
new treatment
regimen design

Tumor Biopsy

_ One-tumor assessment
. Invasive _ INTRA INDIVIDUAL
Under-representative sample TUMOR HETEROGENEITY
INTRA PRIMARY TUMOR

HETEROGENEITY \

First line treatment Relapse
@ Metastasis

First diagnosis:
Biomarker identification
and treatment decision




The precision medicine scenario: Virtual Biopsy

Tumor Virtual Biopsy

_INTRA INDIVIDUAL
| | | [~ TUMOR HETEROGENEITY

ke 0

| INTRA PRIMARY TUMOR
HETEROGENEITY

CT/PET CT/PET DIMENTIONALITY PATIENT

IMAGING SUBIMAGES REDUCTION REPRESENTATION MODEL




The precision medicine scenario: Virtual Biopsy

IMAGING SEGMENTATION — RADIOMIC VECTORS

v

LITTPTTTITTPTTPTT T[] LateCorevol
LITPT TP PP T I P TPTITTT T LateMarginvol

LIT T T T TP TTTTITT T T E]T] PortalCorevol
" | Portal Margin VOI

LIT T TP T T TP PlTI] 1] ArterialCore VOl
Arterial Margin VOI

; Late CT phase | | 1
Portal CT phase ----------- l: E REPRESENTATION

R SEPTIA ST g e - ]




Research Questions

» How can we summarize the complex multi-view information about the patient?

=> Representation issue

» Can radiomic be of added value in predicting pathology evolution and survival response in IHC
patients?

> Which radiomics information are the most informative?

=> Dimensionality reduction issue

» Reliable identification of prognostic factors and cohort stratification criteria
» Cancer subtyping

=> Explainability issue

Assessment of the role of core vs margin information
Assessment of the information content of the different phases of the CT scan
Are there any differences between centers?

YV V V

=> Transfearability issue




Hodgkin Lymphoma

[ ] 1
| ] 1
4 N i i '

n
Sollini, M., Bartoli, F., Cavinato, L., leva, F., Ragni, A., Marciano, : Varlable SEIECtlon MOdEI :
A., Zanca, R., Galli, L., Paiar, F., Pasqualetti, F., Erba, P.A. (2021) 1 o :
[18F]FMCH PET/CT biomarkers and similarity analysis to refine : - Clinical rationale PCA - radiomics Logistic !
the definition of oligometastatic prostate cancer. » Clinical and laboratory 4 different PCAs on textural regression !
! - according to a priori NGLDM, GLZLM, keeping all association of variables - !
Sollini, M., Kirienko, M., Cavinato, L., Ricci, F., Biroli, M., leva, F., : knowledge the components for 95% of and response 1
Calderoni, L., Tabacchi, E., Nanni, C., Zinzani, P.L., Fanti, S., b + variability explained !
Guidetti, A., Alessi, A., Corradini, P., Seregni, E., Carlo-Stella, C., ! . !
Chiti, A. (2020 » - Backward stepwise ]
1t A. (2020) ' : Trees and RF ‘

h logical f kf A licati ; - Fegression

Methodological framework for radiomics applications in ' Redu ndancy '
Hodgkin's Lymphoma ' © Multivariate regression has _ _ Non linear multivariate - »
European Journal of Hybrid Imaging. 4: 1-17 . b been run for predictive Cut off yarlables with . association of variables :
' features selection correlation higher than 85% and response :
[ ]
] |

Relevance of imaging information as prognostic factor
(wrt only clinical prognosticators)

High performance application of virtual biopsy engine
workflow




Hodgkin Lymphoma
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Graph Convolution
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Output: Bx N x 2h

— ]

4

(

Input: Bx Nx 3

Attention Net

Feature Building
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Graph-CNN

Cavinato, L. et al (2021). Recurrence-specific supervised graph clustering for subtyping Hodgkin Lymphoma radiomic phenotypes.
43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
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Intrahepatic Cholangiocarcinoma

Mass forming

Gallbladder

Intraductal

Periductal-infiltrating

Prognostic factors

000000

Tumor size, number and distribution
Tumor differentiation
Vascular invasion

Lymph nodes metastases

Perihilar

Intrahepatic cholangiocarcinoma (IHC) is an aggressive disease that
affects the liver.

Intrahepatic It is the second most common primary hepatic tumor and its
incidence is increasing over last decades.

__ Diagnosis is difficult at early stages, due to IHC complicated biology.

_______ Extrahepatic

Distal The main treatment is surgery, chemotherapy has a limited

effectiveness.

Five-years survival rate ranges from 25% to 40%.

BUT !!

They are still debated, robust biomarker are lacking and precision
medicine approach with an adequate non-invasive preoperative
assessment of tumor biology and prognosis is still not available.

Metabolic tumor volume
R Status

Cavinato, L., et al. (2021). Virtual Biopsy for Diagnosis of Chemotherapy-Associated Liver Injuries and Steatohepatitis: A
Combined Radiomic and Clinical Model in Patients with Colorectal Liver Metastases. Cancers, 13(12), 3077.
Vigano, L. et al. (2021) Chemotherapy-associated liver injuries. Unmet needs and new insights for surgical oncologists.
Annals of Surgical Oncology, 28(8): 4074—4079 doi: 10.1245/s10434-021-10069-z




Intrahepatic Cholangiocarcinoma

3. Group-wise survival

1. Computation of similarity 2. Clustering of patient-to-

between patients and graph patient graph embedding comparison
embedding *
Similarity between patients is computed by quantifying the similarity of their 4. Groups can thus be

imaging characteristics and similarity of their time to event (i.e., death or characterized in terms of
significant covariates, both

refcurrence). According to 51@1lar1tles, patients are ar‘rangec.l ina graph where endogenous and
distance between nodes (patients) represents pair-wise similarity. exogenous

[ Chapfuwa, P. et al. (2020) Survival Cluster Analysis. ArXiV https://doi.org/10.48550/arXiv.2003.00355 ]



https://doi.org/10.48550/arXiv.2003.00355

Intrahepatic Cholangiocarcinoma

Cluster interpretation according to exogenous clinical variables

Variabili (% nel gruppo) GROUP 1 GROUP 2 GROUP5 P-value
PATTERN =1 - 1730
I Classe 1 2 A | e t - X
PATTERN = 2 e -222225 1 % 0.8 4856
07t I Classe 4 | 'g 0.6
PATTERN = 3 il B - 3603
06| S
2 0.21
SINGLE NODULE 05 i 1 a ; {p :'2.91?-23' 4682
04| 1 0 1000 2000 3000 4000 5000
GRADING =1 Time (days) .5990
o | Two variables result significant and the
GRADING =2 02¢ 1 related barplots are presented. Grading 1 is |.0074
o1} | quite rare to find in every group, while milder
GRADING =3 II group present a majority of patients with |.0081
* Grading = 1 Grading = 2 Grading = 3 grading 2 (except for group 3) and the worst
INFILTRAZIONE PE group exhibits a majority of patients with }.0653
grading 3.
CHEMIOTERAPIA Aoreovrvere rr— —ro e o ——re 4.5717




Case Study Il — take home messages

» Early detection of responders/not responders or long/short-term survivors may allow for personalized
and more effective treatments

=> Medical imaging is the most promising driver of the non-invasive predictive medicine.

» Unfortunately, the lack of standardization in image processes, the need of human intervention for
segmentation and reconstruction still pose issues in transfearability of results and general assessment
of efficacy in personalized prediction

=> Suitable representation methods are of crucial importance, as well as methods which are able to
account for hierarchical structure of the data in multicenter trials

» Despite its limitations, radiomics is one of the most common way to process medical images in order
to plug their information into a predictive machinery

=> Balance between interpretability and predictive power to enforce clinical actionability




Take Home Messages



Take Home Messages

> The increasing complexity of healthcare research and data require nowadays a major effort in
developing
novel statistical models and algorithms for personalized prediction.

> Such effort should be devoted to the development of robust evidence to support the development of
precision policies, in a context of Evidence Based Decision Making.

> This is definitively not an easy task, since many issues still remain (lack of standardization, regulation of
data access, privacy, among others).

> Data are not enough.

=> More sophisticated and tailored analytics methods
(new systems of health analytics, i.e., integrated pipelines going from data collection, to pre-
processing tools
and statistical models) 0

o Shared (transdisciplinary) attention to a critical interpretation of the evidences generat

as well as to their transfer to the decision level. &Hé‘”ge

> Complexity ask for new methods, not for more data > R

> Data cannot replace decisions => Keep humans into the loop
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