A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation

Andrea Moiola ${ }^{1}$ and Sergio Gómez ${ }^{1}$

${ }^{1}$ Dipartimento di Matematica "F. Casorati" Università di Pavia

CompMat2022 Spring Workshop

Linear Schrödinger equation

We consider the following homogeneous, time-dependent Schrödinger equation on a space-time cylinder $Q=\Omega \times I$, where $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$, with Lipschitz boundary $\partial \Omega$ and $I=(0, T)$, for some $T>0$:

$$
\begin{align*}
i \frac{\partial \psi}{\partial t}+\Delta \psi-V \psi & =0, & & \text { in } Q \tag{1.1a}\\
\psi & =g_{\mathrm{D}}, & & \text { on } \partial \Omega \times I, \tag{1.1b}\\
\psi(\mathbf{x}, 0) & =\psi_{0}(\mathbf{x}), & & \text { on } \Omega . \tag{1.1c}
\end{align*}
$$

- $V: \Omega \rightarrow \mathbb{R}$ is a piecewise-constant potential.

Linear Schrödinger equation

We consider the following homogeneous, time-dependent Schrödinger equation on a space-time cylinder $Q=\Omega \times I$, where $\Omega \subset \mathbb{R}^{d}, d \in \mathbb{N}$, with Lipschitz boundary $\partial \Omega$ and $I=(0, T)$, for some $T>0$:

$$
\begin{align*}
i \frac{\partial \psi}{\partial t}+\Delta \psi-V \psi & =0, & & \text { in } Q \tag{1.1a}\\
\psi & =g_{\mathrm{D}}, & & \text { on } \partial \Omega \times I, \tag{1.1b}\\
\psi(\mathbf{x}, 0) & =\psi_{0}(\mathbf{x}), & & \text { on } \Omega . \tag{1.1c}
\end{align*}
$$

- $V: \Omega \rightarrow \mathbb{R}$ is a piecewise-constant potential.

Some applications of the model (1.1):
\checkmark It is the fundamental equation of quantum mechanics [Lifshitz and Landau, 1965].
\checkmark Optics (called "paraxial wave equation") [Grella, 1982].
\checkmark Underwater acoustics (called "parabolic equation") [Keller and Papadakis, 1977].

Why space-time Trefftz-DG?

Space-time methods:

\checkmark High-order accuracy in both space and time variables at once.
\checkmark Approximate solution is available in the whole space-time cylinder Q.
\checkmark Space-time adaptivity.

Why space-time Trefftz-DG?

Space-time methods:

\checkmark High-order accuracy in both space and time variables at once.
\checkmark Approximate solution is available in the whole space-time cylinder Q.
\checkmark Space-time adaptivity.

Trefftz discontinuous Galerkin:

\checkmark Test and trial spaces are spanned by local solutions to the PDE.
\checkmark Less DoFs compared to polynomial approximations.
\checkmark Efective for highly oscillatory solutions.
\checkmark DG methods are specially suitable to be combined with Trefftz bases.
\checkmark No volume integrals involved.
\times For non-homogeneous PDEs (terms with derivatives of different order) the method requires non-polynomial basis functions.

Why space-time Trefftz-DG?

Space-time methods:

\checkmark High-order accuracy in both space and time variables at once.
\checkmark Approximate solution is available in the whole space-time cylinder Q.
\checkmark Space-time adaptivity.

Trefftz discontinuous Galerkin:

\checkmark Test and trial spaces are spanned by local solutions to the PDE.
\checkmark Less DoFs compared to polynomial approximations.
\checkmark Efective for highly oscillatory solutions.
\checkmark DG methods are specially suitable to be combined with Trefftz bases.
\checkmark No volume integrals involved.
\times For non-homogeneous PDEs (terms with derivatives of different order) the method requires non-polynomial basis functions.
*There is a very small number of works on space-time methods for the Schrödinger equation compared to the heat equation:

- [Karakashian and Makridakis, 1998] (CG in space + DG in time).
- [Karakashian and Makridakis, 1999] (CG in space + CG in time).
- [Demkowicz et al., 2017] (Space-time Discontinuous Petrov Galerkin).
- [Gómez and Moiola, 2022] (accepted for publication on SIAM Numerical Analysis).

Description of the Trefftz DG method

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.
The space-time finite element mesh is given by

$$
\mathscr{T}_{h}(Q):=\left\{K=K_{\mathbf{x}} \times I_{n}: K_{\mathbf{x}} \in \mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}, n=1, \ldots, N\right\} .
$$

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.
The space-time finite element mesh is given by

$$
\mathscr{T}_{h}(Q):=\left\{K=K_{\mathbf{x}} \times I_{n}: K_{\mathbf{x}} \in \mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}, n=1, \ldots, N\right\} .
$$

We define the local and global Trefftz spaces:

$$
\begin{aligned}
\mathbf{T}(K) & :=\left\{w \in H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I_{n} ; H^{2}\left(K_{\mathbf{x}}\right)\right) \text { s.t. } i \frac{\partial w}{\partial t}+\Delta w-\left.V\right|_{K} w=0 \text { on } K=K_{\mathbf{x}} \times I_{n}\right\}, \\
\mathbf{T}\left(\mathscr{T}_{h}\right) & :=\left\{w \in L^{2}(Q)^{d+1}|w|_{K} \in \mathbf{T}(K), \forall K \in \mathscr{T}_{h}(Q)\right\} .
\end{aligned}
$$

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.
The space-time finite element mesh is given by

$$
\mathscr{T}_{h}(Q):=\left\{K=K_{\mathbf{x}} \times I_{n}: K_{\mathbf{x}} \in \mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}, n=1, \ldots, N\right\} .
$$

We define the local and global Trefftz spaces:

$$
\begin{aligned}
\mathbf{T}(K) & :=\left\{w \in H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I_{n} ; H^{2}\left(K_{\mathbf{x}}\right)\right) \text { s.t. } i \frac{\partial w}{\partial t}+\Delta w-\left.V\right|_{K} w=0 \text { on } K=K_{\mathbf{x}} \times I_{n}\right\}, \\
\mathbf{T}\left(\mathscr{T}_{h}\right) & :=\left\{w \in L^{2}(Q)^{d+1}|w|_{K} \in \mathbf{T}(K), \forall K \in \mathscr{T}_{h}(Q)\right\} .
\end{aligned}
$$

For any finite-dimensional subspace $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right) \subset \mathbf{T}\left(\mathscr{T}_{h}\right)$ the proposed Trefftz-DG method applied to (1.1) seeks an approximation $\psi_{h p}(\mathbf{x}, t) \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ of the exact solution $\psi(\mathbf{x}, t) \in$ $\mathbf{T}\left(\mathscr{T}_{h}\right)$ such that for any test function $s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ the following equation is satisfied for all $K \in \mathscr{T}_{h}(Q)$

$$
\begin{aligned}
\int_{K} \psi_{h p}\left(\overline{i \frac{\partial s_{h p}}{\partial t}+}\right. & \left.\Delta s_{h p}-V s_{h p}\right) \\
& \mathrm{d} V \\
& +\oint_{\partial K}\left[i \widehat{\psi}_{h p} \overline{s_{h p}} n_{K}^{t}+\left(\widehat{\nabla \psi}_{h p} \overline{s_{h p}}-\widehat{\psi}_{h p} \nabla \bar{s}_{h p}\right) \cdot \overrightarrow{\mathbf{n}}_{K}^{x}\right] \mathrm{d} S=0
\end{aligned}
$$

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.
The space-time finite element mesh is given by

$$
\mathscr{T}_{h}(Q):=\left\{K=K_{\mathbf{x}} \times I_{n}: K_{\mathbf{x}} \in \mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}, n=1, \ldots, N\right\} .
$$

We define the local and global Trefftz spaces:

$$
\begin{aligned}
\mathbf{T}(K) & :=\left\{w \in H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I_{n} ; H^{2}\left(K_{\mathbf{x}}\right)\right) \text { s.t. } i \frac{\partial w}{\partial t}+\Delta w-\left.V\right|_{K} w=0 \text { on } K=K_{\mathbf{x}} \times I_{n}\right\}, \\
\mathbf{T}\left(\mathscr{T}_{h}\right) & :=\left\{w \in L^{2}(Q)^{d+1}|w|_{K} \in \mathbf{T}(K), \forall K \in \mathscr{T}_{h}(Q)\right\} .
\end{aligned}
$$

For any finite-dimensional subspace $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right) \subset \mathbf{T}\left(\mathscr{T}_{h}\right)$ the proposed Trefftz-DG method applied to (1.1) seeks an approximation $\psi_{h p}(\mathbf{x}, t) \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ of the exact solution $\psi(\mathbf{x}, t) \in$ $\mathbf{T}\left(\mathscr{T}_{h}\right)$ such that for any test function $s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ the following equation is satisfied for all $K \in \mathscr{T}_{h}(Q)$

$$
\begin{aligned}
\int_{K} \psi_{h p}\left(\frac{\overline{\partial s_{h p}}}{\partial t}+\right. & \left.\Delta s_{h p}-V s_{h p}\right) \mathrm{d} V \\
& +\oint_{\partial K}\left[i \widehat{\psi}_{h p} \overline{s_{h p}} n_{K}^{t}+\left(\widehat{\nabla \psi}_{h p} \overline{s_{h p}}-\widehat{\psi}_{h p} \nabla \overline{s_{h p}}\right) \cdot \overrightarrow{\mathbf{n}}_{K}^{x}\right] \mathrm{d} S=0
\end{aligned}
$$

Let the time interval $(0, T)$ be partitioned as $0=t_{0}<t_{1}<\ldots<t_{N}=T, \quad I_{n}:=\left(t_{n-1}, t_{n}\right)$. For each $n=1, \ldots, N$, we assume to have a polytopic partition $\mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}=\left\{K_{\mathbf{x}}\right\}$ of Ω.
The space-time finite element mesh is given by

$$
\mathscr{T}_{h}(Q):=\left\{K=K_{\mathbf{x}} \times I_{n}: K_{\mathbf{x}} \in \mathscr{T}_{h_{\mathbf{x}, n}}^{\mathbf{x}}, n=1, \ldots, N\right\} .
$$

We define the local and global Trefftz spaces:

$$
\begin{aligned}
\mathbf{T}(K) & :=\left\{w \in H^{1}\left(I_{n} ; L^{2}\left(K_{\mathbf{x}}\right)\right) \cap L^{2}\left(I_{n} ; H^{2}\left(K_{\mathbf{x}}\right)\right) \text { s.t. } i \frac{\partial w}{\partial t}+\Delta w-\left.V\right|_{K} w=0 \text { on } K=K_{\mathbf{x}} \times I_{n}\right\}, \\
\mathbf{T}\left(\mathscr{T}_{h}\right) & :=\left\{w \in L^{2}(Q)^{d+1}|w|_{K} \in \mathbf{T}(K), \forall K \in \mathscr{T}_{h}(Q)\right\} .
\end{aligned}
$$

For any finite-dimensional subspace $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right) \subset \mathbf{T}\left(\mathscr{T}_{h}\right)$ the proposed Trefftz-DG method applied to (1.1) seeks an approximation $\psi_{h p}(\mathbf{x}, t) \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ of the exact solution $\psi(\mathbf{x}, t) \in$ $\mathbf{T}\left(\mathscr{T}_{h}\right)$ such that for any test function $s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ the following equation is satisfied for all $K \in \mathscr{T}_{h}(Q)$

$$
\begin{aligned}
\int_{K} \psi_{h p}\left(\frac{\overline{\partial s_{h p}}}{\partial t}+\right. & \left.\Delta s_{h p}-V s_{h p}\right) \mathrm{d} V \\
& +\oint_{\partial K}\left[i \widehat{\psi}_{h p} \overline{s_{h p}} n_{K}^{t}+\left(\widehat{\nabla \psi}_{h p} \overline{s_{h p}}-\widehat{\psi}_{h p} \nabla \overline{s_{h p}}\right) \cdot \overrightarrow{\mathbf{n}}_{K}^{x}\right] \mathrm{d} S=0
\end{aligned}
$$

The so-called numerical fluxes $\widehat{\psi}_{h p}$ and $\widehat{\nabla \psi}_{h p}$ are approximations of the traces of $\psi_{h p}$ and $\nabla \psi_{h p}$ on \mathscr{F}_{h}. We choose them as:

$$
\begin{aligned}
& \widehat{\psi}_{h p}:= \begin{cases}\psi_{h p}^{-}, & \text {on } \mathscr{F}_{h}^{\text {space }}, \\
\psi_{h p}, & \text { on } \mathscr{F}_{h}^{T}, \\
\psi_{0}, & \text { on } \mathscr{F}_{h}^{0}, \\
\left\{\left\{\psi_{h p}\right\}\right\}-i \beta\left[\left[\nabla \psi_{h p}\right]\right]_{\mathbf{N}}, & \text { on } \mathscr{F}_{h}^{\text {time }}, \\
g_{\mathrm{D}}, & \text { on } \mathscr{F}_{h}^{\mathrm{D}},\end{cases} \\
& \widehat{\nabla} \psi_{h p}:= \begin{cases}\left\{\left\{\nabla \psi_{h p}\right\}\right\}+i \alpha\left[\left[\psi_{h p}\right]\right]_{\mathbf{N}}, & \text { on } \mathscr{F}_{h}^{\text {time }}, \\
\nabla \psi_{h p}+i \alpha\left(\psi_{h p}-g_{\mathrm{D}}\right) \overrightarrow{\mathbf{n}}_{\Omega}^{x}, & \text { on } \mathscr{F}_{h}^{\mathrm{D}},\end{cases}
\end{aligned}
$$

The so-called numerical fluxes $\widehat{\psi}_{h p}$ and $\widehat{\nabla \psi}_{h p}$ are approximations of the traces of $\psi_{h p}$ and $\nabla \psi_{h p}$ on \mathscr{F}_{h}. We choose them as:

$$
\begin{aligned}
& \widehat{\psi}_{h p}:= \begin{cases}\psi_{h p}^{-}, & \text {on } \mathscr{F}_{h}^{\text {space }}, \\
\psi_{h p}, & \text { on } \mathscr{F}_{h}^{T}, \\
\psi_{0}, & \text { on } \mathscr{F}_{h}^{0}, \\
\left\{\left\{\psi_{h p}\right\}\right\}-i \beta\left[\left[\nabla \psi_{h p}\right]\right]_{\mathbf{N}}, & \text { on } \mathscr{F}_{h}^{\text {time }}, \\
g_{\mathrm{D}}, & \text { on } \mathscr{F}_{h}^{\mathrm{D}},\end{cases} \\
& \widehat{\nabla \psi}_{h p}:= \begin{cases}\left\{\left\{\nabla \psi_{h p}\right\}\right\}+i \alpha\left[\left[\psi_{h p}\right]\right]_{\mathbf{N}}, & \text { on } \mathscr{F}_{h}^{\text {time }}, \\
\nabla \psi_{h p}+i \alpha\left(\psi_{h p}-g_{\mathrm{D}}\right) \overrightarrow{\mathbf{n}}_{\Omega}^{x}, & \text { on } \mathscr{F}_{h}^{\mathrm{D}},\end{cases}
\end{aligned}
$$

The stabilization parameters α and β are set as $\alpha^{-1}=\beta \sim h$.

After summing over all the elements $K \in \mathscr{T}_{h}(Q)$ and substituting the definition of the numerical fluxes, the following Trefftz-DG variational formulation is obtained:

$$
\begin{equation*}
\text { Seek } \psi_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right) \text { such that: } \mathscr{A}\left(\psi_{h p} ; s_{h p}\right)=\ell\left(s_{h p}\right), \quad \forall s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathscr{A}\left(\psi_{h p} ; s_{h p}\right):=\int_{\mathscr{F}_{h}^{\text {space }}} i \psi_{h p}^{-}\left[\left[\overline{s_{h p}}\right]\right]_{t} \mathrm{~d} \mathbf{x}+\int_{\mathscr{F}_{h}^{T}} i \psi_{h p} \overline{s_{h p}} \mathrm{~d} \mathbf{x} \\
&+ \int_{\mathscr{F}_{h}^{\text {time }}}\left(\left\{\left\{\nabla \psi_{h p}\right\}\right\} \cdot\left[\left[\overline{s_{h p}}\right]\right]_{\mathbf{N}}+i \alpha\left[\left[\psi_{h p}\right]\right]_{\mathbf{N}} \cdot\left[\left[\overline{s_{h p}}\right]\right]_{\mathbf{N}}-\left\{\left\{\psi_{h p}\right\}\right\}\left[\left[\nabla \overline{s_{h p}}\right]\right]_{\mathbf{N}}\right. \\
&\left.+i \beta\left[\left[\nabla \psi_{h p}\right]\right]_{\mathbf{N}}\left[\left[\nabla \overline{s_{h p}}\right]\right]_{\mathbf{N}}\right) \mathrm{d} S+\int_{\mathscr{F}_{h}^{\mathrm{D}}}\left(\nabla \psi_{h p} \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}+i \alpha \psi_{h p}\right) \overline{s_{h p}} \mathrm{~d} S \\
& \ell\left(s_{h p}\right):=\int_{\mathscr{F}_{h}^{0}} i \psi_{0} \overline{s_{h p}} \mathrm{~d} \mathbf{x}+\int_{\mathscr{F}_{h}^{\mathrm{D}}} g_{\mathrm{D}}\left(\nabla \overline{s_{h p}} \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}+i \alpha \overline{s_{h p}}\right) \mathrm{d} S .
\end{aligned}
$$

After summing over all the elements $K \in \mathscr{T}_{h}(Q)$ and substituting the definition of the numerical fluxes, the following Trefftz-DG variational formulation is obtained:

$$
\begin{equation*}
\text { Seek } \psi_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right) \text { such that: } \mathscr{A}\left(\psi_{h p} ; s_{h p}\right)=\ell\left(s_{h p}\right), \quad \forall s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathscr{A}\left(\psi_{h p} ; s_{h p}\right):=\int_{\mathscr{F}_{h}^{\text {space }}} i \psi_{h p}^{-}\left[\left[\overline{s_{h p}}\right]\right]_{t} \mathrm{~d} \mathbf{x}+\int_{\mathscr{F}_{h}^{T}} i \psi_{h p} \overline{s_{h p}} \mathrm{~d} \mathbf{x} \\
&+\int_{\mathscr{F}_{h}^{\mathrm{time}}}\left(\left\{\left\{\nabla \psi_{h p}\right\}\right\} \cdot\left[\left[\overline{s_{h p}}\right]\right]_{\mathbf{N}}+i \alpha\left[\left[\psi_{h p}\right]\right]_{\mathbf{N}} \cdot\left[\left[\overline{s_{h p}}\right]\right]_{\mathbf{N}}-\left\{\left\{\psi_{h p}\right\}\right\}\left[\left[\nabla \overline{s_{h p}}\right]\right]_{\mathbf{N}}\right. \\
&\left.+i \beta\left[\left[\nabla \psi_{h p}\right]\right]_{\mathbf{N}}\left[\left[\nabla \overline{s_{h p}}\right]\right]_{\mathbf{N}}\right) \mathrm{d} S+\int_{\mathscr{F}_{h}^{\mathrm{D}}}\left(\nabla \psi_{h p} \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}+i \alpha \psi_{h p}\right) \overline{s_{h p}} \mathrm{~d} S \\
& \ell\left(s_{h p}\right):=\int_{\mathscr{F}_{h}^{0}} i \psi_{0} \overline{s_{h p}} \mathrm{~d} \mathbf{x}+\int_{\mathscr{F}_{h}^{\mathrm{D}}} g_{\mathrm{D}}\left(\nabla \overline{s_{h p}} \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}+i \alpha \overline{s_{h p}}\right) \mathrm{d} S .
\end{aligned}
$$

\star The definitions of $\mathscr{A}(\cdot ; \cdot)$ and $\ell(\cdot)$ in the variational formulation (1.2) are independent of the potential V, which has an effect only on the discrete space.

Theoretical results

We define the following mesh-dependent semi-norms:

$$
\begin{align*}
\left\|\|w\|_{\mathrm{DG}}^{2}:=\right. & \left\|[[w]]_{t}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\text {space }}\right)}^{2}+\frac{1}{2}\|w\|_{L^{2}\left(\mathscr{F}_{h}^{T} \cup \mathscr{F}_{h}^{0}\right)}^{2}+\left\|\alpha^{1 / 2} w\right\|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}^{2} \tag{1.3}\\
& +\| \alpha^{1 / 2}\left[[w]_{\mathbf{N}}\left\|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)^{d}}^{2}+\right\| \beta^{1 / 2}[[\nabla w]]_{\mathbf{N}} \|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)}^{2}\right. \\
\left\|\|w\|_{\mathrm{DG}^{+}}^{2}:=\right. & \|w\|\left\|_{\mathrm{DG}}^{2}+\right\| w^{-}\left\|_{L^{2}\left(\mathscr{F}_{h}^{\text {space }}\right)}^{2}+\right\| \alpha^{-1 / 2}\{\{\nabla w\}\} \|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)^{d}}^{2} \\
& +\left\|\alpha^{-1 / 2} \nabla w \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}+\left\|\beta^{-1 / 2}\{\{w\}\}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)}^{2}
\end{align*}
$$

We define the following mesh-dependent semi-norms:

$$
\begin{align*}
& \|w\|_{\mathrm{DG}}^{2}:=\|\left[[w]_{t}\left\|_{L^{2}\left(\mathscr{F}_{h}^{\text {space }}\right)}+\frac{1}{2}\right\| w\left\|_{L^{2}\left(\mathscr{F}_{h}^{T} \cup \mathscr{F}_{h}^{0}\right)}^{2}+\right\| \alpha^{1 / 2} w \|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}^{2}\right. \tag{1.3}\\
& \left.+\| \alpha^{1 / 2} \llbracket w\right]_{N}\left\|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }) d}\right.}^{2}+\right\| \beta^{1 / 2}[\nabla \nabla w]_{\mathbf{N}} \|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)}^{2}, \\
& \left\|\left||w|\left\|_{\mathrm{DG}^{+}}^{2}:=\right\|\right| w\right\|_{\mathrm{DG}^{2}}^{2}+\left\|w^{-}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\text {space }}\right)}^{2}+\left\|\alpha^{-1 / 2}\{\{\nabla w\}\}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)^{d}}^{2} \\
& +\left\|\alpha^{-1 / 2} \nabla w \cdot \overrightarrow{\mathbf{n}}_{\Omega}^{x}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}+\left\|\beta^{-1 / 2}\{\{w\}\}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\text {time }}\right)}^{2} .
\end{align*}
$$

* Even though $\left|\left||\cdot| \|_{\mathrm{DG}}\right.\right.$ and $|\left\|\cdot\left|\mid \|_{\mathrm{DG}^{+}}\right.\right.$are just seminorms on $H^{1}\left(\mathscr{T}_{h}\right)$, they are indeed norms on $\mathbf{T}\left(\mathscr{T}_{h}\right)$.

Well-posedness

Proposition 1 (Coercivity)

For all $w \in \mathbf{T}\left(\mathscr{T}_{h}\right)$ the following identity holds: $\quad \Im \mathfrak{m}(\mathscr{A}(w ; w))=\|w\| \|_{\mathrm{DG}}^{2}$.

Well-posedness

Proposition 1 (Coercivity)

For all $w \in \mathbf{T}\left(\mathscr{T}_{h}\right)$ the following identity holds: $\quad \Im \mathfrak{m}(\mathscr{A}(w ; w))=\|w\|_{\mathrm{DG}}^{2}$.

Proposition 2 (Continuity)

The sesquilinear form $\mathscr{A}(\cdot ; \cdot)$ and the linear functional $\ell(\cdot)$ are continuous in the following sense:

$$
\begin{array}{lr}
|\mathscr{A}(v ; w)| \leq 2\left\|\left|v\left\|_{\mathrm{DG}^{+}} \mid\right\| w\| \|_{\mathrm{DG}},\right.\right. & \forall v, w \in \mathbf{T}\left(\mathscr{T}_{h}\right), \\
|\ell(v)| \leq\left(2\left\|\psi_{0}\right\|_{L^{2}\left(\mathscr{F}_{h}^{0}\right)}^{2}+2\left\|\alpha^{1 / 2} g_{\mathrm{D}}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}^{2}\right)^{1 / 2}\|w\|_{\mathrm{DG}^{+}}, & \forall v \in \mathbf{T}\left(\mathscr{T}_{h}\right) .
\end{array}
$$

Proposition 1 (Coercivity)

For all $w \in \mathbf{T}\left(\mathscr{T}_{h}\right)$ the following identity holds: $\quad \Im \mathfrak{m}(\mathscr{A}(w ; w))=\|w\|_{\mathrm{DG}}^{2}$.

Proposition 2 (Continuity)

The sesquilinear form $\mathscr{A}(\cdot ; \cdot)$ and the linear functional $\ell(\cdot)$ are continuous in the following sense:

$$
\begin{array}{lr}
|\mathscr{A}(v ; w)| \leq 2\| \| v\left\|_{\mathrm{DG}^{+}} \mid\right\| w\| \|_{\mathrm{DG}}, & \forall v, w \in \mathbf{T}\left(\mathscr{T}_{h}\right), \\
|\ell(v)| \leq\left(2\left\|\psi_{0}\right\|_{L^{2}\left(\mathscr{F}_{h}^{0}\right)}^{2}+2\left\|\alpha^{1 / 2} g_{\mathrm{D}}\right\|_{L^{2}\left(\mathscr{F}_{h}^{\mathrm{D}}\right)}^{2}\right)^{1 / 2}\|w\|_{\mathrm{DG}^{+}}, & \forall v \in \mathbf{T}\left(\mathscr{T}_{h}\right) .
\end{array}
$$

Theorem 1 (Quasi-optimality)

For any finite-dimensional subspace $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ of $\mathbf{T}\left(\mathscr{T}_{h}\right)$ there exists a unique soIution $\psi_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ satisfying (1.2). Furthermore, the following quasi-optimality condition holds:

$$
\begin{equation*}
\left\|\left|\psi-\psi_{h p}\right|\right\|_{\mathrm{DG}} \leq 3 \inf _{s_{h p} \in \mathbb{T}_{p}\left(\mathscr{T}_{h}\right)}\left\|\psi-s_{h p}\right\| \|_{\mathrm{DG}^{+}} \tag{1.5}
\end{equation*}
$$

Error estimate

Condition 1

For any Schrödinger solution $\psi \in \mathscr{C}^{p+1}(K)$, for each element $K \in \mathscr{T}_{h}$, we require that the discrete space $\mathbb{T}_{p}(K)$ contains an element whose Taylor polynomial centered at some (\mathbf{z}, s) matches that of ψ; i.e., there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
T_{(\mathbf{z}, s)}^{p+1}\left[\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) \phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.6}
\end{equation*}
$$

where $\left\{\phi_{\ell}\right\}_{\ell=1}^{n_{d, p}}$ is a basis of $\mathbb{T}_{p}(K)$.

Condition 1

For any Schrödinger solution $\psi \in \mathscr{C}^{p+1}(K)$, for each element $K \in \mathscr{T}_{h}$, we require that the discrete space $\mathbb{T}_{p}(K)$ contains an element whose Taylor polynomial centered at some (\mathbf{z}, s) matches that of ψ; i.e., there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
T_{(\mathbf{z}, s)}^{p+1}\left[\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) \phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t), \tag{1.6}
\end{equation*}
$$

where $\left\{\phi_{\ell}\right\}_{\ell=1}^{n_{d, p}}$ is a basis of $\mathbb{T}_{p}(K)$.

Theorem 2

Let $p \in \mathbb{N}$. Let $\psi \in \mathbf{T}\left(\mathscr{T}_{h}\right) \cap \mathscr{C}^{p+1}(Q)$ be the exact solution of (1.1) and $\psi_{h p} \in$ $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ be the Trefftz-DG approximation solving (1.2) with $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ satisfying Condition 1 for all $K \in \mathscr{T}_{h}(Q)$.
Then there exists a constant C independent on the mesh size such that

$$
\left\|\left\|\psi-\psi_{h p}\right\|_{\mathrm{DG}} \leq C \sum_{K=K_{\mathbf{x}} \times\left(t_{n-1}, t_{n}\right) \in \mathscr{T}_{h}(Q)}{\max \left\{h_{K_{\mathbf{x}}}, h_{n}\right\}^{p}\|\psi\|_{H^{p+1}(K)}}\right.
$$

Condition 1

For any Schrödinger solution $\psi \in \mathscr{C}^{p+1}(K)$, for each element $K \in \mathscr{T}_{h}$, we require that the discrete space $\mathbb{T}_{p}(K)$ contains an element whose Taylor polynomial centered at some (\mathbf{z}, s) matches that of ψ; i.e., there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
T_{(\mathbf{z}, s)}^{p+1}\left[\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) \phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t), \tag{1.6}
\end{equation*}
$$

where $\left\{\phi_{\ell}\right\}_{\ell=1}^{n_{d, p}}$ is a basis of $\mathbb{T}_{p}(K)$.

Theorem 2

Let $p \in \mathbb{N}$. Let $\psi \in \mathbf{T}\left(\mathscr{T}_{h}\right) \cap \mathscr{C}^{p+1}(Q)$ be the exact solution of (1.1) and $\psi_{h p} \in$ $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ be the Trefftz-DG approximation solving (1.2) with $\mathbb{T}_{p}\left(\mathscr{T}_{h}\right)$ satisfying Condition 1 for all $K \in \mathscr{T}_{h}(Q)$.
Then there exists a constant C independent on the mesh size such that

$$
\left\|\psi-\psi_{h p} \mid\right\|_{\mathrm{DG}} \leq C \sum_{K=K_{\mathbf{x}} \times\left(t_{n-1}, t_{n}\right) \in \mathscr{T}_{h}(Q)}{\max \left\{h_{K_{\mathbf{x}}}, h_{n}\right\}^{p}\|\psi\|_{H^{p+1}(K)}}
$$

\star In the paper the theory is developed to allow for general $\psi \in H^{p+1}\left(\mathscr{T}_{h}\right)$.

We aim to prove that for each $K \in \mathscr{T}_{h}$, there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) T_{(\mathbf{z}, s)}^{p+1}\left[\phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.7}
\end{equation*}
$$

We aim to prove that for each $K \in \mathscr{T}_{h}$, there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) T_{(\mathbf{z}, s)}^{p+1}\left[\phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.7}
\end{equation*}
$$

- The above problem translates into a rectangular linear $\operatorname{system} \mathbf{M a}(\mathbf{z}, s)=\mathbf{b}$, where $\mathbf{M} \in \mathbb{C}^{r_{p} \times n_{d, p}}$ and $\mathbf{b} \in \mathbb{C}^{r_{p}}$, with $r_{p}:=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right) \geq n_{d, p}$.

We aim to prove that for each $K \in \mathscr{T}_{h}$, there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) T_{(\mathbf{z}, s)}^{p+1}\left[\phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.7}
\end{equation*}
$$

- The above problem translates into a rectangular linear system $\mathbf{M a}(\mathbf{z}, s)=\mathbf{b}$, where $\mathbf{M} \in \mathbb{C}^{r_{p} \times n_{d, p}}$ and $\mathbf{b} \in \mathbb{C}^{r_{p}}$, with $r_{p}:=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right) \geq n_{d, p}$.
- Since both ψ and the basis functions ϕ_{ℓ} belong to the Trefftz space, the coefficients of their Taylor polynomials must satisfy certain relations.

We aim to prove that for each $K \in \mathscr{T}_{h}$, there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) T_{(\mathbf{z}, s)}^{p+1}\left[\phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.7}
\end{equation*}
$$

- The above problem translates into a rectangular linear $\operatorname{system~} \mathbf{M a}(\mathbf{z}, s)=\mathbf{b}$, where $\mathbf{M} \in \mathbb{C}^{r_{p} \times n_{d, p}}$ and $\mathbf{b} \in \mathbb{C}^{r_{p}}$, with $r_{p}:=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right) \geq n_{d, p}$.
- Since both ψ and the basis functions ϕ_{ℓ} belong to the Trefftz space, the coefficients of their Taylor polynomials must satisfy certain relations.
- We define $\mathscr{D} \subset \mathbb{C}^{r_{p}}$ as the space of vectors satisfying those relations. By definition we get $\operatorname{Im}(\mathbf{M}) \subset \mathscr{D}$ and $\mathbf{b} \in \mathscr{D}$.

We aim to prove that for each $K \in \mathscr{T}_{h}$, there exists $\mathbf{a}(\mathbf{z}, s) \in \mathbb{C}^{n_{d, p}}$ that satisfies

$$
\begin{equation*}
\sum_{\ell=1}^{n_{d, p}} a_{\ell}(\mathbf{z}, s) T_{(\mathbf{z}, s)}^{p+1}\left[\phi_{\ell}\right](\mathbf{x}, t)=T_{(\mathbf{z}, s)}^{p+1}[\psi](\mathbf{x}, t) \tag{1.7}
\end{equation*}
$$

- The above problem translates into a rectangular linear system $\mathbf{M a}(\mathbf{z}, s)=\mathbf{b}$, where $\mathbf{M} \in \mathbb{C}^{r_{p} \times n_{d, p}}$ and $\mathbf{b} \in \mathbb{C}^{r_{p}}$, with $r_{p}:=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right) \geq n_{d, p}$.
- Since both ψ and the basis functions ϕ_{ℓ} belong to the Trefftz space, the coefficients of their Taylor polynomials must satisfy certain relations.
- We define $\mathscr{D} \subset \mathbb{C}^{r_{p}}$ as the space of vectors satisfying those relations. By definition we get $\operatorname{Im}(\mathbf{M}) \subset \mathscr{D}$ and $\mathbf{b} \in \mathscr{D}$.
- The choice of the basis functions ϕ_{ℓ} must guarantee that \mathbf{M} is full-rank.

Best approximation

The local space $\mathbb{T}_{p}(K)$ is defined for each $K=K_{\mathbf{x}} \times I_{n} \in \mathscr{T}_{h}(Q)$ and for $p \in \mathbb{N}$ as the following set of complex exponentials:

$$
\begin{align*}
\mathbb{T}_{p}(K) & :=\operatorname{span}\left\{\phi_{\ell}(\mathbf{x}, t), \ell=1, \ldots, n_{d, p}\right\}, \text { where } \tag{1.8}\\
\phi_{\ell}(\mathbf{x}, t) & :=\mathrm{e}^{i\left(k_{\ell} \mathbf{d}_{\ell}^{\top} \mathbf{x}-\left(k_{\ell}^{2}+V_{K}\right) t\right) \text { for } \ell=1, \ldots, n_{d, p},}
\end{align*}
$$

for some parameters $\left\{k_{\ell}\right\} \subset \mathbb{R}$ and directions $\left\{\mathbf{d}_{\ell}\right\} \subset \mathscr{S}_{1}^{d}:=\left\{\mathbf{v} \in \mathbb{R}^{d},|\mathbf{d}|=1\right\}$, which can be chosen differently in each cell K.

The local space $\mathbb{T}_{p}(K)$ is defined for each $K=K_{\mathbf{x}} \times I_{n} \in \mathscr{T}_{h}(Q)$ and for $p \in \mathbb{N}$ as the following set of complex exponentials:

$$
\begin{align*}
\mathbb{T}_{p}(K) & :=\operatorname{span}\left\{\phi_{\ell}(\mathbf{x}, t), \ell=1, \ldots, n_{d, p}\right\}, \text { where } \tag{1.8}\\
\phi_{\ell}(\mathbf{x}, t) & :=\mathrm{e}^{i\left(k_{\ell} \mathbf{d}_{\ell}^{\top} \mathbf{x}-\left(k_{\ell}^{2}+V_{K}\right) t\right) \text { for } \ell=1, \ldots, n_{d, p},}
\end{align*}
$$

for some parameters $\left\{k_{\ell}\right\} \subset \mathbb{R}$ and directions $\left\{\mathbf{d}_{\ell}\right\} \subset \mathscr{S}_{1}^{d}:=\left\{\mathbf{v} \in \mathbb{R}^{d},|\mathbf{d}|=1\right\}$, which can be chosen differently in each cell K.

Proposition 3

Let $d=1, p \in \mathbb{N}, n_{1, p}=2 p+1$ and the parameters $\left\{k_{\ell}\right\}_{\ell=1}^{2 p+1} \subset \mathbb{R}$ be all different from one another. Let

$$
\begin{equation*}
\phi_{\ell}(x, t)=\mathrm{e}^{\left(k_{\ell} x-\left(k_{\ell}^{2}+\left.V\right|_{K}\right) t\right)}, \quad \ell=1, \ldots, 2 p+1, \tag{1.9}
\end{equation*}
$$

be the basis of the discrete Trefftz space $\mathbb{T}^{p}(K)$. Then Condition 1 is satisfied.

The local space $\mathbb{T}_{p}(K)$ is defined for each $K=K_{\mathbf{x}} \times I_{n} \in \mathscr{T}_{h}(Q)$ and for $p \in \mathbb{N}$ as the following set of complex exponentials:

$$
\begin{align*}
\mathbb{T}_{p}(K) & :=\operatorname{span}\left\{\phi_{\ell}(\mathbf{x}, t), \ell=1, \ldots, n_{d, p}\right\}, \text { where } \tag{1.8}\\
\phi_{\ell}(\mathbf{x}, t) & :=\mathrm{e}^{i\left(k_{\ell} \mathbf{d}_{\ell}^{\top} \mathbf{x}-\left(k_{\ell}^{2}+V_{K}\right) t\right) \text { for } \ell=1, \ldots, n_{d, p},}
\end{align*}
$$

for some parameters $\left\{k_{\ell}\right\} \subset \mathbb{R}$ and directions $\left\{\mathbf{d}_{\ell}\right\} \subset \mathscr{S}_{1}^{d}:=\left\{\mathbf{v} \in \mathbb{R}^{d},|\mathbf{d}|=1\right\}$, which can be chosen differently in each cell K.

Proposition 3

Let $d=1, p \in \mathbb{N}, n_{1, p}=2 p+1$ and the parameters $\left\{k_{\ell}\right\}_{\ell=1}^{2 p+1} \subset \mathbb{R}$ be all different from one another. Let

$$
\begin{equation*}
\phi_{\ell}(x, t)=\mathrm{e}^{\left(k_{\ell} x-\left(k_{\ell}^{2}+\left.V\right|_{K}\right) t\right)}, \quad \ell=1, \ldots, 2 p+1 \tag{1.9}
\end{equation*}
$$

be the basis of the discrete Trefftz space $\mathbb{T}^{p}(K)$. Then Condition 1 is satisfied.
\star Observe that $\operatorname{dim}\left(\mathbb{T}_{p}(K)\right)=\mathscr{O}(p) \ll \mathscr{O}\left(p^{2}\right)=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right)$

The local space $\mathbb{T}_{p}(K)$ is defined for each $K=K_{\mathbf{x}} \times I_{n} \in \mathscr{T}_{h}(Q)$ and for $p \in \mathbb{N}$ as the following set of complex exponentials:

$$
\begin{align*}
\mathbb{T}_{p}(K) & :=\operatorname{span}\left\{\phi_{\ell}(\mathbf{x}, t), \ell=1, \ldots, n_{d, p}\right\}, \text { where } \tag{1.8}\\
\phi_{\ell}(\mathbf{x}, t) & :=\mathrm{e}^{i\left(k_{\ell} \mathbf{d}_{\ell}^{\top} \mathbf{x}-\left(k_{\ell}^{2}+V_{K}\right) t\right) \text { for } \ell=1, \ldots, n_{d, p},}
\end{align*}
$$

for some parameters $\left\{k_{\ell}\right\} \subset \mathbb{R}$ and directions $\left\{\mathbf{d}_{\ell}\right\} \subset \mathscr{S}_{1}^{d}:=\left\{\mathbf{v} \in \mathbb{R}^{d},|\mathbf{d}|=1\right\}$, which can be chosen differently in each cell K.

Proposition 3

Let $d=1, p \in \mathbb{N}, n_{1, p}=2 p+1$ and the parameters $\left\{k_{\ell}\right\}_{\ell=1}^{2 p+1} \subset \mathbb{R}$ be all different from one another. Let

$$
\begin{equation*}
\phi_{\ell}(x, t)=\mathrm{e}^{\left(k_{\ell} x-\left(k_{\ell}^{2}+\left.V\right|_{K}\right) t\right)}, \quad \ell=1, \ldots, 2 p+1 \tag{1.9}
\end{equation*}
$$

be the basis of the discrete Trefftz space $\mathbb{T}^{p}(K)$. Then Condition 1 is satisfied.
\star Observe that $\operatorname{dim}\left(\mathbb{T}_{p}(K)\right)=\mathscr{O}(p) \ll \mathscr{O}\left(p^{2}\right)=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right)$

Proposition 4

Let $d=2$ and $n_{2, p}=(p+1)^{2}$. Let the parameters k_{m} and $\theta_{m, \lambda}$ satisfy the following conditions:

$$
k_{m} \in \mathbb{R} \text { for } m=0, \ldots, p, \text { with } k_{m_{1}}^{2} \neq k_{m_{2}}^{2} \text { for } m_{1} \neq m_{2} \text { and } k_{m} \neq 0
$$

$$
\theta_{m, \lambda} \in[0,2 \pi) \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1, \text { with } \theta_{m, \lambda_{1}} \neq \theta_{m, \lambda_{2}} \text { for } \lambda_{1} \neq \lambda_{2}
$$

Define the directions $\mathbf{d}_{m, \lambda}=\left(\cos \theta_{m, \lambda}, \sin \theta_{m, \lambda}\right)$ and the basis functions

$$
\phi_{m, \lambda}(\mathbf{x}, t)=\mathrm{e}^{i\left(k_{m} \mathbf{d}_{m, \lambda}^{\top} \mathbf{x}-\left(k_{m}^{2}+V \mid K\right) t\right)} \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1
$$

Then Condition 1 holds true.

Proposition 4

Let $d=2$ and $n_{2, p}=(p+1)^{2}$. Let the parameters k_{m} and $\theta_{m, \lambda}$ satisfy the following conditions:

$$
k_{m} \in \mathbb{R} \text { for } m=0, \ldots, p, \text { with } k_{m_{1}}^{2} \neq k_{m_{2}}^{2} \text { for } m_{1} \neq m_{2} \text { and } k_{m} \neq 0
$$

$$
\theta_{m, \lambda} \in[0,2 \pi) \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1, \text { with } \theta_{m, \lambda_{1}} \neq \theta_{m, \lambda_{2}} \text { for } \lambda_{1} \neq \lambda_{2}
$$

Define the directions $\mathbf{d}_{m, \lambda}=\left(\cos \theta_{m, \lambda}, \sin \theta_{m, \lambda}\right)$ and the basis functions

$$
\phi_{m, \lambda}(\mathbf{x}, t)=\mathrm{e}^{i\left(k_{m} \mathbf{d}_{m, \lambda}^{\top} \mathbf{x}-\left(k_{m}^{2}+V_{K}\right) t\right)} \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1
$$

Then Condition 1 holds true.
\star As before we have $\operatorname{dim}\left(\mathbb{T}_{p}(K)\right)=\mathscr{O}\left(p^{2}\right) \ll \mathscr{O}\left(p^{3}\right)=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right)$

Proposition 4

Let $d=2$ and $n_{2, p}=(p+1)^{2}$. Let the parameters k_{m} and $\theta_{m, \lambda}$ satisfy the following conditions:

$$
k_{m} \in \mathbb{R} \text { for } m=0, \ldots, p, \text { with } k_{m_{1}}^{2} \neq k_{m_{2}}^{2} \text { for } m_{1} \neq m_{2} \text { and } k_{m} \neq 0
$$

$$
\theta_{m, \lambda} \in[0,2 \pi) \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1, \text { with } \theta_{m, \lambda_{1}} \neq \theta_{m, \lambda_{2}} \text { for } \lambda_{1} \neq \lambda_{2}
$$

Define the directions $\mathbf{d}_{m, \lambda}=\left(\cos \theta_{m, \lambda}, \sin \theta_{m, \lambda}\right)$ and the basis functions

$$
\phi_{m, \lambda}(\mathbf{x}, t)=\mathrm{e}^{i\left(k_{m} \mathbf{d}_{m, \lambda}^{\top} \mathbf{x}-\left(k_{m}^{2}+V_{K}\right) t\right)} \text { for } m=0, \ldots, p, \lambda=1, \ldots, 2 m+1
$$

Then Condition 1 holds true.
\star As before we have $\operatorname{dim}\left(\mathbb{T}_{p}(K)\right)=\mathscr{O}\left(p^{2}\right) \ll \mathscr{O}\left(p^{3}\right)=\operatorname{dim}\left(\mathbb{P}_{p}(K)\right)$

Numerical experiments

Let us consider the (1+1)-dimensional Schrödinger equation (1.1) on $Q=(-2,2) \times(0,1)$ with homogeneous Dirichlet boundary conditions and the following square-well potential:

$$
V(x)= \begin{cases}0, & x \in(-1,1), \tag{1.10}\\ V_{*}, & x \in(-2,2) \backslash(-1,1),\end{cases}
$$

for some $V_{*}>0$. The initial condition is taken as an eigenfunction (bound state) of $-\partial_{x}^{2}+V$ on $(-2,2)$

Let us consider the (1+1)-dimensional Schrödinger equation (1.1) on $Q=(-2,2) \times(0,1)$ with homogeneous Dirichlet boundary conditions and the following square-well potential:

$$
V(x)= \begin{cases}0, & x \in(-1,1) \tag{1.10}\\ V_{*}, & x \in(-2,2) \backslash(-1,1)\end{cases}
$$

for some $V_{*}>0$. The initial condition is taken as an eigenfunction (bound state) of $-\partial_{x}^{2}+V$ on $(-2,2)$

Figure 1: Trefftz-DG approximation $\psi_{h p}$ in the space-time cylinder Q for the ($1+1$)-dimensional square-well potential problem (1.10) computed with $p=3$.

Figure 2: Trefftz-DG error for the $(1+1)$-dimensional problem with square well potential (1.10) with $V_{*}=20$. The numbers in the yellow rectangles are the empirical algebraic convergence rates in h.

Choice of the k_{m} parameters

We first note that in this experiment we know the time frequency of the exact solution, which is $\omega=k_{*}^{2}$. Therefore it is natural to expect the approximation to be better if our basis functions oscillate at the same time frequency.

Choice of the k_{m} parameters

We first note that in this experiment we know the time frequency of the exact solution, which is $\omega=k_{*}^{2}$. Therefore it is natural to expect the approximation to be better if our basis functions oscillate at the same time frequency.

Figure 3: Trefftz-DG error measured in DG norm for the $(1+1)$ dimensional problem with square-well potential 1.10 with $V_{*}=50\left(k_{*} \approx 6.6394\right)$ and $V_{*}=100\left(k_{*} \approx 9.6812\right)$, and for $k_{\ell} \in\{-p, \ldots, p\}$ (continuous line), which is the same choice of the previous plots, and $k_{\ell} \in\left\{0, \pm k_{*}\right\}$ (dashed line).

Demkowicz, L., Gopalakrishnan, J., Nagaraj, S., and Sepulveda, P. (2017).
A spacetime DPG method for the Schrödinger equation.
SIAM J. Num. Anal., 55(4):1740-1759.
Gómez, S. and Moiola, A. (2022).
A space-time Trefftz discontinuous Galerkin method for the linear schrödinger equation.
To appear in SIAM Numerical Analysis.
Grella, R. (1982).
Fresnel propagation and diffraction and paraxial wave equation.
J. of Optics, 13(6):367.

Karakashian, O. and Makridakis, C. (1998).
A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method.
Math. Comp., 67(222):479-499.
Karakashian, O. and Makridakis, C. (1999).
A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Num. Anal., 36(6):1779-1807.

Keller, J. and Papadakis, J. (1977).
Wave propagation and underwater acoustics.
Springer.
Lifshitz, E. and Landau, L. (1965).
Quantum Mechanics; Non-relativistic Theory.
Pergamon Press.

