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Model problem

Linear Schrédinger equation

We consider the following homogeneous, time-dependent Schrddinger equation on a
space-time cylinder Q = Q x /, where Q ¢ RY, d € N, with Lipschitz boundary 99 and
I=(0,T), forsome T > 0:

i%—‘i’ +Ay— Vy=0, in Q, (1.1a)
v =gp, on dQ x|, (1.1b)
y(x,0) = yp(x), on Q. (1.1¢)

e V:Q — R is a piecewise-constant potential.
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We consider the following homogeneous, time-dependent Schrddinger equation on a
space-time cylinder Q = Q x /, where Q ¢ RY, d € N, with Lipschitz boundary 99 and
I=(0,T), forsome T > 0:

i%—‘i’ +Ay— Vy=0, in Q, (1.1a)
v =gp, on dQ x|, (1.1b)
y(x,0) = yp(x), on Q. (1.1¢)

e V:Q — R is a piecewise-constant potential.

Some applications of the model (1.1):
v ltis the fundamental equation of quantum mechanics [Lifshitz and Landau, 1965].
v Optics (called “paraxial wave equation”) [Grella, 1982].
v' Underwater acoustics (called “parabolic equation”) [Keller and Papadakis, 1977].
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Why space-time Trefftz-DG?

Space-time methods:
v High-order accuracy in both space and time variables at once.
v Approximate solution is available in the whole space—time cylinder Q.
v Space-time adaptivity.
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Why space-time Trefftz-DG?

Space-time methods:

v
v
v

High-order accuracy in both space and time variables at once.
Approximate solution is available in the whole space—time cylinder Q.
Space-time adaptivity.

Trefftz discontinuous Galerkin:

v

PEENENENEN

Test and trial spaces are spanned by local solutions to the PDE.
Less DoFs compared to polynomial approximations.

Efective for highly oscillatory solutions.

DG methods are specially suitable to be combined with Trefftz bases.
No volume integrals involved.

For non-homogeneous PDEs (terms with derivatives of different order) the method
requires non-polynomial basis functions.
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v Space-time adaptivity.

Trefftz discontinuous Galerkin:

v Test and trial spaces are spanned by local solutions to the PDE.
Less DoFs compared to polynomial approximations.
Efective for highly oscillatory solutions.
DG methods are specially suitable to be combined with Trefftz bases.
No volume integrals involved.

For non-homogeneous PDEs (terms with derivatives of different order) the method
requires non-polynomial basis functions.

PEENENENEN

*«There is a very small number of works on space-time methods for the Schrédinger
equation compared to the heat equation:

o [Karakashian and Makridakis, 1998] (CG in space + DG in time).

e [Karakashian and Makridakis, 1999] (CG in space + CG in time).

e [Demkowicz et al., 2017] (Space—time Discontinuous Petrov Galerkin).

e [Gomez and Moiola, 2022] (accepted for publication on SIAM Numerical Analysis).

319 @




Description of the Trefftz DG method
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Treffiz DCINEIES T

Let the time interval (0, T) be partitionedas 0=ty <ty <...<ty=T, In:=(th_1,tn).
Foreach n=1,...,N, we assume to have a polytopic partition ﬂh’)‘m = {Kx} of Q.
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Trefftz-DG method

Let the time interval (0, T) be partitionedas 0=ty <ty <...<ty=T, In:=(th_1,tn)-
Foreach n=1,...,N, we assume to have a polytopic partmon 7" = {Kx} of Q.
The space—time finite element mesh is given by

Tn(Q) = {K=Kexh : Kxe T n=

|
=
—

We define the local and global Trefftz spaces:

T(K) ::{we H' (/,,;LZ(KX))nL2(/,,;H2(Kx)) sit. /% +AW—V|xw=0 onK = Kxxln},

(%) = {we [2(Q)dt! ‘W|K6T(K), VKG%(Q)}.

For any finite-dimensional subspace T, (.7,) C T(.7,) the proposed Trefftz-DG method
applied to (1.1) seeks an approximation (X, t) € Tp(.73) of the exact solution w(x,t) €
T(7h) such that for any test function sp, € Tp(7}) the following equation is satisfied for
all K € 7,(Q)

,8shp
/K Whp(’Tt + ASpp — VShp> dVv

4 {i@hpshpn; + (VWS — FnpVSp ) - ﬁﬁ} dS=0,

v
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.Jsp,
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+5,
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g+ (T - V) 7 5 =0

v
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Numerical fluxes

The so-called numerical fluxes ¥y, and ’V‘Tf)hp are approximations of the traces of yy,
and Vyp, on .#,. We choose them as:

Vip: on .7,
Vhp: on 7],
Vhoi =1 Vo, on 7P,
v} —iB[[Vwmlly:  on Fp™,
9o, on 7P,

%‘;; — {{Vlllhp}} +ia Hl[/hpﬂN, on (gz;)ime,
hp* Vo + 0t (Wpp — gp) RS, on FP,
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Numerical fluxes

The so-called numerical fluxes ¥y, and ’V‘Tf)hp are approximations of the traces of yy,
and Vyp, on .#,. We choose them as:

Vi on .7,
Vhps on 7],
Uhp'=1 WO, on ZP,
{{wnpt} —iB [[Vwmplly, on .73,
9, on .#P,

%‘;; — {{Vlllhp}} +ia Hl[/hpﬂN, on (gz;)ime,
hp* Vo + 0t (Wpp — gp) RS, on FP,

The stabilization parameters o and g are setas o' = 8 ~ h.
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After summing over all the elements K € 7,(Q) and substituting the definition of the
numerical fluxes, the following Trefftz-DG variational formulation is obtained:

Seek Yy € Tp(Th) such that: o (Whp; Spp) = U(Shp),  VShp € Tp(Th), (1.2)

where
o (Whp: Shp) 1= /,gzpace Wi [[STp]]rdx*/?hT YhpShp dX
+ [ goe (107001} [0l + 1 [yl [l — v} (V57000
B [Vyrally [[VShelly )45+ [, (Vo + iy S,

Ustp) = [, ivoSipdx+ [ g (Vo + iciShp) S.
“h “7h
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where
o (Whp: Shp) 1= /,gzpace Wi [[Sifw]]rd"*/yhr YhpShp dX
+ [ goe (107001} [0l + 1 [yl [l — v} (V57000
B [Vyrally [[VShelly )45+ [, (Vo + iy S,

Ustp) = [, ivoSipdx+ [ g (Vo + iciShp) S.
“7h “7h

y

* The definitions of o7 (-; -) and £(-) in the variational formulation (1.2) are independent
of the potential V, which has an effect only on the discrete space.
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Theoretical results
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We define the following mesh-dependent semi-norms:

]
2 2 2
[1wll2g = ITWi o iy + 5 IWIE2 705 +Ha1/2

L2(7D)

e M

,+[Bz iy win

)

12 (?ume [2 (L@ume)

2
[lIwl]

DG

= [ ey + o2 wh |,

L2 P;;me )d

_1/2 o
+[|o 2w g

, B 12wy

L2 mnme :

L2
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We define the following mesh-dependent semi-norms:

1 = OBy 5 Wy o gy 09
+Ha1/2[[W]]N 2( e +HB1/2[W'/]]" L2(ﬂ“"‘e)’
I, = ey + e 2P e
28 e
* Even though ||| - ||, and ||| -[l],. are just seminorms on H' (), they are indeed

norms on T(.7,).
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Well-posedness

N

Proposition 1 (Coercivity) Ve

For all w € T(.7,) the following identity holds: ~ Jm (& (w; w)) = |[[|w][|2.
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Well-posedness

N

Proposition 1 (Coercivity) Ve

2
DG’

For all w € T(.73,) the following identity holds:  Jm (& (w; w)) = |||w/||

N

Proposition 2 (Continuity) Ve

The sesquilinear form <7 (-; -) and the linear functional ¢(-) are continuous in
the following sense:

| (vi w)| <2|[[VIll,64 [1W]l]ng vv,w e T(Ih),

DG™ ‘ ‘

2 1/2
€)1 < (21¥0llE2gg) +2]@2a0 [ o ) Wl IV ET(TR).
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2
DG’

For all w € T(.73,) the following identity holds:  Jm (& (w; w)) = |||w/||

N

Proposition 2 (Continuity) Ve

The sesquilinear form <7 (-; -) and the linear functional ¢(-) are continuous in
the following sense:

[ (vi w)] < 2]Vl Wl w,w e T(F),
2 1/2
€)1 < (21¥0llE2gg) +2]@2a0 [ o ) Wl IV ET(TR).
N

Theorem 1 (Quasi-optimality) Pa

For any finite-dimensional subspace Ty (.7;) of T(.7,) there exists a unique so-
lution wp, € Tp(F) satisfying (1.2). Furthermore, the following quasi-optimality
condition holds:

= ., <3 inf =§ 5 1.5
11~ Vrplloo <3, inf 111V Srpll, (15)
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Error estimate

< Condition 1 >

For any Schradinger solution w € ¥P*1 (K), for each element K € 7, we re-
quire that the discrete space Tp(K) contains an element whose Taylor polyno-
mial centered at some (z,s) matches that of y; i.e., there exists a(z,s) € C"d»
that satisfies
Ngp
o9 LZ1 a(z, sm} (x.0) = T2 Wl (%, 1), (1.6)

where {¢,},%% is a basis of Tp(K).
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quire that the discrete space Tp(K) contains an element whose Taylor polyno-
mial centered at some (z,s) matches that of y; i.e., there exists a(z,s) € C"d»
that satisfies
Ngp
o9 LZ1 ai(z, s)@} (x.0) = T2 Wl (%, 1), (1.6)

where {¢,},%% is a basis of Tp(K).

< Theorem 2 >

Let pe N. Let y € T(Z,) N€P' (Q) be the exact solution of (1.1) and Whp €
Tp(Ih) be the Trefftz-DG approximation solving (1.2) with Ty(.7,) satisfying
Condition 1 for all K € 7(Q).

Then there exists a constant C independent on the mesh size such that

Y=Vl <C X max{hig ) | Wlupscxy-
K=Kxx(th_1,tn)€I,(Q)
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< Condition 1 >

For any Schradinger solution w € ¥P*1 (K), for each element K € 7, we re-
quire that the discrete space Tp(K) contains an element whose Taylor polyno-
mial centered at some (z,s) matches that of y; i.e., there exists a(z,s) € C"d»
that satisfies

Nd.p
T LZ1 a(z, s)@} (x.0) = T2 Wl (%, 1), (1.6)

where {¢,},%% is a basis of Tp(K).

< Theorem 2 >

Let pe N. Let y € T(Z,) N€P' (Q) be the exact solution of (1.1) and Whp €
Tp(Ih) be the Trefftz-DG approximation solving (1.2) with Ty(.7,) satisfying
Condition 1 for all K € 7(Q).

Then there exists a constant C independent on the mesh size such that

Y=Vl <C X max{hig ) | Wlupscxy-
K=Kxx(th_1,tn)€I,(Q)

* In the paper the theory is developed to allow for general y € HP*+1(.%;,).
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Sketeh of the proof of Condion

We aim to prove that for each K < .7, there exists a(z, s) € C"?» that satisfies

Nd,p

Y az.s)TE [0 (x. 1) = TE vl (x.1). (1.7)
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Sketch of the proof of Condition 1

We aim to prove that for each K < .7, there exists a(z, s) € C"?» that satisfies
nd.p

Y a(z ) TH [ (x. 1) = TR Wl (x.b). (1.7)

e The above problem translates into a rectangular linear system Ma(z, s) = b, where
M e C?*"dp and b € C'r, with 1, := dim (P (K)) > ng p.
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Sketch of the proof of Condition 1

We aim to prove that for each K < .7, there exists a(z, s) € C"?» that satisfies
Ng.p

21 ai(z,9) TR [0 (. 1) = TR Wl (x.1). (17)
/=

e The above problem translates into a rectangular linear system Ma(z, s) = b, where
M e C?*"dp and b € C'r, with 1, := dim (P (K)) > ng p.

e Since both y and the basis functions ¢, belong to the Trefftz space, the coefficients
of their Taylor polynomials must satisfy certain relations.

o We define 2  C'r as the space of vectors satisfying those relations. By definition
we getIm(M) C 2 and b € 2.

e The choice of the basis functions ¢, must guarantee that M is full-rank.

12/19




Best approximation

The local space Tp(K) is defined for each K = Ky x I, € 7,(Q) and for p € N as the
following set of complex exponentials:

Tp(K) :=span {(Pg(x,t), L= 1,...,nd’p}, where (1.8)
do(x,1) ::ei(k1d1Tx—(k(,2+V\K)t) for 0=1,...,ngp,

for some parameters {k;} C R and directions {d,} c .7 := {v € R?,|d| = 1}, which can
be chosen differently in each cell K.
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The local space Tp(K) is defined for each K = Ky x I, € 7,(Q) and for p € N as the
following set of complex exponentials:

Tp(K) :==span{gy(x,t), £=1,....nqp}, Where (1.8)
du(x, 1) =/ (KA VI for =1, g,

for some parameters {k;} C R and directions {d,} c .7 := {v € R?,|d| = 1}, which can
be chosen differently in each cell K.

Proposition 3 >

Letd=1,peN, nyp, =2p+ 1 and the parameters {kz}fzr1 C R be all different
from one another. Let

do(x,1) = elkx—(+vi) 1,...,2p+1, (1.9)

be the basis of the discrete Trefftz space TP(K). Then Condition 1 is satisfied.
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13/19




Best approximation

The local space Tp(K) is defined for each K = Ky x I, € 7,(Q) and for p € N as the
following set of complex exponentials:

Tp(K) :=span {q)é(x,t), L= 1,...,nd’p}., where

(1.8)
do(x,1) ::ei(k/d[Tx—(k(,2+V\K)t) for £=1,....ng,,

for some parameters {k;} C R and directions {d,} c .7 := {v € R?,|d| = 1}, which can
be chosen differently in each cell K.

Proposition 3 >

Letd=1,peN, nyp, =2p+ 1 and the parameters {kz}fzr1 C R be all different
from one another. Let

do(x,1) = lx=(B+VIY) g4 opii, (1.9)

be the basis of the discrete Trefftz space TP(K). Then Condition 1 is satisfied.

+Observe that | dim (Tp(K)) =

0(p) < 0(p?) = dim (Pp(K)) ‘

‘e
q

ry ry
L 4

kop  kopii
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Best approximation

Proposition 4 >
Let d =2 and nop = (p+1). Let the parameters kn and 6,,, satisfy the
following conditions:

km€R for m=0,...,p, with ki, # kg, for my # my and Ky, #0,
Oma €10,21) form=0,...,p, A =1

,...,.2m+1, with eml1 == 9m>12 for A4 == Ao.
Define the directions d;, ;, = (cos 6y, 2,sin 6,5, 2 ) and the basis functions
Oma (X, 1) = e/(kmd;_le(kﬁﬁ Vik)t)

form=0,....,p, A=1,....2m+1.
Then Condition 1 holds true.

14/19




Best approximation

Proposition 4 >

Let d =2 and nop = (p+ 1)2. Let the parameters kn and 6,,, satisfy the
following conditions:

km€R for m=0,...,p, with ki, # kg, for my # my and Ky, #0,

Oma €[0,27) form=0,...,p, A =1,....2m+1, with 6,3, # Oz, for 11 # 2o,

Define the directions d;, ;, = (cos 6y, 2,sin 6,5, 2 ) and the basis functions
O (X,1) = ei(kmd;_lx—(k,z,ﬁr V| K)t)

form=0,....p, A =1,
Then Condition 1 holds true.

2m+1.

*As before we have‘ dim (Tp(K)) = 6(p?) < 0(p?) = dim (P, (K)) ‘
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Best approximation

o N\
Proposition 4 P

Then Condition 1 holds true.

Let d =2 and nop = (p+ 1)2. Let the parameters kn and 6,,, satisfy the
following conditions:

km€R for m=0,...,p, with ki, # kg, for my # my and Ky, #0,
Oma €10,21) form=0,...,p, A =1

,...,.2m+1, with erl1 759,")12 for A4 7'{12

Define the directions d,, ; = (cos6,2,sin 6,5,;) and the basis functions
Oma (X, 1) = ei(kmd;-lx’(kl%Jr V\K)t)

form=0,....,p, A=1,....2m+1.

*As before we have‘ dim (Tp(K)) = 6(p?) < 0(p?) = dim (P, (K)) ‘
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Numerical experiments
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Square-well potential in (14 1) dimensions

Let us consider the (1+1)-dimensional Schrédinger equation (1.1) on Q=(-2,2) x (0,1)
with homogeneous Dirichlet boundary conditions and the following square-well poten-
tial:
[0, xe(-1,1),
veo={ . V2D (110
for some V., > 0. The initial condition is taken as an eigenfunction (bound state) of
—92+Von (-2,2)
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Square-well potential in (1+1) dimensions

Let us consider the (1+1)-dimensional Schrédinger equation (1.1) on Q=(-2,2) x (0,1)
with homogeneous Dirichlet boundary conditions and the following square-well poten-

tial:
0, e(—1,1),
V(X):{ V. el 22\ (1) (1.10)

for some V., > 0. The initial condition is taken as an eigenfunction (bound state) of
—92+Von (-2,2)

0.6 0.8

0.2 0.6

02 o4

06 02

=
-2 -1 [} 1 2
X

(a) Re (w,,,,) for V, =20 (b) Re (w,,p) for V, =50

Figure 1: Trefftz-DG approximation yj, in the space—time cylinder Q for the (14 1)-dimensional
square-well potential problem (1.10) computed with p = 3.
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h-convergence in (1+ 1) dimensions

! J—
i o —* 199 /“82
—
rZ.M
202 / :
L - 303 /
.,3.01 ’./
/ 4.01 /
321 Ve
e ~ -
S a2 ) 1.2 B
log;o(h) logyo(h)

(a) Error in DG norm

(b) Errorin Ly normat T =1

Figure 2: Trefftz-DG error for the (1 + 1)-dimensional problem with square well potential (1.10) with
V. = 20. The numbers in the yellow rectangles are the empirical algebraic convergence rates in h.
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Choice of the k;,, parameters

We first note that in this experiment we know the time frequency of the exact solution,
which is @ = k2. Therefore it is natural to expect the approximation to be better if our
basis functions oscillate at the same time frequency.
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Choice of the k;,, parameters

We first note that in this experiment we know the time frequency of the exact solution,
which is @ = k2. Therefore it is natural to expect the approximation to be better if our
basis functions oscillate at the same time frequency.

0.5 0.2
001 —@— 001 —— 002 —— &
—— 028 ————— 004 -

w072 - 0.15 -

084 .
023

-0.5 La

logy (H‘U - V’va|||D()

logyg (Illv = ¥nlllpe)

-3

1.4 1.2 -1 -0.8 -0.6 1.4 1.2
logo(h)

(a) V. =50

-1
log(h)

(b) Vi =100
Figure 3: Trefftz-DG error measured in DG norm for the (1 + 1) dimensional problem with

square-well potential 1.10 with V. =50 (k. ~ 6.6394) and V. =100 (k. ~ 9.6812), and for
ki € {—p,...,p} (continuous line), which is the same choice of the previous plots, and k; € {0, +k.}

(dashed line).
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