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Model problem

Linear Schrödinger equation

We consider the following homogeneous, time-dependent Schrödinger equation on a
space–time cylinder Q = Ω× I, where Ω ⊂ Rd , d ∈ N, with Lipschitz boundary ∂Ω and
I = (0,T ), for some T > 0:

i
∂ψ

∂ t
+ ∆ψ−V ψ= 0, in Q, (1.1a)

ψ = gD, on ∂Ω× I, (1.1b)

ψ(x,0) = ψ0(x), on Ω. (1.1c)

• V : Ω→ R is a piecewise-constant potential.

Some applications of the model (1.1):

X It is the fundamental equation of quantum mechanics [Lifshitz and Landau, 1965].

X Optics (called “paraxial wave equation”) [Grella, 1982].

X Underwater acoustics (called “parabolic equation”) [Keller and Papadakis, 1977].
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Why space-time Trefftz-DG?
Space–time methods:
X High-order accuracy in both space and time variables at once.
X Approximate solution is available in the whole space–time cylinder Q.
X Space–time adaptivity.

Trefftz discontinuous Galerkin:
X Test and trial spaces are spanned by local solutions to the PDE.
X Less DoFs compared to polynomial approximations.
X Efective for highly oscillatory solutions.
X DG methods are specially suitable to be combined with Trefftz bases.
X No volume integrals involved.
× For non-homogeneous PDEs (terms with derivatives of different order) the method

requires non-polynomial basis functions.

?There is a very small number of works on space–time methods for the Schrödinger
equation compared to the heat equation:
• [Karakashian and Makridakis, 1998] (CG in space + DG in time).
• [Karakashian and Makridakis, 1999] (CG in space + CG in time).
• [Demkowicz et al., 2017] (Space–time Discontinuous Petrov Galerkin).
• [Gómez and Moiola, 2022] (accepted for publication on SIAM Numerical Analysis).
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• [Gómez and Moiola, 2022] (accepted for publication on SIAM Numerical Analysis).

3/19



Description of the Trefftz DG method
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Trefftz-DG method
Let the time interval (0,T ) be partitioned as 0 = t0 < t1 < .. . < tN = T , In := (tn−1, tn).
For each n = 1, . . . ,N, we assume to have a polytopic partition T x

hx,n
= {Kx} of Ω.

The space–time finite element mesh is given by

Th(Q) :=
{

K = Kx× In : Kx ∈T x
hx,n

, n = 1, . . . ,N
}
.

We define the local and global Trefftz spaces:

T(K ) :=
{

w ∈ H1
(

In;L2(Kx)
)
∩L2

(
In;H2 (Kx)

)
s.t. i

∂w
∂ t

+ ∆w −V |K w = 0 on K = Kx× In
}
,

T(Th) :=
{

w ∈ L2 (Q)d+1
∣∣∣ w |K ∈ T(K ), ∀K ∈Th(Q)

}
.

For any finite-dimensional subspace Tp (Th) ⊂ T(Th) the proposed Trefftz-DG method
applied to (1.1) seeks an approximation ψhp(x, t)∈Tp(Th) of the exact solution ψ(x, t)∈
T(Th) such that for any test function shp ∈ Tp(Th) the following equation is satisfied for
all K ∈Th(Q)

+
∮

∂K

[
iψ̂hpshpnt

K +
(̂̂∇ψhpshp− ψ̂hp∇shp

)
·~nx

K

]
dS = 0,
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Numerical fluxes

The so-called numerical fluxes ψ̂hp and ̂̂∇ψhp are approximations of the traces of ψhp
and ∇ψhp on Fh. We choose them as:

ψ̂hp:=



ψ
−
hp , on F space

h ,

ψhp , on F T
h ,

ψ0, on F 0
h ,{{

ψhp
}}
− iβ

[[
∇ψhp

]]
N, on F time

h ,

gD, on F D
h ,

̂̂∇ψhp:=

{ {{
∇ψhp

}}
+ iα

[[
ψhp

]]
N, on F time

h ,

∇ψhp + iα
(
ψhp−gD

)
~nx

Ω, on F D
h ,

The stabilization parameters α and β are set as α−1 = β ∼ h.
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After summing over all the elements K ∈ Th(Q) and substituting the definition of the
numerical fluxes, the following Trefftz-DG variational formulation is obtained:

Seek ψhp ∈ Tp(Th) such that: A
(
ψhp; shp

)
= `(shp), ∀shp ∈ Tp(Th), (1.2)

where

A
(
ψhp; shp

)
:=
∫
F

space
h

iψ−hp

[[
shp
]]

t dx +
∫
FT

h

iψhpshp dx

+
∫
F time

h

({{
∇ψhp

}}
·
[[

shp
]]

N + iα
[[

ψhp
]]

N ·
[[

shp
]]

N−
{{

ψhp
}}[[

∇shp
]]

N

+ iβ
[[

∇ψhp
]]

N

[[
∇shp

]]
N

)
dS +

∫
F D

h

(
∇ψhp ·~nx

Ω + iαψhp
)

shp dS,

`(shp) :=
∫
F0

h

iψ0shp dx +
∫
F D

h

gD
(
∇shp ·~nx

Ω + iαshp
)

dS.

? The definitions of A (·; ·) and `(·) in the variational formulation (1.2) are independent
of the potential V , which has an effect only on the discrete space.

7/19



After summing over all the elements K ∈ Th(Q) and substituting the definition of the
numerical fluxes, the following Trefftz-DG variational formulation is obtained:

Seek ψhp ∈ Tp(Th) such that: A
(
ψhp; shp

)
= `(shp), ∀shp ∈ Tp(Th), (1.2)

where

A
(
ψhp; shp

)
:=
∫
F

space
h

iψ−hp

[[
shp
]]

t dx +
∫
FT

h

iψhpshp dx

+
∫
F time

h

({{
∇ψhp

}}
·
[[

shp
]]

N + iα
[[

ψhp
]]

N ·
[[

shp
]]

N−
{{

ψhp
}}[[

∇shp
]]

N

+ iβ
[[

∇ψhp
]]

N

[[
∇shp

]]
N

)
dS +

∫
F D

h

(
∇ψhp ·~nx

Ω + iαψhp
)

shp dS,

`(shp) :=
∫
F0

h

iψ0shp dx +
∫
F D

h

gD
(
∇shp ·~nx

Ω + iαshp
)

dS.

? The definitions of A (·; ·) and `(·) in the variational formulation (1.2) are independent
of the potential V , which has an effect only on the discrete space.

7/19



Theoretical results

8/19



We define the following mesh-dependent semi-norms:

|||w |||2
DG

:= ‖[[w ]]t‖
2
L2(F

space
h ) +

1
2
‖w‖2L2(FT

h ∪F
0
h )

+
∥∥∥α

1/2w
∥∥∥2

L2(F D
h )

(1.3)

+
∥∥∥α

1/2 [[w ]]N

∥∥∥2

L2(F time
h )d

+
∥∥∥β

1/2 [[∇w ]]N

∥∥∥2

L2(F time
h )

,

|||w |||2
DG+

:= |||w |||2
DG

+
∥∥w−

∥∥2
L2(F

space
h )

+
∥∥∥α
−1/2 {{∇w}}

∥∥∥2

L2(F time
h )d

+
∥∥∥α
−1/2

∇w ·~nx
Ω

∥∥∥
L2(F D

h )
+
∥∥∥β
−1/2 {{w}}

∥∥∥2

L2(F time
h )

.

? Even though ||| · |||DG and ||| · |||
DG+ are just seminorms on H1 (Th), they are indeed

norms on T(Th).
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Well-posedness

Proposition 1 (Coercivity)

For all w ∈ T(Th) the following identity holds: Im
(
A (w ; w)

)
= |||w |||2

DG
.

Proposition 2 (Continuity)

The sesquilinear form A (·; ·) and the linear functional `(·) are continuous in
the following sense:

|A (v ; w)| ≤ 2|||v |||
DG+ |||w |||DG , ∀v ,w ∈ T(Th),

|`(v)| ≤
(

2‖ψ0‖2L2(F0
h )

+ 2
∥∥∥α

1/2gD

∥∥∥2

L2(F D
h )

)1/2
|||w |||

DG+ , ∀v ∈ T(Th).

Theorem 1 (Quasi-optimality)

For any finite-dimensional subspace Tp(Th) of T(Th) there exists a unique so-
lution ψhp ∈Tp(Th) satisfying (1.2). Furthermore, the following quasi-optimality
condition holds:

|||ψ−ψhp |||DG ≤ 3 inf
shp∈Tp(Th)

|||ψ−shp |||DG+ . (1.5)
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Error estimate

Condition 1

For any Schrödinger solution ψ ∈ C p+1 (K ) , for each element K ∈ Th, we re-
quire that the discrete space Tp(K ) contains an element whose Taylor polyno-
mial centered at some (z,s) matches that of ψ; i.e., there exists a(z,s) ∈ Cnd ,p

that satisfies

T p+1
(z,s)

[nd ,p

∑
`=1

a`(z,s)φ`

]
(x, t) = T p+1

(z,s) [ψ] (x, t), (1.6)

where {φ`}
nd ,p
`=1 is a basis of Tp(K ).

Theorem 2

Let p ∈ N. Let ψ ∈ T(Th)∩C p+1 (Q) be the exact solution of (1.1) and ψhp ∈
Tp(Th) be the Trefftz-DG approximation solving (1.2) with Tp(Th) satisfying
Condition 1 for all K ∈Th(Q).
Then there exists a constant C independent on the mesh size such that

|||ψ−ψhp |||DG ≤ C ∑
K =Kx×(tn−1 ,tn)∈Th(Q)

max{hKx ,hn}p ‖ψ‖Hp+1(K ) .

? In the paper the theory is developed to allow for general ψ ∈ Hp+1(Th).
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mial centered at some (z,s) matches that of ψ; i.e., there exists a(z,s) ∈ Cnd ,p

that satisfies
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Sketch of the proof of Condition 1

We aim to prove that for each K ∈Th, there exists a(z,s) ∈ Cnd ,p that satisfies

nd ,p

∑
`=1

a`(z,s)T p+1
(z,s) [φ`] (x, t) = T p+1

(z,s) [ψ] (x, t). (1.7)

• The above problem translates into a rectangular linear system Ma(z,s) = b, where
M ∈ Crp×nd ,p and b ∈ Crp , with rp := dim

(
Pp (K )

)
≥ nd ,p .

• Since both ψ and the basis functions φ` belong to the Trefftz space, the coefficients
of their Taylor polynomials must satisfy certain relations.

• We define D ⊂ Crp as the space of vectors satisfying those relations. By definition
we get Im(M)⊂D and b ∈D .

• The choice of the basis functions φ` must guarantee that M is full-rank.
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Best approximation
The local space Tp(K ) is defined for each K = Kx× In ∈ Th(Q) and for p ∈ N as the
following set of complex exponentials:

Tp(K ) :=span
{

φ`(x, t), ` = 1, . . . ,nd ,p
}
, where (1.8)

φ`(x, t) :=ei(k`d`
>x−(k`2+V |K )t) for ` = 1, . . . ,nd ,p ,

for some parameters {k`} ⊂ R and directions {d`} ⊂S d
1 := {v ∈ Rd , |d|= 1}, which can

be chosen differently in each cell K .

Proposition 3

Let d = 1, p ∈N, n1,p = 2p + 1 and the parameters {k`}2p+1
`=1 ⊂R be all different

from one another. Let

φ`(x , t) = e
(

k`x−(k2
` +V |K )t

)
, ` = 1, . . . ,2p + 1, (1.9)

be the basis of the discrete Trefftz space Tp(K ). Then Condition 1 is satisfied.

?Observe that dim
(
Tp(K )

)
= O(p)� O(p2) = dim

(
Pp (K )

)

k1 k2
. . . k2p k2p+1
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Best approximation

Proposition 4

Let d = 2 and n2,p = (p + 1)2. Let the parameters km and θm,λ satisfy the
following conditions:

km ∈ R for m = 0, . . . ,p, with k2
m1
6= k2

m2
for m1 6= m2 and km 6= 0,

θm,λ ∈ [0,2π) for m = 0, . . . ,p, λ = 1, . . . ,2m + 1, with θm,λ1
6= θm,λ2

for λ1 6= λ2.

Define the directions dm,λ = (cosθm,λ ,sinθm,λ ) and the basis functions

φm,λ (x, t) = ei
(

kmd>m,λ
x−(k2

m+V |K )t
)

for m = 0, . . . ,p, λ = 1, . . . ,2m + 1.

Then Condition 1 holds true.

?As before we have dim
(
Tp(K )

)
= O(p2)� O(p3) = dim

(
Pp (K )

)

d0,1

k0

d1,1

d1,2

d1,3

k1

d2,1

d2,2
d2,3

d2,4

d2,5

k2
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Numerical experiments
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Square-well potential in (1+1) dimensions
Let us consider the (1+1)-dimensional Schrödinger equation (1.1) on Q = (−2,2)×(0,1)
with homogeneous Dirichlet boundary conditions and the following square-well poten-
tial:

V (x) =

{
0, x ∈ (−1,1),
V∗, x ∈ (−2,2) \ (−1,1),

(1.10)

for some V∗ > 0. The initial condition is taken as an eigenfunction (bound state) of
−∂ 2

x + V on (−2,2)

(a) Re
(

ψhp

)
for V∗ = 20 (b) Re

(
ψhp

)
for V∗ = 50

Figure 1: Trefftz-DG approximation ψhp in the space–time cylinder Q for the (1 + 1)-dimensional
square-well potential problem (1.10) computed with p = 3.
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h-convergence in (1+1) dimensions
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(a) Error in DG norm
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(b) Error in L2 norm at T = 1

Figure 2: Trefftz-DG error for the (1 + 1)-dimensional problem with square well potential (1.10) with
V∗ = 20. The numbers in the yellow rectangles are the empirical algebraic convergence rates in h.

17/19



Choice of the km parameters

We first note that in this experiment we know the time frequency of the exact solution,
which is ω = k2

∗ . Therefore it is natural to expect the approximation to be better if our
basis functions oscillate at the same time frequency.
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(a) V∗ = 50
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(b) V∗ = 100

Figure 3: Trefftz-DG error measured in DG norm for the (1 + 1) dimensional problem with
square-well potential 1.10 with V∗ = 50 (k∗ ≈ 6.6394) and V∗ = 100 (k∗ ≈ 9.6812), and for
k` ∈ {−p, . . . ,p} (continuous line), which is the same choice of the previous plots, and k` ∈ {0,±k∗}
(dashed line).
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