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Model problem

Poisson equation

Find u ∈ V = H1
0 (Ω) such that

a(u, v) =

∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ V (1)

Ω ⊂ R2 is a polygonal domain

Ω is decomposed with a mesh Th made up of polygonal
elements K
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VEM space, degree 1

r = 1, polynomial degree (accuracy)

As in Finite Elements, we define the space in each element

Local VEM space

VK
1 = {v ∈ H1(K ) : v|e ∈ P1(e) ∀e ∈ ∂K and ∆v|K = 0}

Remark: P1(K ) ⊂ VK
1

DOFs: the values at the vertices of K

We glue them by continuity

Global VEM space

Vh = {v ∈ H1
0 (Ω) : v|K ∈ VK

1 ∀K ∈ Th}
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Discretization

Galerkin method
Find uh ∈ Vh such that

a(uh, vh) =

∫
Ω
f vh ∀vh ∈ Vh

In particular,

a(uh, vh) =

∫
Ω
∇uh·∇vh dx =

∑
K∈Th

∫
K
∇uh·∇vh dx =

∑
K∈Th

aK (uh, vh)

Warning!

We cannot assemble aK on each element directly using the basis
functions of VK

1 (like in FEM) because they are themselves
solutions of PDEs in K
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A computable bilinear form

Decomposition of VK
1 = P1(K )⊕ VK

⊥
VK
⊥ ⊂ VK

1 H1−orthogonal to P1(K )

uh = p + p⊥ and vh = q + q⊥

p, q computable, p⊥, q⊥ not computable

aK (uh, vh) = aK (p, q) +�����aK (p, q⊥) +�����aK (p⊥, q) + aK (p⊥, q⊥)

Idea: stabilization term SK (p⊥, q⊥) symmetric and bilinear s. t.

c?a
K (p⊥, p⊥) ≤ SK (p⊥, p⊥) ≤ C ?aK (p⊥, p⊥)

Scaled diagonal: SK (p⊥, q⊥) =
∑

i dofi (p
⊥)dofi (q

⊥)|Π∇
k ei |1,K
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A look at the Reduced Basis method
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Parametric PDEs and Reduced Basis Method

Model problem

Find u(µ) ∈ V such that

a(u(µ), v ;µ) = f (v ;µ) ∀v ∈ V (2)

where µ is a parameter.

Galerkin. We can compute an approximation

uN ∈ VN = span{ϕ1, . . . , ϕN } ⊂ V

if we need to solve this for many values of µ, this will be
extremely expensive
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Reduced Basis solution

Solution manifold M = {u(µ) : µ} ⊂ V

Idea: M can be hopefully approximated by a lower dim.
space

We want to introduce a new space WM ⊂ VN

WM = span{ξ1, . . . , ξM} with M � N

uM(µ) =
∑M

i=1 uiξi

a(uM , ξj ;µ) =
M∑
i=1

a(ξi , ξj ;µ)ui (µ) = f (ξj ;µ) for i ≤ j ≤ M (3)

How do we construct WM?

It is generated by combinations of snapshots u(µi ) for a small set
of parameters µ1, . . . , µNs .
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Computation of a(ξi , ξj ;µ)

We assume that

a(u, v ;µ) =
∑Qa

q=1 θ
a
q(µ)aq(u, v)

f (v ;µ) =
∑Qf

q=1 θ
f
q(µ)f q(v)

Hence, (3) becomes

M∑
i=1

[
θaq(µ)aq(ξi , ξj)

]
ui (µ) =

Qf∑
q=1

θfq(µ)f q(ξj) (4)
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Offline-online strategy

Offline - Sample

Build sample S = {µ1, . . . , µNs}

Comment

S set of the parameters to build
the reduced basis.

Random

Equidistributed/log
equidistributed

From error estimator
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Offline-online strategy

Offline - Sample

Build sample S = {µ1, . . . , µNs}

Offline - Build basis

∀µi ∈ S

AN
`,k = a(ϕ`, ϕk ;µi )

FN
k = f (ϕk ;µi )

Solve ANuN (µi ) = FN

Choose the r.b. functions
(POD)

Comment

Compute the snapshots

Compute uN (µi ) ∀i
Cost depends on N
ξi stored

Only ONCE!
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Offline-online strategy

Offline - Sample

Build sample S = {µ1, . . . , µNs}

Offline - Build basis

∀µi ∈ S

AN
`,k = a(ϕ`, ϕk ;µi )

FN
k = f (ϕk ;µi )

Solve ANuN (µi ) = FN

Choose the r.b. functions
(POD)

Offline - Precomputations

AM,q
i,j = aq(ξi , ξj)

FM,q
j = f q(ξj)

Comment

ξi , ξj known functions in VN
Building block for affine decom-
position a(·, ·;µ) and f (·, µ)

AM,q
i,j = aq(ξi , ξj)

FM,q
j = f q(ξj)

Precomputed and stored ONCE!

13 / 30



The Virtual Element Method
Parametric PDEs and Reduced Basis Method

RB in support of VEM
Examples

Offline-online strategy

Offline - Sample

Build sample S = {µ1, . . . , µNs}

Offline - Build basis

∀µi ∈ S

AN
`,k = a(ϕ`, ϕk ;µi )

FN
k = f (ϕk ;µi )

Solve ANuN (µi ) = FN

Choose the r.b. functions
(POD)

Offline - Precomputations

AM,q
i,j = aq(ξi , ξj)

FM,q
j = f q(ξj)

Online:

For each new parameter µ:

AM
i,j =

∑Qa
q=1 θ

q
a (µ)Aq

i,j

FM
j =

∑Qf
q=1 θ

q
f (µ)F q

j

Solve AMx = FM

uM(µ) =
∑M

i=1 xiξi
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Proper Orthogonal Decomposition

1 Build the correlation matrix of all the snapshots of the sample

C =
1

Ns
UTU where U =

[
uN (µ1) . . . uN (µNs )

]
2 Solve the eigenvalues problem Czn = λnzn
3 Choose the eigenvectors corresponding to the first M greatest

eigenvalues

4 The POD basis can be computed as

ξi (x) =
1√
Ns

Ns∑
m=1

(zn)mu
N (µm)(x) i = 1, . . . ,M
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Back to VEM
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Order 1 VEM

Consider a polygon K

v1, . . . , vN vertices of K

Goal: we want to compute a possibly very rough
approximation of the basis functions for VK

1

Why? Post-processing of solutions and (maybe) stabilization
term

Basis of VK
1

For n = 1, . . . ,N
−∆en = 0 in K

en p.w lin. on ∂K

en(vm) = δn,m

(5)

17 / 30



The Virtual Element Method
Parametric PDEs and Reduced Basis Method

RB in support of VEM
Examples

Order 1 VEM

Consider a polygon K

v1, . . . , vN vertices of K

Goal: we want to compute a possibly very rough
approximation of the basis functions for VK

1

Why? Post-processing of solutions and (maybe) stabilization
term

Basis of VK
1

For n = 1, . . . ,N
−∆en = 0 in K

en p.w lin. on ∂K

en(vm) = δn,m

(5)

17 / 30



The Virtual Element Method
Parametric PDEs and Reduced Basis Method

RB in support of VEM
Examples

Order 1 VEM

Consider a polygon K

v1, . . . , vN vertices of K

Goal: we want to compute a possibly very rough
approximation of the basis functions for VK

1

Why? Post-processing of solutions and (maybe) stabilization
term

Basis of VK
1

For n = 1, . . . ,N
−∆en = 0 in K

en p.w lin. on ∂K

en(vm) = δn,m

(5)

17 / 30



The Virtual Element Method
Parametric PDEs and Reduced Basis Method

RB in support of VEM
Examples

Geometric parametrization

K̂ reference (regular) polygon

BK : K → K̂ piecewise affine transformation such that

BK (vn) = v̂n and BK (xK ) = x̂K

for xK ∈ K and x̂K ∈ K̂ .

In particular, BK is a piecewise constant matrix

K K̂
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Affine decomposition

We can partition K and K̂ in as many triangles as there are
edges

K̂ = ∪Nn=1T̂n and K = ∪Nn=1Tn

where T̂n = BKTn

BK is affine on Tn, we have

a(u, v ;K ) =
N∑

n=1

∫
T̂n

BKB
T
K∇û · ∇v̂

BKB
T
K |Tn

=
∑3

ν=1 a
n
νA

ν = an1

[
1 0
0 0

]
+ an2

[
0 0
0 1

]
+ an3

[
0 1
1 0

]
Hence, q = (n, ν)⇒ aqν(u, v) :=

∫
T̂n

Aν∇u · ∇v

19 / 30
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Offline phase

N is fixed

Generate a set of trial polygons K `

Compute the affine mapping B` : K ` → K̂

Compute e1
` , . . . , e

N
` by solving their equations in K ` (FEM)

Map on K̂ the VEM basis just computed  ê1
` , . . . , ê

N
`

Compute and store aqν(ên` , ê
n′
` )
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Online phase

After building the reduced basis {ξ̂n` ∈ H1(K̂ ) : ` = 1, . . . ,M}
using the POD

Generate a set of test polygons

∀K , B : K → K̂ s.t. BBT
|Ti

=
∑3

ν=1 a
ν
i A

ν

We look for ên =
∑M

`=1 x
n
` ξ̂

n
` s.t.

−∇ · (BBT )∇ên = 0 in K̂

ên p.w lin. on ∂K̂

ên(v̂m) = δn,m

ên are the VEM basis for K mapped on K̂ , hence we go back
to obtain en for n = 1, . . . ,N.
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Different uses of our basis

Build the stabilization matrix

Post-processing of VEM solutions and reconstruction in
subdomains

Evaluate the error with respect to the true solution (academic
purpose)
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Reduced Basis generation for VEM stabilization

In order to perform a numerical test on a VEM solution, we
generated Reduced Basis (with several choices of M) on sets
of convex random polygons with N = 4, 5, . . . , 14

For each N, we generated 300 trial polygons and 500 test
polygons

We studied the ratio C ?/c?, where

c?a
K (p⊥, p⊥) ≤ SK

RB(p⊥, p⊥) ≤ C ?aK (p⊥, p⊥)
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N = 6 - some polygons
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N = 11 - some polygons
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Ratio C ?/c?

0 5 10 15 20

# of Reduced Basis Functions

10
0

10
1

10
2

10
3

(a) N=6

0 5 10 15 20

# of Reduced Basis Functions

10
0

10
1

10
2

10
3

(b) N=11

26 / 30



The Virtual Element Method
Parametric PDEs and Reduced Basis Method

RB in support of VEM
Examples

RB for post-processing

We want to solve Poisson for u(x , y) = sin(4xπ) sin(4yπ)
2(4π)2 in

Ω = [0, 1]2

We work on a sequence of Voronoi meshes with
16, 64, 100, 256, 1024, 4096 elements
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Figure: The first three meshes of the sequence

We study the L2, H1 and L∞ error with different approaches
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RB for post-processing

We want to solve Poisson for u(x , y) = sin(4xπ) sin(4yπ)
2(4π)2 in

Ω = [0, 1]2

We work on a sequence of Voronoi meshes with
16, 64, 100, 256, 1024, 4096 elements
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Convergence plots
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Errors in dependence of the number of polygons of the mesh
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Limits and perspectives

The adaptive choice of the number of RBs in dependence on
the geometry of the polygons has been done in a rough way
computing the ratio between the radius of the inscribe circle
with the radius of the circumscribed one

We need to find a robust criterion to understand how many
RBs we need to get a good approximation on each K and
improve the convergence (Artificial Intelligence?)

The idea is to obtain a cheap method for the post-processing
of VEM solutions (for instance, reconstruction in subdomains)
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