Model Order Reduction in support of the Virtual Element Method

Fabio Credali
Joint work with Silvia Bertoluzza

$$
\text { Pavia - March } 17^{\text {th }}, 2022
$$

Outline

- The Virtual Element Method
- Parametric PDEs and Reduced Basis Method
- RB in support of VEM
- Examples

Model problem

Poisson equation

Find $u \in V=H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x \quad \forall v \in V \tag{1}
\end{equation*}
$$

- $\Omega \subset R^{2}$ is a polygonal domain
- Ω is decomposed with a mesh \mathcal{T}_{h} made up of polygonal elements K

VEM space, degree 1

- $r=1$, polynomial degree (accuracy)
- As in Finite Elements, we define the space in each element

Local VEM space

$$
V_{1}^{K}=\left\{v \in H^{1}(K): v_{\mid e} \in P_{1}(e) \forall e \in \partial K \text { and } \Delta v_{\mid K}=0\right\}
$$

VEM space, degree 1

- $r=1$, polynomial degree (accuracy)
- As in Finite Elements, we define the space in each element

Local VEM space

$$
V_{1}^{K}=\left\{v \in H^{1}(K): v_{\mid e} \in P_{1}(e) \forall e \in \partial K \text { and } \Delta v_{\mid K}=0\right\}
$$

- Remark: $P_{1}(K) \subset V_{1}^{K}$
- DOFs: the values at the vertices of K

VEM space, degree 1

- $r=1$, polynomial degree (accuracy)
- As in Finite Elements, we define the space in each element

Local VEM space

$V_{1}^{K}=\left\{v \in H^{1}(K): v_{\mid e} \in P_{1}(e) \forall e \in \partial K\right.$ and $\left.\Delta v_{\mid K}=0\right\}$

- Remark: $P_{1}(K) \subset V_{1}^{K}$
- DOFs: the values at the vertices of K

We glue them by continuity

Global VEM space

$$
V_{h}=\left\{v \in H_{0}^{1}(\Omega): v_{\mid K} \in V_{1}^{K} \forall K \in \mathcal{T}_{h}\right\}
$$

Discretization

Galerkin method

Find $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h}
$$

In particular,

$$
a\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h} d x=\sum_{K \in \mathcal{T}_{h}} a^{K}\left(u_{h}, v_{h}\right)
$$

Discretization

Galerkin method

Find $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h} \quad \forall v_{h} \in V_{h}
$$

In particular,
$a\left(u_{h}, v_{h}\right)=\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d \mathrm{x}=\sum_{K \in \mathcal{T}_{h}} \int_{K} \nabla u_{h} \cdot \nabla v_{h} d \mathrm{x}=\sum_{K \in \mathcal{T}_{h}} a^{K}\left(u_{h}, v_{h}\right)$

Warning!

We cannot assemble a^{K} on each element directly using the basis functions of V_{1}^{K} (like in FEM) because they are themselves solutions of PDEs in K

A computable bilinear form

- Decomposition of $V_{1}^{K}=P_{1}(K) \oplus V_{\perp}^{K}$
- $V_{\perp}^{K} \subset V_{1}^{K} H^{1}$-orthogonal to $P_{1}(K)$
- $u_{h}=p+p^{\perp}$ and $v_{h}=q+q^{\perp}$

A computable bilinear form

- Decomposition of $V_{1}^{K}=P_{1}(K) \oplus V_{\perp}^{K}$
- $V_{\perp}^{K} \subset V_{1}^{K} H^{1}$-orthogonal to $P_{1}(K)$
- $u_{h}=p+p^{\perp}$ and $v_{h}=q+q^{\perp}$
- p, q computable, p^{\perp}, q^{\perp} not computable

$$
a^{K}\left(u_{h}, v_{h}\right)=a^{K}(p, q)+a^{K}\left(p, q^{\perp}\right)+a^{K}\left(p^{\perp}, q\right)+a^{K}\left(p^{\perp}, q^{\perp}\right)
$$

A computable bilinear form

- Decomposition of $V_{1}^{K}=P_{1}(K) \oplus V_{\perp}^{K}$
- $V_{\perp}^{K} \subset V_{1}^{K} H^{1}$-orthogonal to $P_{1}(K)$
- $u_{h}=p+p^{\perp}$ and $v_{h}=q+q^{\perp}$
- p, q computable, p^{\perp}, q^{\perp} not computable

$$
a^{K}\left(u_{h}, v_{h}\right)=a^{K}(p, q)+a^{K}\left(p, q^{\perp}\right)+a^{K}\left(p^{\perp}, q\right)+a^{K}\left(p^{\perp}, q^{\perp}\right)
$$

Idea: stabilization term $S^{K}\left(p^{\perp}, q^{\perp}\right)$ symmetric and bilinear s. t .

$$
c_{\star} a^{K}\left(p^{\perp}, p^{\perp}\right) \leq S^{K}\left(p^{\perp}, p^{\perp}\right) \leq C^{\star} a^{K}\left(p^{\perp}, p^{\perp}\right)
$$

Scaled diagonal: $S^{K}\left(p^{\perp}, q^{\perp}\right)=\sum_{i} d o f_{i}\left(p^{\perp}\right) d o f_{i}\left(q^{\perp}\right)\left|\Pi_{k}^{\nabla} e_{i}\right|_{1, K}$

A look at the Reduced Basis method

Parametric PDEs and Reduced Basis Method

Model problem

Find $u(\mu) \in V$ such that

$$
\begin{equation*}
a(u(\mu), v ; \mu)=f(v ; \mu) \quad \forall v \in V \tag{2}
\end{equation*}
$$

where μ is a parameter.

- Galerkin. We can compute an approximation

$$
u_{\mathcal{N}} \in V_{\mathcal{N}}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{\mathcal{N}}\right\} \subset V
$$

- if we need to solve this for many values of μ, this will be extremely expensive

Reduced Basis solution

- Solution manifold $\mathcal{M}=\{u(\mu): \mu\} \subset V$
- Idea: \mathcal{M} can be hopefully approximated by a lower dim. space

Reduced Basis solution

- Solution manifold $\mathcal{M}=\{u(\mu): \mu\} \subset V$
- Idea: \mathcal{M} can be hopefully approximated by a lower dim. space
- We want to introduce a new space $W_{M} \subset V_{\mathcal{N}}$

$$
W_{M}=\operatorname{span}\left\{\xi_{1}, \ldots, \xi_{M}\right\} \quad \text { with } M \ll \mathcal{N}
$$

- $u_{M}(\mu)=\sum_{i=1}^{M} u_{i} \xi_{i}$

Reduced Basis solution

- Solution manifold $\mathcal{M}=\{u(\mu): \mu\} \subset V$
- Idea: \mathcal{M} can be hopefully approximated by a lower dim. space
- We want to introduce a new space $W_{M} \subset V_{\mathcal{N}}$

$$
W_{M}=\operatorname{span}\left\{\xi_{1}, \ldots, \xi_{M}\right\} \quad \text { with } M \ll \mathcal{N}
$$

- $u_{M}(\mu)=\sum_{i=1}^{M} u_{i} \xi_{i}$

$$
\begin{equation*}
a\left(u_{M}, \xi_{j} ; \mu\right)=\sum_{i=1}^{M} a\left(\xi_{i}, \xi_{j} ; \mu\right) u_{i}(\mu)=f\left(\xi_{j} ; \mu\right) \text { for } i \leq j \leq M \tag{3}
\end{equation*}
$$

Reduced Basis solution

- Solution manifold $\mathcal{M}=\{u(\mu): \mu\} \subset V$
- Idea: \mathcal{M} can be hopefully approximated by a lower dim. space
- We want to introduce a new space $W_{M} \subset V_{\mathcal{N}}$

$$
W_{M}=\operatorname{span}\left\{\xi_{1}, \ldots, \xi_{M}\right\} \quad \text { with } M \ll \mathcal{N}
$$

- $u_{M}(\mu)=\sum_{i=1}^{M} u_{i} \xi_{i}$

$$
\begin{equation*}
a\left(u_{M}, \xi_{j} ; \mu\right)=\sum_{i=1}^{M} a\left(\xi_{i}, \xi_{j} ; \mu\right) u_{i}(\mu)=f\left(\xi_{j} ; \mu\right) \text { for } i \leq j \leq M \tag{3}
\end{equation*}
$$

How do we construct W_{M} ?

It is generated by combinations of snapshots $u\left(\mu_{i}\right)$ for a small set of parameters $\mu_{1}, \ldots, \mu_{N_{s}}$.

Computation of $a\left(\xi_{i}, \xi_{j} ; \mu\right)$

We assume that

- $a(u, v ; \mu)=\sum_{q=1}^{Q_{a}} \theta_{q}^{a}(\mu) a^{q}(u, v)$
- $f(v ; \mu)=\sum_{q=1}^{Q_{f}} \theta_{q}^{f}(\mu) f^{q}(v)$

Hence, (3) becomes

$$
\begin{equation*}
\sum_{i=1}^{M}\left[\theta_{q}^{a}(\mu) a^{q}\left(\xi_{i}, \xi_{j}\right)\right] u_{i}(\mu)=\sum_{q=1}^{Q_{f}} \theta_{q}^{f}(\mu) f^{q}\left(\xi_{j}\right) \tag{4}
\end{equation*}
$$

Offline-online strategy

```
Offline - Sample
```


Comment

S set of the parameters to build the reduced basis.

- Random
- Equidistributed/log equidistributed
- From error estimator

Offline-online strategy

Offline - Sample

Build sample $S=\left\{\mu_{1}, \ldots, \mu_{N_{s}}\right\}$

Offline - Build basis
$\forall \mu_{i} \in S$

- $A_{\ell, k}^{\mathcal{N}}=a\left(\varphi_{\ell}, \varphi_{k} ; \mu_{i}\right)$
- $F_{k}^{\mathcal{N}}=f\left(\varphi_{k} ; \mu_{i}\right)$
- Solve $A^{\mathcal{N}} u^{\mathcal{N}}\left(\mu_{i}\right)=F^{\mathcal{N}}$
- Choose the r.b. functions (POD)

Comment

Compute the snapshots

- Compute $u^{\mathcal{N}}\left(\mu_{i}\right) \quad \forall i$
- Cost depends on \mathcal{N}
- ξ_{i} stored

Only ONCE!

Offline-online strategy

Offline - Sample
Build sample $S=\left\{\mu_{1}, \ldots, \mu_{N_{s}}\right\}$

Offline - Build basis

$\forall \mu_{i} \in S$

- $A_{\ell, k}^{\mathcal{N}}=a\left(\varphi_{\ell}, \varphi_{k} ; \mu_{i}\right)$
- $F_{k}^{\mathcal{N}}=f\left(\varphi_{k} ; \mu_{i}\right)$
- Solve $A^{\mathcal{N}} u^{\mathcal{N}}\left(\mu_{i}\right)=F^{\mathcal{N}}$
- Choose the r.b. functions (POD)

Offline - Precomputations

- $A_{i, j}^{M, q}=a^{q}\left(\xi_{i}, \xi_{j}\right)$
- $F_{j}^{M, q}=f^{q}\left(\xi_{j}\right)$

Comment

ξ_{i}, ξ_{j} known functions in $V_{\mathcal{N}}$ Building block for affine decomposition $a(\cdot, \cdot ; \mu)$ and $f(\cdot, \mu)$

- $A_{i, j}^{M, q}=a^{q}\left(\xi_{i}, \xi_{j}\right)$
- $F_{j}^{M, q}=f^{q}\left(\xi_{j}\right)$

Precomputed and stored ONCE!

Offline-online strategy

Offline - Sample

Build sample $S=\left\{\mu_{1}, \ldots, \mu_{N_{s}}\right\}$

Offline - Build basis

$$
\forall \mu_{i} \in S
$$

- $A_{\ell, k}^{\mathcal{N}}=a\left(\varphi_{\ell}, \varphi_{k} ; \mu_{i}\right)$
- $F_{k}^{\mathcal{N}}=f\left(\varphi_{k} ; \mu_{i}\right)$
- Solve $A^{\mathcal{N}} u^{\mathcal{N}}\left(\mu_{i}\right)=F^{\mathcal{N}}$
- Choose the r.b. functions (POD)

Offline - Precomputations

- $A_{i, j}^{M, q}=a^{q}\left(\xi_{i}, \xi_{j}\right)$
- $F_{j}^{M, q}=f^{q}\left(\xi_{j}\right)$

Online:

For each new parameter μ :

- $A_{i, j}^{M}=\sum_{q=1}^{Q_{a}} \theta_{a}^{q}(\mu) A_{i, j}^{q}$
- $F_{j}^{M}=\sum_{q=1}^{Q_{f}} \theta_{f}^{q}(\mu) F_{j}^{q}$
- Solve $A^{M} x=F^{M}$
- $u_{M}(\mu)=\sum_{i=1}^{M} x_{i} \xi_{i}$

Proper Orthogonal Decomposition

(1) Build the correlation matrix of all the snapshots of the sample

$$
C=\frac{1}{N_{s}} U^{T} U \text { where } U=\left[u^{\mathcal{N}}\left(\mu_{1}\right)|\ldots| \quad u^{\mathcal{N}}\left(\mu_{N_{s}}\right)\right]
$$

(2) Solve the eigenvalues problem $C z_{n}=\lambda_{n} z_{n}$
(3) Choose the eigenvectors corresponding to the first M greatest eigenvalues
(1) The POD basis can be computed as

$$
\xi_{i}(x)=\frac{1}{\sqrt{N_{s}}} \sum_{m=1}^{N_{s}}\left(z_{n}\right)_{m} u^{\mathcal{N}}\left(\mu_{m}\right)(x) \quad i=1, \ldots, M
$$

Back to VEM

Order 1 VEM

- Consider a polygon K
- $\mathrm{v}_{1}, \ldots, \mathrm{v}_{N}$ vertices of K

Order 1 VEM

- Consider a polygon K
- $\mathrm{v}_{1}, \ldots, \mathrm{v}_{N}$ vertices of K
- Goal: we want to compute a possibly very rough approximation of the basis functions for V_{1}^{K}
- Why? Post-processing of solutions and (maybe) stabilization term

Order 1 VEM

- Consider a polygon K
- $\mathrm{v}_{1}, \ldots, \mathrm{v}_{N}$ vertices of K
- Goal: we want to compute a possibly very rough approximation of the basis functions for V_{1}^{K}
- Why? Post-processing of solutions and (maybe) stabilization term

Basis of V_{1}^{K}
For $n=1, \ldots, N$

$$
\begin{align*}
& -\Delta e^{n}=0 \text { in } K \\
& e^{n} \text { p.w lin. on } \partial K \tag{5}\\
& e^{n}\left(v_{m}\right)=\delta_{n, m}
\end{align*}
$$

Geometric parametrization

- \hat{K} reference (regular) polygon
- $\mathcal{B}_{K}: K \rightarrow \hat{K}$ piecewise affine transformation such that

$$
\mathcal{B}_{K}\left(v_{n}\right)=\hat{v}_{n} \text { and } \mathcal{B}_{K}\left(x_{K}\right)=\hat{x}_{K}
$$

for $x_{K} \in K$ and $\hat{x}_{K} \in \hat{K}$.

- In particular, B_{K} is a piecewise constant matrix

Affine decomposition

- We can partition K and \hat{K} in as many triangles as there are edges

$$
\hat{K}=\cup_{n=1}^{N} \hat{T}_{n} \text { and } K=\cup_{n=1}^{N} T_{n}
$$

where $\hat{T}_{n}=\mathcal{B}_{K} T_{n}$

- \mathcal{B}_{K} is affine on T_{n}, we have

$$
a(u, v ; K)=\sum_{n=1}^{N} \int_{\hat{T}_{n}} B_{K} B_{K}^{T} \nabla \hat{u} \cdot \nabla \hat{v}
$$

Affine decomposition

- We can partition K and \hat{K} in as many triangles as there are edges

$$
\hat{K}=\cup_{n=1}^{N} \hat{T}_{n} \text { and } K=\cup_{n=1}^{N} T_{n}
$$

where $\hat{T}_{n}=\mathcal{B}_{K} T_{n}$

- \mathcal{B}_{K} is affine on T_{n}, we have

$$
a(u, v ; K)=\sum_{n=1}^{N} \int_{\hat{T}_{n}} B_{K} B_{K}^{T} \nabla \hat{u} \cdot \nabla \hat{v}
$$

- $B_{K} B_{K \mid T_{n}}^{T}=\sum_{\nu=1}^{3} a_{\nu}^{n} A^{\nu}=a_{1}^{n}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+a_{2}^{n}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]+a_{3}^{n}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- Hence, $q=(n, \nu) \Rightarrow a_{\nu}^{q}(u, v):=\int_{\hat{T}_{n}} A^{\nu} \nabla u \cdot \nabla v$

Offline phase

- N is fixed
- Generate a set of trial polygons K^{ℓ}
- Compute the affine mapping $\mathcal{B}_{\ell}: K^{\ell} \rightarrow \hat{K}$
- Compute $e_{\ell}^{1}, \ldots, e_{\ell}^{N}$ by solving their equations in K^{ℓ} (FEM)
- Map on \hat{K} the VEM basis just computed $\rightsquigarrow \hat{e}_{\ell}^{1}, \ldots, \hat{e}_{\ell}^{N}$
- Compute and store $a_{\nu}^{q}\left(\hat{e}_{\ell}^{n}, \hat{e}_{\ell}^{n^{\prime}}\right)$

Online phase

After building the reduced basis $\left\{\hat{\xi}_{\ell}^{n} \in H^{1}(\hat{K}): \ell=1, \ldots, M\right\}$ using the POD

- Generate a set of test polygons
- $\forall K, \mathcal{B}: K \rightarrow \hat{K}$ s.t. $B B_{\mid T_{i}}^{T}=\sum_{\nu=1}^{3} a_{i}^{\nu} A^{\nu}$
- We look for $\hat{e}^{n}=\sum_{\ell=1}^{M} x_{\ell}^{n} \hat{\xi}_{\ell}^{n}$ s.t.

$$
\begin{gathered}
-\nabla \cdot\left(B B^{T}\right) \nabla \hat{e}^{n}=0 \text { in } \hat{K} \\
\hat{e}^{n} \text { p.w lin. on } \partial \hat{K} \\
\hat{e}^{n}\left(\hat{v}_{m}\right)=\delta_{n, m}
\end{gathered}
$$

- \hat{e}^{n} are the VEM basis for K mapped on \hat{K}, hence we go back to obtain e^{n} for $n=1, \ldots, N$.

Different uses of our basis

- Build the stabilization matrix
- Post-processing of VEM solutions and reconstruction in subdomains
- Evaluate the error with respect to the true solution (academic purpose)

Reduced Basis generation for VEM stabilization

- In order to perform a numerical test on a VEM solution, we generated Reduced Basis (with several choices of M) on sets of convex random polygons with $N=4,5, \ldots, 14$
- For each N, we generated 300 trial polygons and 500 test polygons
- We studied the ratio C^{\star} / c_{\star}, where

$$
c_{\star} a^{K}\left(p^{\perp}, p^{\perp}\right) \leq S_{R B}^{K}\left(p^{\perp}, p^{\perp}\right) \leq C^{\star} a^{K}\left(p^{\perp}, p^{\perp}\right)
$$

$\mathrm{N}=6$ - some polygons

$\mathrm{N}=11$ - some polygons

The Virtual Element Method

Ratio C^{\star} / c_{\star}

(a) $N=6$

(b) $\mathrm{N}=11$

RB for post-processing

- We want to solve Poisson for $u(x, y)=\frac{\sin (4 x \pi) \sin (4 y \pi)}{2(4 \pi)^{2}}$ in $\Omega=[0,1]^{2}$
- We work on a sequence of Voronoi meshes with $16,64,100,256,1024,4096$ elements

Figure: The first three meshes of the sequence

RB for post-processing

- We want to solve Poisson for $u(x, y)=\frac{\sin (4 x \pi) \sin (4 y \pi)}{2(4 \pi)^{2}}$ in $\Omega=[0,1]^{2}$
- We work on a sequence of Voronoi meshes with $16,64,100,256,1024,4096$ elements

Figure: The first three meshes of the sequence

- We study the L^{2}, H^{1} and L^{∞} error with different approaches

Convergence plots

Fixed vs adapted number of basis for polygon.
Errors in dependence of the number of polygons of the mesh

Limits and perspectives

- The adaptive choice of the number of RBs in dependence on the geometry of the polygons has been done in a rough way computing the ratio between the radius of the inscribe circle with the radius of the circumscribed one

Limits and perspectives

- The adaptive choice of the number of RBs in dependence on the geometry of the polygons has been done in a rough way computing the ratio between the radius of the inscribe circle with the radius of the circumscribed one
- We need to find a robust criterion to understand how many RBs we need to get a good approximation on each K and improve the convergence (Artificial Intelligence?)

Limits and perspectives

- The adaptive choice of the number of RBs in dependence on the geometry of the polygons has been done in a rough way computing the ratio between the radius of the inscribe circle with the radius of the circumscribed one
- We need to find a robust criterion to understand how many RBs we need to get a good approximation on each K and improve the convergence (Artificial Intelligence?)
- The idea is to obtain a cheap method for the post-processing of VEM solutions (for instance, reconstruction in subdomains)

Some references

- Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A. (2013). Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(01), 199-214.
- Hesthaven, J. S., Rozza, G., Stamm, B. (2016). Certified reduced basis methods for parametrized partial differential equations (Vol. 590). Berlin: Springer.
- Sorgente T., Prada D., Cabiddu D., Biasotti S., Patane G., Pennacchio M., Bertoluzza S., Manzini G., Spagnuolo M. (2021). VEM and the Mesh. arXiv preprint arXiv:2103.01614.

