

COMPMATH 2022 - Pavia, March 16-17th, 2022

Mathematical and Numerical Challenges in Optical Tomography

Paola Causin

Università degli Studi di Milano

Work in collaboration with: A. Benfenati, G. Naldi

Georges de la Tour, The Education of the Virgin, ca. 1650

The idea of Computerized Tomography (CT)

Goal: provide spatial information about the inside of a sample by taking measurements from the outside from different perspectives

Here we focus on the application of CT to medical imaging, the technique and process of imaging the interior of a body for clinical analysis and medical intervention

The starting point: imaging via X-rays (10⁻³ to 10nm)

X-rays as investigating signal

Principle: the energy of the X-ray is attenuated from the tissue that it crosses. The denser the tissue region, the higher the attenuation

We are interested in a parameter called absorption (=attenuation) coefficient (μ_a). The result is expressed in relative Hounsfield units:

$$HU = \frac{\mu_a - \mu_{a, H_2O}}{\mu_{a, H_2O}} \times 100$$

material	HU
water	0
air	-1000
bone	1086
blood	53
muscle	41

Muscles, tissue and bones attenuate differently the X-ray \rightarrow different GLs: darker=less attenuation

Beer-Lambert law

Pb.: we only possess line integrals of the quantity of interest

We need several projections along different directions to reconstruct the 3D spatial structure

Beer-Lambert law and Radon transform

The Beer-Lambert law is connected to the Radon transform

Let $f(x,y):\Omega\subset \mathbb{R}^2 \to \mathbb{R}^2$ density function

$$P_{\theta}(t) = \int_{\ell} f(x, y) \, ds = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \delta(x \cos(\theta) + y \sin(\theta) - t) \, dx \, dy$$

$$\int_{\ell} \mu_a(s) \, ds = -\log\left(\frac{I_L}{I_0}\right)$$

CT scan [1972 Cormack, Hounsfield - Nobel Prize 1979]

For every angle we obtain a projection, a collection of projections is called sinogram

'Computational' version

- Sinogram (measured data): already discrete (finite set of angles, finite set of detectors)
- Sample: discretize in voxels
- Various approaches to discretize (compute or approximate) the line integrals

$$\int_{\mathbb{R}^2} \underbrace{\delta(x\cos(\theta) + y\sin(\theta) - t)}_{\mathbf{K}(x,y;\theta,t)} f(x,y) \, dx \, dy = \mathbf{y}(\theta,t)$$
$$\mathbf{K}\mathbf{f} = \mathbf{y}$$

Mathematical problem in CT reconstruction

Find hidden model parameters (biophysical parameters) given noisy/subsampled indirect observations

- Direct problem: oriented along a cause-effect sequence with a natural ("beneficial") loss of information. The solution is generally smoother than the data (ex: the image provided by a bandlimited system is smoother than the real object imaged)
- Inverse problem: needs to accomplish a transformation which implies a gain of information

Mathematical problem in CT reconstruction

Find hidden model parameters (biophysical parameters) given noisy/subsampled indirect observations

- Direct problem: oriented along a cause-effect sequence with a natural ("beneficial") loss of information. The solution is generally smoother than the data (ex: the image provided by a bandlimited system is smoother than the real object imaged)
- Inverse problem: needs to accomplish a transformation which implies a gain of information

Ill-posedness:

- small errors in the data may lead to large errors in the model parameters
- several possible model parameter values consistent with the same observations

How much radiation (is too much)?

In a common CT scan in clinical practice, about 1000 angular measurements are taken by rotation of the X-ray tube around the patient body Annual effective dose mSv/y

Hospitals anonymous names	Para	meters	Time (s)	mAs ^a	No. of slices	CTDI _{vol} (mGy)	DLP (mGy cm)	Patient effective dose in mSv
K (AS-64 slices)	Control area Control	Head	8.14	364	48	59.5	947.2	1.99
	area	Chest	9.10	193	139	8.5	436.7	6.11
		Abdomen pelvis	5.71	206	168	12.1	550.3	8.25
C (GE-64 slices)		Head	7.25	330	175	55.15	1285	2.70
		Chest	2.87	650	220	8.91	505	7.07
		Abdomen pelvis	3.43	680	236	13.78	1630	24.45
Q (AS-64 slices)		Head	8.01	363	45	57	919.5	1.93
		Chest	9.22	186	139	8.46	432.7	6.06
		Abdomen pelvis	5.31	206	168	12.1	524.6	7.87
Q (ICT-128 slices)		Head	7.73	274	85	62.6	1357	2.85
		Chest	8.00	298	252	8.8	487.1	6.82
		Abdomen pelvis	5.16	486	512	13.79	1415.8	21.24
D (Nesoft-16 slices)		Head	12.3	329	53	74.84	490.6	1.03
		Chest	8.32	274	102	8.98	508.4	7.12
		Abdomen pelvis	8.7	288	40	19.95	481.4	7.22

[Evaluation of arising exposure of ionizing radiation from computed tomography and the associated health concerns JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2020]

``Sustainable`` CT

Reduce the exposure to harmful X-rays by pursuing:

Towards diagnosis by light: Diffuse Optical Tomography (DOT)

Common experience suggests that light can pass travel through biological tissues and be detected on the other side

Traditionally, clinicians have evaluated a patient health condition by his/her complexion (that is, the hue appearing from underneath the skin)

DOT principles

DOT employs near-infrared (NIR, 600 - 900nm) light sources to illuminate the biological tissue *in vivo* from different perspectives, similarly to x-ray tomography, with the aim of inferring the tissue optical parameters

DOT principles

DOT employs near-infrared (NIR, 600 - 900nm) light sources to illuminate the biological tissue *in vivo* from different perspectives, similarly to x-ray tomography, with the aim of inferring the tissue optical parameters

The propagation of light through biological tissues is affected by the optical parameters: absorption μ_a [1\cm] and scattering μ_s [1\cm] scattering

at NIR WLs: scattering>>absorption

Typical values:

The NIR window

...but.. scattering of light in turbid media

https://omlc.org/classroom/scat_demo/

Physics-driven (variational) methods

Reconstruct the model parameters $x \in X$ from measurement $y \in Y$ by solving the minimum problem:

Physical models of light propagation in turbid media

The propagation of light with scattering and absorption is rigorously governed by the radiative transfer equation (RTE)

Key quantity: light radiance $L = L(r, s, t) \ W/cm^2 sr$

light power per unit area traveling in the s direction at position r

Solving the RTE is computationally very intensive so that many simplifications have been sought in literature

Diffusion approximation: valid when the photon scattering is the governing phenomena in the tissue: true for biological matter such as skin, bone, brain matter or breast tissue (absorption << scattering)

In any case...PDE models (more complex than the Beer law!)

Direct and inverse mathematical models for DOT

Direct problem: given the optical properties $D \simeq \frac{1}{\mu_s}$ and μ_a solve the diffusion equation for photon fluence $\Phi = \Phi(r) \ [W/cm^2]$ $\begin{bmatrix} \left[\Lambda - \frac{\mu_a}{\mu_a} \right] \Phi(r) = -\frac{S(r)}{\mu_a} \quad in \ \Omega(=breast). \end{bmatrix}$

$$\begin{bmatrix} \Delta & D(r) \end{bmatrix}^{T} (\Gamma) & D & U(\Omega + D + C + D), \\ \Phi = 0 & on \Gamma_D, & \frac{\partial \Phi}{\partial n} + A \Phi = 0 & on \Gamma_R \end{bmatrix}$$

Inverse DOT problem: given photon fluence measurements on the boundary, deduce the optical field μ_a Rytov approximation $\mu_a = \mu_a \pm \delta \mu_a$

after some algebra:
$$\mu_{a} = \mu_{a,0} + 6\mu_{a}$$

$$\Phi = e^{\Psi_{0} + \Psi_{1}} = \Phi_{0}e^{\Psi_{1}}$$
solution via Green's function (meshless)
$$[\Delta - \frac{\mu_{a,0}}{D}](\Phi_{0}\Psi_{1}) = \frac{\delta\mu_{a}}{D}\Phi_{0} \qquad \Psi_{1} = \frac{1}{\Phi_{0}D_{0}}\int_{\Omega}G(r - r')\delta\mu_{a}(r')\Phi_{0}(r')dr'$$

[S. Arridge, J. Schotland. "Optical tomography: forward and inverse problems", Inverse Problems (2009)]

Application of DOT to breast screening

DOT and clinics

Altered optical coefficients might indicate pathogenic processes in the tissue, for example an increased μ_a may be marker of tumoral lesions (related to angiogenesis)

Discretization

Voxelization of the domain (*N* voxels)

Solution and Regularization

Solve
$$J\delta\mu_a = y \rightarrow \delta\mu_a = \operatorname{argmin} \left| \left| J\delta x - y \right| \right|_2^2$$

Elastic Net regularization [Zou et al., 05]

Results on a simulated test case

[P.C., M. Lupieri, G. Naldi, RM Weishaeupl. Mathematical and numerical challenges in optical screening of female breast", Int J Numer Method Biomed Eng (2020)]

Variational approach: pro & cons

- well established approach
- difficult choice of the regularization parameters, *ad-hoc* for each single case
- there are conditions that are *never* correctly reconstructed (*e.g.*, more than one inclusion with different absorption coefficients, second row of the previous example)

Deep Learning for DOT reconstruction

DEEP LEARNING METHODS FOR INVERSE PROBLEMS

FULLY DATA-DRIVEN

Complete learning from data

L-SVD model

PHYSICS-DRIVEN

Learning from data + including information about the forward model

Tikh+resCNN

Before starting...: what is an autoencoder?

Fully data drive model: Learned-SVD (L-SVD)

[A. Benfenati, G. Bisazza, P. C. «A Learned SVD approach for Inverse Problem Regularization in Diffuse Optical Tomography» ArXiv preprint no. 2111.13401 (2021)]

Training of the networks

- Synthetic dataset of 1500 samples
- Semi-circular domains with perturbed regions with different: position, location and value of μ_a
- we solved the forward problem (diffusion problem) for each of them, collecting the «measurements» on the boundary

L-SVD model reconstruction (from noiseless data): qualitative evaluation:

Quantitative metrics

We consider the following indices to quantitatively assess the quality of the reconstruction:

Absolute Bias Error

(smaller=better), sum over voxels rec=reconstructed GT=ground-truth

(higher=better) PR=perturbed region BG=background w_{PR} =perturbed surface/tot surface overline=average of the region

$$ABE = \frac{1}{N} \sum_{j=1}^{N} |\mu_{a,rec}^{j} - \mu_{a,GT}^{j}|$$

$$CNR = \frac{\overline{\mu}_{a,PR} - \overline{\mu}_{a,BG}}{\sqrt{w_{PR}\sigma_{PR}^2 + w_{BG}\sigma_{BG}^2}}$$

with minor modifications for more than one PR

Caveat: one single index may not be adequate to assess the quality, for example CNR>>1 if the absorption coefficient is overestimated in the PR

L-SVD model: 1PR- reconstruction from noisy data

L-SVD model: 1 or 2PRs- reconstruction from 1% noisy data

2.6x

Physics driven model: Tikh+resCNN

Tikh+resCNN hybrid model reconstruction (from noiseless data)

Tikh+resCNN reconstruction from noisy data

Remark: the physics-driven step is very critical, since it propagates noise that must be efficiently cleaned out in the resCNN denoising step

Which model should I choose?

ABE=1.8e-04

But...

Method	First inversion	Denoising	Total
FC+CNN	43.198.588	5.382	43.203.970
L-SVD+CNN	1.280.388	150.531	1.430.919
resCNN	(.	418.419	418.419

noiseless data

Method	Pre-denoising	First inversion	Denoising	Total
FC+CNN	<u>~</u>	43.198.588	5.382	43.203.970
L-SVD+CNN	_	1.280.388	150.531	1.430.919
resCNN	1.904.050	1020	418.419	2.322.469

noisy data

Conclusions (I)

- Modern medicine critically relies on imaging for decision making, of which CT scan is a central pillar
- Standard CT scans perform several hundreds of projections, with a significant radiation burden for the patient and the involved medical personnel
- Low-dose and zero-dose CT technologies are main innovation directions to obtain more «sustainable» CT modalities
- A noiser/subsampled signal is typically obtained in less ionizing approaches, that requires ad hoc reconstruction techniques

Conclusions (II)

- Diffuse optical tomography uses near-infrared light as investigating signal: no ionization
- NIR light in the tissue undergoes multiple scattering making the inversion problem severely illconditioned
- Classical variational methods have been used for many years but: i) critical choice of the regularization parameters, ii) there are (mildly) complex originating signals that are never correctly reconstructed
- DL techniques (fully data-driven or hybrid physics+data-driven model) can support CT reconstruction but much space is open to improvement