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The idea of Computerized Tomography (CT)

Goal: provide spatial information about
the inside of a sample by taking
measurements from the outside from
different perspectives

Here we focus on the application of CT to /J
medical imaging, the techniqgue and
process of imaging the interior of a body
for clinical analysis and medical
intervention




The starting point: imaging via X-rays (103 to 10nm)
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X-rays as investigating signal

Principle: the energy of the X-ray is
attenuated from the tissue that it crosses.
The denser the tissue region, the higher
the attenuation

We are interested in a parameter called
absorption (=attenuation) coefficient (itq).
The result is expressed in relative
Hounsfield units:

HU — Ha — Ha,H,0O % 100

Ha . H;0O
material HU
water 0
air -1000
bone 1086
blood 53
muscle 41

0HU

4000+ HU

-1000 HU

Muscles, tissue and bones attenuate
differently the X-ray = different GLs:
darker=less attenuation



Beer-Lambert law

The Beer-Lambert law connects the initial (known) and final (measured)
intensities of an X-ray:

¢ df
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Pb.: we only possess line integrals of the quantity of interest

We need several projections along different directions to reconstruct the 3D spatial
structure



Beer-Lambert law and Radon transform

Projection Py {?
J o(t) The Beer-Lambert law is connected to the Radon transform

Let f(z,y): Q C R? — R? density function

+o0  ptoo
Py(t) = [E f(z,y)ds = /_  f@y)olzcos(9) +ysin(0) — 1) drdy

= I




CT scan [1972 Cormack, Hounsfield - Nobel Prize 1979]
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The sinogram

For every angle we obtain a projection, a collection of projections is called sinogram

Object/
Phantom

f(x.y)

projection: Py—o(t)

6—(’ Sinogram



‘Computational’ version

* Sinogram (measured data): already discrete (finite set of angles, finite set of detectors)
* Sample: discretize in voxels

* Various approaches to discretize (compute or approximate) the line integrals

Radon transform
Original (Sinogram)

- d(xcos(@) +ysin(f) —t) f(x,y) dedy = y(0,1)
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Mathematical problem in CT reconstruction

Find hidden model parameters (biophysical parameters) given noisy/subsampled indirect

observations

* Direct problem: oriented along a cause-effect sequence with a natural (“beneficial”) loss of
information. The solution is generally smoother than the data (ex: the image provided by a
bandlimited system is smoother than the real object imaged)

* Inverse problem: needs to accomplish a transformation which implies a gain of information

object space

image space (measured images:

noiseless and noisy)
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Mathematical problem in CT reconstruction

Find hidden model parameters (biophysical parameters) given noisy/subsampled indirect
observations

Direct problem: oriented along a cause-effect sequence with a natural (“beneficial”) loss of
information. The solution is generally smoother than the data (ex: the image provided by a
bandlimited system is smoother than the real object imaged)

* Inverse problem: needs to accomplish a transformation which implies a gain of information

lll-posedness:

* small errors in the data may lead to large errors in
the model parameters

* several possible model parameter values consistent
with the same observations
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taken by rotation of the X-ray tube around the patient body

How much radiation (is too much)?

In a common CT scan in clinical practice, about 1000 angular measurements are
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“Sustainable  CT

Reduce the exposure to harmful X-rays by pursuing:

non-ionizing CT
low-dose CT

l

reduced no of reduced x-ray dose

projections

per projection light sound electrical currents

\ )
[

noisier/sub-sampled signal

|

more difficult reconstruction problems which require ad-hoc techniques

|



Towards diagnosis by light: Diffuse Optical Tomography (DOT)

Common experience suggests that light can pass travel through
biological tissues and be detected on the other side

Traditionally, clinicians have evaluated a patient health
condition by his/her complexion (that is, the hue appearing
from underneath the skin)

14



DOT principles

DOT employs near-infrared (NIR, 600 - 900nm) light sources to illuminate the biological
tissue in vivo from different perspectives, similarly to x-ray tomography, with the aim of

inferring the tissue optical parameters
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DOT principles

DOT employs near-infrared (NIR, 600 - 900nm) light sources to illuminate the biological
tissue in vivo from different perspectives, similarly to x-ray tomography, with the aim of

inferring the tissue optical parameters

The propagation of light through biological tissues is affected by the optical parameters:

absorption u, [1\cm] and scattering ug [1\cm] \emerging light

scattering

events absorption

at NIR WLs: scattering>>absorption

tissue

Typical values: - |
incident light

i, :0.01-0.30cm’
K :2-20cm’
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The NIR window

Window to living organisms: Wavelength range in which
near infrared rays easily pass through living organisms
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...but.. scattering of light in turbid media

pure water laser

https://omlc.org/classroom/scat_demo/
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Physics-driven (variational) methods

Reconstruct the model parameters = € X from measurement ¥ € Y by solving the minimum problem:

" =argmin[d(G(z),y) + R(z)]
T | }
|
discrepancy (data fidelity) regularization (encodes prior knowledge on
the solution) ‘

G : X — Y forward (direct) model l l
hard priors: exams performed soft priors:
discrepancy functional (example) with other techniques (ex MRI) * sparsity of the solution

R * range of values

* positivity/negativity

|

L, L, TV, ..

1
d(G(x),y) := §||g(;;:) — I3

L~
: (g A
Y
‘ :\“/‘ ¥
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Physical models of light propagation in turbid media

The propagation of light with scattering and absorption is rigorously governed by the radiative transfer
equation (RTE)

Key quantity: light radiance L = L(r, s,t) W /cm?sr i

light power per unit area traveling in the s direction at position

Solving the RTE is computationally very intensive
so that many simplifications have been sought in literature

l

Diffusion approximation: valid when the photon scattering is
the governing phenomena in the tissue: true for biological
matter such as skin, bone, brain matter or breast tissue
(absorption << scattering)

TRANSMITTED
LIGHT

In any case...PDE models (more complex than the Beer law!)



Direct and inverse mathematical models for DOT

Direct problem: given the optical properties D= ui and u, solve the diffusion equation for
S

photon fluence ® = ®(r) [W/cm?]

i Ha S
] [A D(r)] d(r) = oo in Q(= breast),
0o
. ® =0 onlp, %+ACD=O on I'p

Inverse DOT problem: given photon fluence measurements on the boundary, deduce the optical

field pq Rytov approximation Ug = Ugo T+ 6P-a

d =etot¥i= et
solution via Green’s function (meshless)

j Gr—r)ou,(r'")®y(r)dr’
Q

Ha,o Ollg
f lgebra: — — — N ¥1 =
after some algebra A D [(Po'¥7) D b0 1 DyDy

[S. Arridge, J. Schotland. “Optical tomography: forward and inverse problems”, Inverse Problems (2009)] -



Application of DOT to breast screening
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DOT and clinics

Altered optical coefficients might indicate pathogenic processes in the tissue, for example
an increased u, may be marker of tumoral lesions (related to angiogenesis)
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Discretization

Voxelization of the domain (N voxels)
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Solution and Regularization

Sove  Joug, =y — OUg = argmin ||I5X—y||§

Elastic Net regularization [Zou et al., 05]

1 2
Suq = argmin || Jox — yII2 + /1(ocll5uall1 +(1- a)ll&tallﬁ),a € [0,1]

| |

fl-norm: finds strong components fz-norm (Tikhonov): robust regularization
(enhance sparsity)

25
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Results on a simulated test case

Ha
[P.C., M. Lupieri, G. Naldi, RM Weishaeupl. Mathematical and numerical challenges in optical screening of

female breast”, Int ] Numer Method Biomed Eng (2020)]
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Variational approach: pro & cons

well established approach

difficult choice of the regularization parameters, ad-hoc for each single case
there are conditions that are never correctly reconstructed (e.g., more than one
inclusion with different absorption coefficients, second row of the previous

example)
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Deep Learning for DOT reconstruction

DEEP LEARNING METHODS
FOR INVERSE PROBLEMS

PHYSICS-DRIVEN
FULLY DATA-DRIVEN Learning from data + including

Complete learning from data information about the forward
model

L-SVD model Tikh+resCNN

28



Before starting...: what is an autoencoder?

!

Low-dimensional
representation

Decoder
— A > X

Pg

20,09 =E (-0 (0s9))|
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Fully data drive model: Learned-SVD (L-SVD)

nonlinear learned variant of SVD N/ 1= %Q}cjnc 02 o pgec O N1
W

Inversion Denoising CNN

y . Y
SOGHC( ) (‘Pdec( )> A AR

4

y
l the net determines which scales should be
E
x

regularised more and which less

SOdec ) CNN
AE —_— 5‘(2

DENOISED
SAE
() ()
Penc Pdec
[A. Benfenati, G. Bisazza, P. C. «A Learned SVD approach for Inverse Problem Regularization in Diffuse Optical Tomography»

ArXiv preprint no. 2111.13401 (2021)]
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Training of the networks

Synthetic dataset of 1500 samples
Semi-circular domains with perturbed regions with different: position, location and value of p,

we solved the forward problem (diffusion problem) for each of them, collecting the
«measurements» on the boundary

(&

(y @

DL
DR
DD
IR




L-SVD model reconstruction (from noiseless data):
qualitative evaluation:

Ground truth Ground truth Ground truth
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Quantitative metrics

We consider the following indices to quantitatively assess the quality of the
reconstruction:

Absolute Bias Error 1M |
(smaller=better), sum over voxels ABE = N Z M rec — #fl,GT‘
rec=reconstructed =l
GT=ground-truth

Contrast-to-noise ratio
(higher=Dbetter)

: T — [
PR=perturbed region CONR = Ha.pR — Ma,BG
BG=background \/WPRU?:R + wRGOHG
w pp=perturbed surface/tot surface
overline=average of the region with minor modifications

for more than one PR

Caveat: one single index may not be adequate to assess the quality, for example CNR>>1 if the absorption
coefficient is overestimated in the PR



L-SVD model: 1PR- reconstruction from noisy data

1% noise

<103

——1% noise
—3% noise
pra— ] ] H
CNR=8.8 CNR=5.6 fgf,/:z';ze
ABE=3.2e-04 ABE=6.6e-04 -===- Ground truth
5% noise 10% noise

CNR=5.5 CNR=2.8
ABE=7.8e-04 ABE=1.4e-03
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L-SVD model: 1 or 2PRs- reconstruction from 1% noisy data
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Physics driven model: Tikh+resCNN

Tikhonov

/&
not learned

» X

N

learned

approximate
inverse

deep CNN with skip connection

—

-

sl
- e —@
k Y |

removes artifacts
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Tikh+resCNN hybrid model reconstruction (from noiseless data)

Ground truth Ground truth Ground truth

Tikhonov Tikhonov Tikhonov

m

resCNN
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Tikh+resCNN reconstruction from noisy data

1% noise 3% noise

CNR=8.0 CNR=8.6
ABE=3.1e-04 ABE=4 2e-04

%1073

15 ~——1% noise
—3% noise
12 —5% noise

.

(-

----Ground truth (‘

< 9 ; |
6 '

3 )

CNR=3.1
ABE=1.1e-03

Remark: the physics-driven step is very critical, since it propagates noise that must be efficiently
cleaned out in the resCNN denoising step
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Which model should | choose?

L-SVD resCNN

CNR=10.96 CNR=14.78
ABE=2.9e-04 ABE=1.6e-04

L-SVD resCNN

CNR_ =128 CNR__,,=129 CNR _ =52 CNR_ =149 CNR__ =234 CNR__ =110

Inci2 incls
ABE=3.1e-04 ABE=1.9e-04

CNRmcH:2‘9 CNR
ABE=5.3e-04 ABE=1.8e-04

=13.7 CNR_ =118 CNR._ =59 CNR =255 CNR =283
ncls incit inci2 Incls

incl2 |
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B u t 000

Method First inversion | Denoising | Total
FC+CNN 43.198.588 5.382 43.203.970 .
L-SVD{CNN | 1280.388 | 150.531 | 1.430.919 noiseless data
resCNN - 418.119 418.419

Method Pre-denoising | First inversion | Denoising Total

FC+CNN - 43.198.588 5.382 43.203.970
L-SVD+CNN - 1.280.388 150.531 1.430.919 noisy data
resCNN 1.904.050 - 418419 | 2.322.469
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Conclusions ()

Modern medicine critically relies on imaging for decision making, of which CT scan is a central pillar
Standard CT scans perform several hundreds of projections, with a significant radiation burden for the
patient and the involved medical personnel

Low-dose and zero-dose CT technologies are main innovation directions to obtain more «sustainable» CT
modalities

A noiser/subsampled signal is typically obtained in less ionizing approaches, that requires ad hoc

reconstruction techniques
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Conclusions (Il)

Diffuse optical tomography uses near-infrared light as investigating signal: no ionization

NIR light in the tissue undergoes multiple scattering making the inversion problem severely ill-
conditioned

Classical variational methods have been used for many years but: i) critical choice of the regularization
parameters, ii) there are (mildly) complex originating signals that are never correctly reconstructed

DL techniques (fully data-driven or hybrid physics+data-driven model) can support CT reconstruction but

much space is open to improvement
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