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Abstract

High order methods for elastic wave propagation phenomena in seismic regions

have seen a great development in the last years. Specifically, the spectral element

(SE) method combines the high accuracy of spectral methods with the flexibil-

ity of finite element methods (FEM). SE methods have been introduced and are

currently built mainly on mashes made of tensor product elements (i.e., deformed

squares and cubes). In this work we consider the application of the discontinuous

spectral element method on meshes made of simplicial elements to the approxi-

mation of the elastodynamics equation. This approach provides the high accuracy

of spectral methods, combined with the geometrical flexibility of simplex elements

and with the computational scalability of Discontinuous Galerkin (DG) methods.

We thoroughly analyze the dissipation, dispersion and stability properties of the

scheme introduced, with a focus on the choice of the basis functions. Finally, we

test the method on benchmark test cases.



Sommario

Negli ultimi anni, vi è stato un grande aumento sia nella richiesta che nell’avan-

zamento teorico dei metodi di alto ordine per l’approssimazione di fenomeni di

propagazione di onde sismiche. Fra i metodi di alto ordine si distingue il me-

todo agli elementi spettrali, che combina l’alto ordine di accuratezza dei metodi

spettrali con la flessibilità dei metodi agli elementi finiti. Le griglie computazio-

nali su cui i metodi agli elementi spettrali sono stati introdotti (e su cui vengono

usualmente implementati) sono composte da elementi formati tramite prodotto

tensoriale di intervalli monodimensionali, cioè quadrati e cubi deformati. In que-

sto lavoro si considera un metodo agli elementi spettrali discontinuo, basato su

griglie composte di triangoli o tetraedri, nella sua applicazione all’approssimazio-

ne dell’equazione dell’elastodinamica. Questo permette di ottenere un metodo

che offre sia l’alto ordine dei metodi agli elementi spettrali che la flessibilità geo-

metrica e l’h-adattabilità fornita dagli elementi triangolari. Inoltre, l’uso di un

metodo di Galerkin discontinuo fornisce un approccio computazionalmente scala-

bile e P -adattabile. Si è quindi provveduto ad analizzare in dettaglio le proprietà

di dissipazione, dispersione e stabilità del metodo introdotto, considerando le pos-

sibili scelte per quanto le riguarda le funzioni di base. Lo schema numerico è stato

infine provato su diversi casi di riferimento per la simulazione della propagazione

di onde sismiche.



Introduction

T
he analysis of elastic and acoustic wave propagation phenomena has been

widely studied by mathematicians and scientists since the XIX century. Elas-

tic waves in solids have also been historically studied, though analytic solutions are

available only for simple domains and settings. The approximation of the solution

to the elastodynamics equation is therefore of critical importance for the analysis

of the propagation of seismic waves in complex scenarios.

In recent years, seismological, geophysical and technological advances have al-

lowed for a greater insight into physical seismological events and this has con-

tributed to the growth of the demand for accurate and flexible numerical meth-

ods. Those, indeed, permit the comparison between the empirical observations

and accurate numerical wave fields in complex domains.

In this work we consider the application of the discontinuous spectral element

method on meshes made of simplicial elements to the approximation of the elas-

todynamic equation. Spectral element methods were introduced in the computa-

tional fluid dynamics field [Pat84, MP89] and they combine the high order accuracy

of spectral methods with the flexibility and computational feasibility of finite ele-

ments methods. They are strictly related with the h-p version of the finite element

method and they have been extensively used for computational geodynamics in

the last two decades [KV98, KT02]. Spectral element methods have been intro-

duced and are currently built on mashes made of tensor product elements (i.e.

deformed squares and cubes), since this is the context in which the extension from

one spatial dimension to d dimensions, d = 2, 3, is more straightforward. Spectral

1



INTRODUCTION

elements on triangles and tetrahedra have been historically less widely studied,

though different formulations (modal with different bases [KS05], nodal with dif-

ferent interpolation nodes [HW08]) have been proposed and analyzed in the last

years. Several of these formulations have been employed in geodynamical applica-

tions [MVSS06, PdlPA+12], but a thorough analysis has not been carried out for

the coupling of modal bases and discontinuous methods. In general, they provide

the flexibility and geometrical adaptability of simplicial mesh combined with the

high order of spectral methods.

Discontinuous methods were introduced for hyperbolic equations, have been

extended to to the elliptic case and developed independently in both environ-

ments. The advantages of discontinuous methods lies in the fact that they allow

for the accurate approximation of sharp gradients in the solution, that they can

be used to develop an h-p adaptive strategy and that the computational cost can

be distributed without much overhead.

Of the spectral bases on triangular elements presented, one (the Legendre-

Dubiner basis [Dub91, Koo75]) can be used only in the framework of a fully

discontinuous approximation, since there is no way to enforce the continuity of

the space between neighboring elements. The boundary adapted basis functions

[KS05, Dub91], on the other hand, are modified in order to be used in a continuous

scheme. Therefore, a non-conforming scheme as in [AMQR12] is possible, and the

following analysis helps to understand the properties of such a scheme.

In Chapter 1 the global setting and the elastodynamics equation are presented.

We pay particular attention to the illustration of the body and surface waves, which

will be extremely important in the forthcoming analysis of the numerical results.

The variational formulation of the equation is presented, since it is the natural

formulation for finite element methods.

The discontinuous Galerkin approximation is introduced in Chapter 2. Specif-

ically, we consider the interior penalty method, in its symmetric, non-symmetric

and incomplete variants. The introduction of a basis for the finite-dimensional

approximation space leads us to the development of the semi-discrete algebraic

formulation.

The various possibilities for the expansion basis are presented in Chapter 3,

along with a full treatment of the details of high order methods on simplicial

2



INTRODUCTION

elements. We consider the orthonormal Legendre-Dubiner basis and a non orthog-

onal basis modified in order to allow for a continuous approximation. Those bases

have their respective advantages and drawbacks, and the numerical experiments

will be carried out for both. We also introduce, alongside with classical Gaussian

quadrature rules, a more natural set of quadrature rules, whose derivation takes

into account the symmetries of the triangle.

Two of the classical time stepping methods for the simulation of wave prop-

agation phenomena are introduced in Chapter 4, while Chapter 5 deals with the

practical implementation of a numerical spectral element code. In particular, the

role of the reference triangle is considered, and global and local (to every element)

operations are presented.

The tools listed so far are thoroughly analyzed in Chapter 6, where the dissipa-

tion, dispersion and stability properties of the method are considered. We ideally

simulate a plane wave on an infinite domain, and, via an analysis of the general-

ized eigenvalues of the method’s matrices, we get estimates on the quality of the

approximation provided by the scheme. We investigate also how much restrictive

are the bounds to the time step, imposed to explicit time stepping methods.

The analysis of the methods proceeds in Chapter 7, where the convergence of

the numerical solution to a smooth exact solution is taken into account. The order

of the method with respect to the time step and to the polynomial approximation

order is computed.

In the last chapter, the method is applied to a series of test cases and bench-

marks. We show its capacity to accurately model complex wave propagation phe-

nomena as well as its performance in benchmark tests. Finally, we draw some

conclusions and we outline some future perspectives.

In Appendix A a C++ library which has been developed and implements the

method is presented, and its application to some of the test cases is analyzed.

3



Chapter 1

Seismic waves and the elastodynamic

equation

T
he goal of the numerical study of seismic waves is to analyze their behavior and

how they propagate inside bodies with different physical properties. Seismic

waves, often resulting from an underground rupture or other geological events,

travel at thousands of meters per second through the interior of the Earth and

on the surface of the crust, often reaching great lengths before their effect fades.

Here we will present the elastodynamics equation, which models the displacement

induced by traveling seismic waves and we will analyze in detail some of the simple

solutions to the equation, which constitute building blocks for the approximation

in more complex scenarios.

1.1 The mathematical model

Let Ω be a sufficiently smooth finite region of R
d, d = 2, 3. Let Γ = ∂Ω be its

boundary, subdivided into a part where Dirichlet (i.e. displacement) conditions

are prescribed, ΓD and a part where Neumann (i.e. stress) conditions are imposed,

ΓN . We suppose that those regions are not overlapping, i.e. ΓD ∩ΓN = ∅, and ΓN

can be empty. Given a final time T > 0, the elastodynamics equation takes the

4



CHAPTER 1. SEISMIC WAVES AND THE ELASTODYNAMIC EQUATION

form 



ρutt −∇ · σ(u) = f , in Ω× [0, T ],

u = g, on ΓD × [0, T ],

σ(u) · n = d, on ΓN × [0, T ],

ut(0) = v0, in Ω,

u(0) = u0, in Ω.

(1.1)

Here, σ is the stress tensor and will be defined later, ρ is the medium mass density

and g is a boundary data (often assumed to be null in practical applications). If we

define the strain tensor as the symmetrization of the gradient of the displacement

ε(u) =
1

2

(
∇u +∇u⊤

)
,

then the stress tensor for a continuous medium, considered in the regime of linear

elasticity, is prescribed by the Hooke’s law, that in components is given by

σij(u) = Cijklεkl(u) (1.2)

where C is a fourth order tensor. Under the assumption of isotropy, relation (1.2)

takes the form

σij(u) = λεkk(u)δij + 2µεij(u) (1.3)

where λ and µ are referred to as the first and second Lamé parameters. Those

parameters define the elastic properties of the medium and the speed of the waves

traveling inside it. They are constant in a homogeneous medium, while in a het-

erogeneous medium they can be assumed piecewise constants, i.e. λ, µ ∈ L∞(Ω);

the same goes for the stress tensor. Note that, if µ > 0 and λ ≥ 0, C is bounded:

2µxijxij ≤ xijCijklxkl ≤ 2(λ+ µ)xijxij ∀x ∈ R
d×d. (1.4)

5



CHAPTER 1. SEISMIC WAVES AND THE ELASTODYNAMIC EQUATION

Finally, (1.3) can be rewritten, in a more practical manner, considering that the

stress and strain tensors are symmetric,




σ11

σ22

σ12


 =




λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 2µ







ε11

ε22

ε12




for d = 2, and similarly for d = 3.

1.2 Seismic waves

There are two main types of seismic waves: body waves and surface waves. Specif-

ically, body waves (which, as the name suggests, travel through the medium) are

themselves divided into compressional (longitudinal, primary or P–) waves and

shear (transverse, secondary or S–) waves. Longitudinal waves travel faster than

shear ones, and they can travel through any type of medium, while S–waves prop-

agation is limited to solid materials. Surface waves (again, the name is quite

expressive) are of a somewhat more mixed nature, slower than both P– and S–

waves and can be extremely disruptive in earthquake scenarios. Rayleigh and Love

waves are surface waves.

1.2.1 Body waves

Let us consider the first equation of (1.1) inside an unbounded domain and suppose

that the solution u is sufficiently smooth and that the force is null. Then, it can

be rewritten as

ρutt − (µ∆u + (λ+ µ)∇ (∇ · u)) = 0. (1.5)

Taking the divergence yields

∂2

∂t2
(∇ · u) =

λ+ 2µ

ρ
∆(∇ · u),

6



CHAPTER 1. SEISMIC WAVES AND THE ELASTODYNAMIC EQUATION

Figure 1.1: Domain for Rayleigh wave propagation

that is, a traveling deformation with speed

cP =

√
λ+ 2µ

ρ
. (1.6)

Relation (1.6) is the speed of compressional waves. If we suppose ∇ · u = 0 in

(1.5), we get

utt =
µ

ρ
∆u

which is again a traveling wave with speed

cS =

√
µ

ρ
. (1.7)

This is more meaningful in view of the Helmholtz decomposition theorem, since

the first traveling wave can be derived as the irrotational part of u, while the

secondary wave is the divergence-free part.

1.2.2 Rayleigh waves

Let Ω be the semi-infinite domain in Figure 1.1 and let ψ and ϕ be respectively a

divergence-free and irrotational function, with

u = ∇ψ +∇× ϕ, ϕ = −ϕj,

7



CHAPTER 1. SEISMIC WAVES AND THE ELASTODYNAMIC EQUATION

Figure 1.2: Qualitative displacement induced by a Rayleigh wave

a plane wave traveling in the positive x direction. Then, proceeding as in Section

1.2.1, we obtain

ψtt = c2
S∆ψ

ϕtt = c2
P ∆ϕ.

(1.8)

Then, we can write ϕ and ψ in the general form

ψ = F (z)ei(ωt−kx)

ϕ = G(z)ei(ωt−kx)

so that ϕ and ψ are waves traveling with the velocity cSurf = ω/k. Substituting

into (1.8) and taking into account the boundedness of the amplitude yields

ψ = Ae−sz+i(ωt−kx), s2 = k2 − ω2

c2
S

,

ϕ = Be−qz+i(ωt−kx), q2 = k2 − ω2

c2
P

.

Imposing the Neumann boundary condition at the top edge of the domain we can

obtain the following equation for the velocity of the wave:

k6
s − 8k4

s + (24− 16c̃2)k2
s + (16c̃2 − 16) = 0, k2

s =
c2

Surf

c2
S

, c̃2 =
c2

S

c2
P

. (1.9)

An explicit solution for the traveling surface wave can therefore be derived, using

the relations introduced before; the displacement induced by Rayleigh waves is

reported in Figure 1.2.

8
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1.3 The variational formulation

By multiplying equation (1.1) by a sufficiently regular test function v we obtain

(ρutt,v)Ω − (∇ · σ(u),v)Ω = (f ,v)Ω

where (u,v)Ω =
∫

Ω u · v. Then, since

−(∇ · σ(u),v)Ω = (σ(u), ε(v))Ω − (σ(u) · n,v)Ω,

it is possible to derive the variational (or weak) formulation of the model. Let V

be a suitable functional space that we will choose later: the variational formulation

reads
find u = u(t) ∈ V such that, ∀t ∈ (0, T ],

d2

dt2
(u(t),v)Ω +A(u(t),v) = F(v),

u(0) = u0,

ut(0) = v0,

(1.10)

∀v ∈ V . Here, A(·, ·) : V × V → R is the bilinear form

A(u,v) = (σ(u), ε(v))Ω

and F : V → R is a linear functional taking into account the body force and the

boundary conditions (Dirichlet conditions are assumed homogeneous):

F(v) = (f ,v)Ω + (d,v)ΓN
.

Let then V =
[
H2

ΓD
(Ω)

]d
:= {v ∈ [H2(Ω)]

d
: v|ΓD

= 0}. From now on, d will be

omitted: vectors in a space W will implicitly be assumed in W d. Problem (1.10)

admits a unique solution ∈ C0(0, T ;V ) ∩ C1(0, T ;L2(Ω)), provided that u0 ∈ V ,

v0 ∈ L2(Ω) and f ∈ L2(Ω × [0, T ]) and that the parameters ρ, λ and µ are in

L∞(Ω).

9
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1.3.1 Semi-discrete variational formulation

Problem (1.10) leads to a semi-discrete approximation by taking a finite-dimensional

space Vh and looking for a solution uh(t) ∈ Vh such that, ∀t

d2

dt2
(uh(t),vh)Ω +A(uh(t),vh) = F(vh) ∀vh ∈ Vh,

u(0) = Πu0,

ut(0) = Πv0,

(1.11)

where Π is a suitable projection operator in Vh. Frequently, in practice, the bilinear

form A, the linear functional F and the scalar product are themselves modified

to adapt to practical or theoretical needs (e.g. because of numerical quadrature,

discontinuous approximations or stabilizations), so that the first equation in (1.11)

reads
d2

dt2
(uh(t),vh)Ω,h +Ah(uh(t),vh) = Fh(vh) ∀vh ∈ Vh. (1.12)

In the following chapters, the construction of such finite-dimensional space will be

investigated, together with the formulation of a suitable “discrete” bilinear form

Ah, of a linear functional Fh and of a discrete scalar product. Additional emphasis

will be put on the identification of an efficient basis for Vh and the set of quadrature

rules used for computing the integrals defined in (1.12).
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Chapter 2

Discontinuous Galerkin methods

D
iscontinuous Galerkin (DG) methods for the solution of partial differen-

tial equations have been greatly developed and extended since they were

first introduced in the seventies for the numerical approximation of hyperbolic

problems [RH73] and, independently, in the context of elliptic and parabolic equa-

tions [Arn82, DD76]. Gathering ideas from both the finite elements and the finite

volumes methods, they exhibit many interesting properties and they are highly

scalable and flexible.

On the one hand, since many computations take place at the element basis,

discontinuous Galerkin methods are prone to being implemented not only on clus-

ters of CPUs, but also in highly parallel environments such as GPUs [KWBH09].

On the other hand, DG methods can handle naturally non-matching grids and

variable approximation orders. Such flexibility has been successfully exploited in

conjunction with spectral elements methods (SEM) in the context of seismic wave

propagation phenomena [AMQR12].

DG methods for elliptic operators can be presented under a unified approach

[ABCM02]; hereafter the analysis will be more focused on interior penalty methods

[Arn82], in their symmetric, non-symmetric and incomplete variants.

11



CHAPTER 2. DISCONTINUOUS GALERKIN METHODS

2.1 Interior penalty methods

Consider a triangulation Th made of d-simplices of the domain Ω such that Ki ∩
Kj = ∅ if i 6= j, for all Ki,j ∈ Th. The set of all edges is

E =
⋃

k

ek

where ek(i,j) = ∂Ki ∩ ∂Kj for two adjacent triangles Ki and Kj and an injec-

tive function k. The set of all internal edges will be denoted as EI = E \ ∂Ω.

The function space on which DG methods are based relaxes the continuity re-

quirements between the elements of the triangulation typical of classical finite

elements. The functions are therefore globally required to be only in L2. I.e., the

finite-dimensional approximation space introduced in Section 1.3.1 is defined as

Vh = {u ∈ L2(Ω) : u|K ∈ PNK
(K)}. (2.1)

The polynomial order NK ≥ 0 can vary elementwise, since DG methods are nat-

urally p-adaptable. Before proceeding to the full formulation of interior penalty

methods, it is necessary to introduce the average {{·}} and jump J·K operators for

vectors and tensors
JuK = u+ ⊗ n+ + u− ⊗ n−,

JσK = σ+n+ + σ−n−,

{{u}} =
1

2
(u+ + u−),

{{σ}} =
1

2
(σ+ + σ−).

(2.2)

Those operators are defined on every e ∈ EI and u± are the restrictions of u

to ∂K±, where K± are two neighboring elements. n± are the normals pointing

outwards from the elements K±. The operators are invariant to the choice of the

label of the elements. If the edge lies on the boundary, one can simply define

{{u}} = u, JuK = u⊗ n,

{{σ(u)}} = σ(u), Jσ(u)K = σ(u)n.

12
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Writing (1.1) elementwise, integrating by parts and summing over all K ∈ Th

we obtain

∑

K∈Th

d2

dt2
(u,v)K−(∇·σ(u),v)K =

∑

K∈Th

d2

dt2
(u,v)K +(σ(u), ε(v))K−(σ(u)·n,v)∂K .

Exploiting the operators defined in (2.2) and through algebraic manipulations we

can write

−
∑

K∈Th

(∇ · σ(u),v)K =
∑

K∈Th

(σ(u), ε(v))K −
∑

e∈E

({{σ(u)}}, JvK)e − ({{v}}, Jσ(u)K)e.

(2.3)

Since both the exact solution u and its stress tensor and σ(u) have null jumps on

the edges, we remove from the formulation the second term of the right hand side

in (2.3). Furthermore, consistency is not affected by adding a term

−ϑ
∑

e∈E

({{σ(v)}}, JuK)e

which can be used to construct a symmetric or non-symmetric method. Analo-

gously, we add the following term to the bilinear form in order to penalize discon-

tinuities in the solution

Se(u,v) = αe(ce(JuK), JvK)e (2.4)

where the linear function ce and the parameter αe ∈ R
+ will be specified later.

The bilinear form Ah, introduced in Section 1.3.1, in the case of interior penalty

methods therefore reads

Ah(u,v) =
∑

K∈Th

AK(u,v) +
∑

e∈E

Ie(u,v) +
∑

e∈EI

Se(u,v), (2.5)

where AK is the restriction of A to the element K, i.e.,

AK(u,v) = (σ(u), ε(v))K ,
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and

Ie(u,v) = − ({{σ(u)}}, JvK)e − ϑ({{σ(v)}}, JuK)e. (2.6)

Setting ϑ = 1 gives the symmetric (SIPG) methods [DD76], while ϑ = −1 gives the

non-symmetric (NIPG) method [RWG99] and ϑ = 0 gives the incomplete (IIPG)

interior penalty method. Formulation (1.12) for this class of methods thus reads:

find u ∈ Vh such that

d2

dt2
∑

K∈Th

(uh(t),vh)K +Ah(uh(t),vh) =
∑

K∈Th

FK(vh) ∀vh ∈ Vh. (2.7)

2.1.1 The penalty function

The penalty function in equation (2.4) is defined over every edge e as

αe = α
N2

e

he
(2.8)

where α ∈ R+ and Ne and he are the degree and the length associated to the edge

e. Typically they take the values

Ne = max(NK+, NK−), he = |e|.

The choice of the function c : Rd×d → R
d×d in (2.4) is a little more controversial.

Let us define the harmonic average on the edge e by

aA =
2a+a−

a+ + a−
.

Note that for dimensional reasons the function c must have a relation with the

tensor C. The easiest choice is therefore to set

c(JuK) = λ+ 2µ
A
JuK. (2.9)

Another possibility is to use the full tensor in the stability form (2.4), that is

c(JuK) = C
A
JuK, (2.10)
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where the harmonic average is computed component-wise.

2.2 Continuity and coercivity

The main references for this section are [ABCM02] and [AMQR12]. In order to

provide an analysis of the discontinuous method (2.7), let us define the mesh

dependent norm

||uh||2DG =
∑

K∈Th

||C1/2ε(uh)||20,K +
∑

e∈E

αe||JuhK||20,e, uh ∈ Vh. (2.11)

The following result guarantees that problem (2.7) is well posed.

Lemma 2.2.1. The coercivity and continuity bounds

Ah(u,v) ≤M ||u||2DG||v||2DG, ∀u,v ∈ Vh (2.12)

Ah(u,u) ≥ η||u||2DG, ∀u ∈ Vh (2.13)

hold for some constants η,M > 0, provided that α ≥ αmin > 0, with α defined in

(2.8).

Before stating the proof of Lemma 2.2.1, we recall the inequalities ([AH11], see

also [WH03])

||u||20,e ≤ CN2
Kh

−1
e ||u||20,K

∣∣∣∣∣

∣∣∣∣∣
∂u

∂n

∣∣∣∣∣

∣∣∣∣∣

2

0,e

≤ CN2
Kh

−1
e |u|21,K (2.14)

valid for a u of degree NK on K, e ∈ ∂K and for a positive constant C.

Proof. We first show (2.12). Let us analyze the terms ofAh separately. By Cauchy-

Schwartz inequality we have

∑

K

(σ(u), ε(v))K ≤ C

(
∑

K

||C1/2ε(u)||2
)1/2 (∑

K

||C1/2ε(v)||2
)1/2

.
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Next, using the second of the (2.14) we get

∑

e

({{σ(u)}}, JvK)e ≤
∑

e

1√
αe
||σ(u)||e

√
αe||JvK||e

≤
(
∑

K

Cα−1||C1/2ε(u)||20,K

)1/2 (∑

e

αe||JvK||20,e

)1/2

.

(2.15)

Furthermore,

∑

e

αe(JuK, JvK)e ≤ C

(
∑

e

αe||JuK||2e
)1/2 (∑

e

αe||JvK||2e
)1/2

.

The continuity (2.12) follows from the above bounds. To prove (2.13) note that

using (2.15) we get

Ah(u,u) ≥ ||u||2DG − 2

(
∑

K

Cα−1||C1/2ε(u)||20,K

)1/2 (∑

e

αe||JuK||20,e

)1/2

≥ (1− 2Cα−1)||u||2DG.

The last bound follows from ab ≤ (ε/2)a2 + (1/2ε)b2. If 1− 2Cα−1 > 0 the thesis

follows.

2.3 Algebraic formulation

For the sake of simplicity, we assume Ω ⊂ R2 and we suppose the polynomial

order N is homogeneous over the domain. We then introduce the vectorial basis

{ψℓ
i}i,ℓ=1,2 on every triangle K by setting

ψ1
i =


ψi

0


 , ψ2

i =


 0

ψi


 .

The choice of the scalar basis ψi will be thoroughly discussed in Section 3.2. The

number of degrees of freedom per element is denoted by Nd = (N + 1)(N + 2)/2,

the number of elements by Nel. The total number of degrees of freedom is thus

Nt = NelNd. If N = NK is different between the elements, one has to use Nd,K =
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CHAPTER 2. DISCONTINUOUS GALERKIN METHODS

(NK + 1)(NK + 2)/2 and to sum over all K. The trial function uh can therefore

be expanded as

uh =
Nel−1∑

k=0

ak+1−1∑

ak

(
u1

iψ
1
i + u2

iψ
2
i

)
(2.16)

where ak = kNd + 1. Since the variational formulation (2.7) has to hold for every

function vh, we can take as test functions ψi, ∀i. The vector of the unknowns

U =




u1
1
...

u1
Nt

u2
1
...

u2
Nt




,

is then constructed by concatenating the expansion coefficients of the first vectorial

component with those of the second one. The algebraic formulation of the semi-

discrete problem (2.7) is then

MÜ + (A + I + S) U = F. (2.17)

The matrices M and A are block diagonal while the matrices I and S have a more

complex structure. Then, let us decompose any of the matrices M, A, I and S

into d2 blocks of the form

C =


C11 C12

C21 C22


 .

As we have already stated, M is block diagonal, i.e. M12 = M21 = 0 and Mii

i = 1, 2 are composed of Nel dense blocks of size Nd × Nd. The four blocks of A

exhibit the same structure of Mii, so that the matrix has a main block diagonal

and two smaller ones in the A12 and A21 blocks. The sparsity pattern of I is the

same for all the sub-blocks, with every row and column related to the element

K containing a Nd by Nd block in diagonal position and #{e ∈ ∂K ∩ EI} non-

diagonal blocks. The matrix S has the same pattern as I if choice (2.10) is made.

Otherwise, if it is formulated as in (2.9), Sii, i = 1, 2, have the same structure of
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(a) (b) (c)

Figure 2.1: Sparsity patterns for (a) A, (b) I and (c) M

the sub-blocks of I, but S12 = S21 = 0. An example of those patterns is given in

Figure 2.1, where an approximation with N = 5 and Nel = 28 is considered.

Next, we identify by AK (resp. MK) the sub-block of A (resp. M) relative to

the element K and by IK,J and SK,J the blocks of the inter-element and stability

matrices relative to the edge of K whose neighbor is element J . Therefore,

Alm
K [i, j] = AK(ψm

j ,ψ
l
i) l,m = 1, 2

and

Ml
K [i, j] = (ρψj , ψi)K l = 1, 2

with both i and j ranging over aK , . . . , aK+1 − 1. Similarly,

Ilm
K,J [i, j] =

∑

e∈∂K∩∂J

Ie(ψ
m
j ,ψ

l
i) l,m = 1, 2

and

Slm
K,J [i, j] =

∑

e∈∂K∩∂J

Se(ψ
m
j ,ψ

l
i) l,m = 1, 2

with i and j taking integer values in their appropriate element ranges, i.e. j ∈
[aJ , aJ+1) and i ∈ [aK , aK+1).

The properties of the matrices involved in the algebraic formulation of the

method vary with the choice of the basis for the space Vh: those issues will be

discussed in the next chapter. Moreover, the scalar products used throughout

this chapter must be evaluated in a numerical way, and the choice of a suitable

quadrature rule over the reference element is crucial.
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Chapter 3

High order methods on simplices

T
he spectral elements method (SEM) is a high order method which employs

special basis functions and quadrature rules with a high degree of exactness.

They provide high order approximations to the solution of partial differential equa-

tions, while preserving an acceptable computational cost for the solution of the

resulting algebraic linear systems. For a full treatment of spectral methods, see

[CHQZ06] and [CHQZ07].

Spectral element methods are usually extended from one dimension to multi-

dimensional domains using meshes made of tensor product elements (i.e. deformed

squares and cubes). Those shapes, though, are not very well suited to the tessella-

tion of complex domains, nor they are easily adaptable. To exploit the properties

of triangular and tetrahedral meshes, well studied in the context of finite elements

methods, the spectral element method has been extended to those meshes, and

triangular spectral element methods (from now on, TSEM) have been developed.

The extension from the one dimensional SEM to the multidimensional TSEM

in not as straightforward as it is in the classical SEM case and there is still ongoing

debate regarding the choice of a suitable polynomial basis and of a set of quadrature

points and weights. The two main approaches in the choice of a basis consider a

modal (with Jacobi polynomials) or a nodal (with Lagrange-type polynomials)

basis. In the former case there is a choice between an orthogonal basis, with the

disadvantage that all modes are not null on the boundary of the element and that

the basis is not suitable for a C0 approximation, and a “boundary adapted” basis,
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Figure 3.1: The mapping from the reference square to the reference triangle

which is not L2(T ) orthogonal, but the modes can be decomposed into boundary

and interior modes. In the latter case, we have a FEM-type basis and additional

care must be put into the choice of a set of interpolation points: an optimal set has

not yet been found and this is still an open problem. Degrees of freedom represent

expansion coefficients in the modal case, while they are nodal values in the nodal

case (and this can lower the computational cost of the solution post-processing).

Classical modal basis and their application to computational fluid dynamics

are presented in [KS05], while an interesting alternative, though at a preliminary

stage, is presented in [RMK11]; nodal basis in the frame of discontinuous Galerkin

methods are discussed in [HW08].

3.1 From tensor product to simplex elements

To ease the reading we present the details for d = 2 elements. Let the reference

square Q2 be defined by Q2 = {(η1, η2) : −1 ≤ η2, η2 ≤ 1}, and the reference

triangle

T 2 = {(ξ1, ξ2) : ξ1, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1} (3.1)
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Figure 3.2: Dubiner orthonormal basis (3.3), N = 5.

can be derived from the square via the transformation

ξ1 =
(1 + η1)(1− η2)

4
, ξ2 =

1 + η2

2
, (3.2)

shown in Figure 3.1. It is worth noting how the inverse map, often referred to as

the Duffy transformation and explicitly given by

η1 = 2
ξ1

1− ξ2
− 1, η2 = 2ξ2 − 1,

is singular at the top vertex of the triangle. The map (3.2) is indeed “collapsing”

the square’s edge, identified by η2 = 1, onto that single vertex.
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3.2 Basis functions

3.2.1 Legendre–Dubiner basis

In the case of a modal expansion, the Jacobi polynomials Jα,β
n (see [Sze75]) are

used to develop an orthogonal bases (as is the case with the “classical” SEM since

Legendre polynomials are a subset of Jacobi polynomials) which shows a tensor

product structure. The orthogonal bases {ψij(ξ1, ξ2)}ij introduced by Koornwinder

[Koo75] and developed by Dubiner [Dub91] takes the form

ψij(x, y) = cijϕi(η1)ϕij(η2) (3.3)

= cijϕi

(
2

ξ1

1− ξ2
− 1

)
ϕij (2ξ2 − 1) , (3.4)

where,

ϕi(x) = J0,0
i (x)

ϕij(x) = (1− x)jJ2i+1,0
j (x)

cij =
√

2(2i+ 1)(i+ j + 1).

Integrating the product ψijψpq in the standard region T 2, since |∂ξi/∂ηj | = (1 −
η2)/8, we have (omitting the constants)

∫ 1

−1
ϕpϕidη1

∫ 1

−1
ϕpqϕij (1− η2) dη2. (3.5)

The first integral in (3.5) is null if i 6= p; if we suppose i = p the second integral

has the form ∫ 1

−1
(1− η2)

2p+1J2p+1,0
q J2p+1,0

j dη2.

The above integral is not null if and only if j = q and the orthogonality in the

standard triangle T 2 of the basis proposed in (3.3) follows. A representation of the

basis functions up to degree 5 is given in Figure 3.2: it is evident how there is a

strong asymmetry and how evaluating a function on the boundary of the element

requires the evaluation of all modes. Moreover, this basis is suitable only for a

discontinuous approximation, since it is not possible to “glue” continuously modes
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Figure 3.3: Boundary adapted bases. Vertex modes are represented at the corners and
edge modes on the edges.

between diferent triangles.

3.2.2 Boundary adapted basis

The basis defined in (3.3) can be modified in order to build a C0 continuous ex-

pansion, while retaining some of the advantages provided by Jacobi polynomials.

The modes in the modified basis, presented e.g. in [SK95, Dub91], can be di-

vided into vertex modes (which are null on two vertex and take a unitary value on

the other), boundary modes (which are null on all edges except one) and interior

modes (which are null on all edges of the triangle). Given the reference triangle

T 2, if N is the polynomial degree of the basis, the vertex modes are

ψ1 = 1− ξ1 − ξ2,

ψ2 = ξ1,

ψ3 = ξ2,
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the boundary modes

ψm(i) = (1− ξ1 − ξ2) ξ1 (1− ξ2)
i−1 J1,1

i−1

(
2ξ1

1− ξ2

− 1

)
,

ψn(i) = (1− ξ1 − ξ2) ξ2J
1,1
i−1 (2ξ2 − 1) ,

ψo(i) = ξ1ξ2J
1,1
i−1 (2ξ2 − 1) , i = 1, . . . , N − 1

and the internal modes,

ψp(i,j) = (1− ξ1 − ξ2) ξ1ξ2 (1− ξ2)
i−1 J1,1

i−1

(
2ξ1

1− ξ2
− 1

)
J2i+1,1

j−1 (2ξ2 − 1)

1 ≤ i, j ≤ N − 1; i+ j ≤ N − 1,

where m, n, o and p are bijections that put the basis in the desired order. A

representation of the basis is shown in Figure 3.3. This basis can also be derived

from a tensor product and square–to–triangle argument: see [KS05] for the details.

3.2.3 Nodal basis

The idea to develop spectral methods based on a set of interpolation nodes and on

the Lagrange functions associated with them stems both from the finite element

theory and from the consideration that Gauss nodes are also Fekete nodes on the

square [BTW01]. Let f be a sufficiently smooth function in some space V defined

in the standard region T d and {ξi}N
i=1 be a set of point. Let an interpolation

operator IN : V → PN be defined such that

INf(ξi) = f(ξi) ∀i = 1, . . . , N.

Then, the Lebesgue constant ΛN = ||IN ||∞ is an indicator of the quality of the

interpolation, since

||f − INf ||∞ ≤ (1 + ΛN) min
p∈PN

||f − p||∞.

The choice of a good nodal points set for interpolation on simplices is a very

open problem, especially in d = 3 dimensions. See [GLMH09, Hes98, HT00,
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PR10, RSV12, War06]. A full description of nodal bases is beyond the scope of

this work; their advantage resides mainly in the possibility to build a continuous

approximation, even when dealing with meshes composed of elements of different

shape.

3.3 Quadrature rules

The standard approach to quadrature in the framework of the spectral element

methods on simplices is to map Gauss quadrature nodes from quadrilateral ele-

ments to triangular ones. The degree of exactness of these rules is thus preserved,

but none of the symmetries of the triangle are considered and the points are clut-

tered near one vertex. When implementing a continuous approximation, there

is therefore the need to use Gauss–Radau quadrature instead of Gauss–Lobatto

ones, in order to avoid to perform differentiations at the extremal node. Other

quadrature rules, which employ a smaller number of nodes, have therefore been

proposed, for instance in [WX03], [TWB07] and [Dun85]. Those rules take into

account the symmetries of the element, but are generally more heuristic and nodes

are not explicitly defined.

3.3.1 Gauss quadrature

On meshes composed by d-parallelepipeds, Gauss quadrature rules in two or three

dimensions are easily derivable from the one-dimensional case, by taking the tensor

product of the nodes defined as the n zeros of the Legendre polynomial J0,0
n . When

using meshes composed by simplicial elements, Gauss nodes can be mapped to the

reference element via the transformation (3.2). A representation of the quadrature

nodes required for a spectral element approximation of degree 5 is given in Figure

3.4a and their sub-optimal distribution is quite evident. The main drawback of

this approach resides in the fact that one has to use (N + 1)d, d = 2, 3, nodes for

a PN spectral approximation.
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(a) (b)

Figure 3.4: Gauss–Legendre (a) and Dunavant (b) interior quadrature nodes, for a P5

approximation (in both cases, edge nodes are Gauss–Legendre ones).

Figure 3.5: α and r for the Dunavant nodes
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N 1 2 3 4 5 6 7 8 9 10

Gauss 4 9 16 25 36 49 64 81 100 121
Dunavant 3 6 12 16 25 33 42 52 70 79

Table 3.1: Number of Dunavant and Gauss quadrature nodes needed for different poly-
nomial orders

3.3.2 Dunavant quadrature

Dunavant quadrature rules are derived in [Dun85] solving the moment equation

introduced in [LJ75]. Nodes and weights are tabulated up to a polynomial degree

of p = 20 and are subdivided into three groups: n0 residing at the center of

the equilateral triangle, n1 residing on one height of the triangle (with unknown

distance r1 from the center) and n2 for which one has to determine both the angle

α and the distance r2 from the center, as shown in Figure 3.5. In the last group,

only the area with 0 ≤ α ≤ π/3 is considered. The total number of nodes is thus

n = n0 +3n1 +6n2. An example of the distribution of Dunavant quadrature nodes

is shown, together with Gauss ones, in Figure 3.4b. Table 3.1 shows the different

number of quadrature nodes needed in both cases for various polynomial orders.

For N large, the difference is evident and using symmetric nodes can be of great

use in reducing the computational load.

27



Chapter 4

Time discretization

I
n the semi-discrete formulation (2.17) a time stepping method is required to

develop a fully discrete formulation of the method. In the sequel, the class of

Newmark time-stepping methods will be presented, with a special focus on the

Leap-Frog scheme, which is an explicit scheme widely used in the approximation

of wave propagation phenomena. Since this work is focused on the spatial spectral

approximation, other classes of methods will not be presented, but they are equally

suited for this kind of phenomena, and some of them provide a high order of con-

vergence. Those include the Runge-Kutta [QSS07] and the ADER-DG [PGA+13]

methods. In the following, we suppose Ω ∈ R
2, and we introduce the vectors U0

and V0 which contain the expansions coefficients of Πu0 and Πv0 respectively.

4.1 The Newmark method

We shall start from formulation (2.17) and subdivide the interval (0, T ] in ns

intervals of (usually constant) amplitude δt = T/ns. We introduce tn = nδt and

denote the numerical expansion coefficients at time tn by Un = U(tn). Finally, we

denote by D = A + I + S. The first step of the Newmark method takes the form

(
M + δt2βD

)
U1 =

(
M− δt2

(
1

2
− β

)
D
)

U0 − δtMV0

+ δt2
(
βF1 +

(
1

2
− β

)
F0
)
,

(4.1)
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and the subsequent steps are

(
M + δt2βD

)
Un+1 =

(
2M− δt2

(
1

2
− 2β + ζ

)
D
)

Un

−
(

M + δt2
(

1

2
+ β − ζ

))
Un−1

+ δt2
(
βFn+1 +

(
1

2
− 2β + ζ

)
Fn +

(
1

2
+ β − ζ

)
Fn−1

)
,

(4.2)

n ≥ 1. The parameters β ≥ 0 and ζ ≥ 1/2 have to be chosen. For the former,

the choice between β 6= 0 and β = 0 is quite relevant, since it determines the

implicit or explicit nature of the method, respectively. If β = 0, every time step

requires only the computation of two matrix–vector products, and the solution of

a block-diagonal linear system; in the implicit case (β 6= 0), the whole matrix in

the left hand side of (4.2) has to be inverted. The matrix is positive definite and

its symmetry depends on the choice of the interior penalty method.

The parameter ζ impacts on the order of the method: if ζ = 1/2 the method

is second order accurate in time; if ζ 6= 1/2 it is only first order accurate.

4.2 The Leap-Frog method

Setting ζ = 1/2 and β = 0 in (4.1)-(4.2), the resulting method is the Leap-Frog

method: the first step reads

MU1 =

(
M− δt2

2
D

)
U0 − δtMV0 +

δt2

2
F0, (4.3)

and the following ones

MUn+1 =
(
2M− δt2D

)
Un −MUn−1 + δt2Fn, n ≥ 1 (4.4)

If the basis used is (3.3), then the mass matrix is diagonal, and the method is

fully explicit, with the computational cost arising only from two matrix–vector

products. This product can be highly optimized, since the matrices have a sparse

block structure, with the location of the dense blocks that is known when the mesh

is loaded. The optimizations available for dense matrices can then be used on every
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block. Furthermore, every block-row results from the integration over an element:

if a mesh partitioning algorithm is applied, the algorithm is trivially parallel with

low computational cost. Even if the chosen basis is the boundary adapted one

described in Section 3.2.2, the mass matrix is block diagonal. Moreover, the map

FK defined in Chapter 5 is linear, every element differs only by the Jacobian of

the transformation, and the inverse can be computed only for a block. In any case,

the inversion of matrix M is computationally cheap.
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Implementation issues

T
he bases and the quadrature rules introduced so far are, in practice, defined

only on the reference element T 2 and the integration is carried out via a

mapping from the reference element to the element on the mesh. We will call such

a map by FK : T 2 → K. We now specify better what is meant in (2.1). Let

PN(T 2) = span{ξi
1ξ

j
2, 0 ≤ i+ j ≤ N},

where ξ1 and ξ2 are defined as in (3.1). Then,

PN(K) = {v = v̂ ◦ F−1
K : v̂ ∈ PN(T 2)}.

With the notation shown in Figure 5.1, the mapping is explicitly given by

FK(ξ1, ξ2) = x0(1− ξ1 − ξ2) + x1ξ1 + x2ξ2 (5.1)

and its Jacobian is therefore,

JF = (x1 − x0 | x2 − x0) . (5.2)
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Figure 5.1: Map FK : T 2 → K defined in (5.1).

5.1 Elemental operations

5.1.1 Differentiation

The evaluation of the stress–strain matrix involves the integration of the derivatives

of the basis functions, which are functions defined on the reference triangle. The

value of a basis function over an arbitrary triangle K is indeed given by ψ ◦ F−1 :

K → R (omitting the subscript K). Therefore

∂(ψ ◦ F−1)

∂ξ
= J−1

F

∂ψ

∂ξ
◦ F−1,

and

∫

K

(
J−1

F

∂ψi

∂ξ
◦ F−1

)
·
(
J−1

F

∂ψj

∂ξ
◦ F−1

)
=
∫

T 2

(
J−1

F

∂ψi

∂ξ

)
·
(
J−1

F

∂ψj

∂ξ

)
|JF|.

The evaluation of the scalar products and the definition of the quadrature rules is

thus done on the reference element, and mapped to the actual element via (5.2).

5.1.2 Backward and forward transform

In equation (1.11) the projection operator Π : V → Vh has been introduced.

In practice, when exploiting a modal basis, we have to determine, from a set of

function evaluations u0(ξi), the modal expansion coefficients ûi presented in (2.16).
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Analytically, in every element K we write

(u(0),ψℓ
j)K = (u0,ψ

ℓ
j)K =

∫

K
u0 ·ψℓ

j , j = 1, . . . , Nd, ℓ = 1, 2.

Next, by expanding u, indicating the vector of its coefficients by û and summing

over all elements we have

(
Mℓû

)
[j] =

∑

K

∫

K
u0 ·ψℓ

j, j = 1, . . . , Nd, ℓ = 1, 2 (5.3)

where M is defined as in Section 2.3, but neglecting the mass density ρ. Let then

wi and ξi be the weights and nodes associated to the quadrature rule employed in

the triangle. Equation (5.3) thus takes the form of a collocation projection:

(
Mℓû

)
[j] =

∑

K

∑

i

wiu0(ξi) ·ψℓ
j(ξi), j = 1, . . . , Nd, ℓ = 1, 2 (5.4)

We now introduce the matrices B and W such that

B[i, j] = ψi(ξj), (5.5)

W = diag(wi),

and define the vector of the nodal evaluations with the same name of the function,

that is u0[i] = u0(ξi). It is now possible to write (5.4) in its algebraic formulation,

i.e.,

Mû = BWu0,

so that modal expansion coefficients are given by

û = M−1BWu0. (5.6)

Note that M = BWBT . This operation is the discrete forward transform.

The inverse operation, i.e., defining the nodal values of a function from its

expansion coefficients, is important when there is the need to output the value

of the numerical scheme’s solution (therefore, in all practical applications). The

same applies in the framework of a convergence analysis, when one has to compute
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the norm of the difference between the exact and approximate solutions and the

values of the latter at the quadrature nodes are needed. Let us suppose we have

the Nt coefficients û: then the values at the quadrature points in the physical

space u[i] = u(ξi) can be computed as

u = B⊤û. (5.7)

This is the discrete backward transform.

5.2 Global operations

When applying a discontinuous method, there are almost no global operations

to be performed. The assembly of the global matrices is straightforward: every

sub-block has a one-to-one correspondence with an element or an edge. When the

matrices are assembled, looping over the elements equates to filling the matrices

row-wise. This is important when developing a SPMD parallel implementation: in

the case of explicit time stepping methods, therefore, a process has to store only

the rows it has extracted, multiplying them at every time step with the right hand

side vector. To reduce the communication cost a partitioning algorithm should be

applied on the mesh with the goal of reducing the frontier of the mesh partition

assigned to every process.

If the approximation considered is continuous (e.g. in the case of a nonconform-

ing DG method, where the nonconforming blocks are subdivided into conforming

meshes) then additional care must be put into the assembly of the triangles of the

mesh. In particular, the singular vertex of transformation (3.2) has to be treated

specifically, since only some combinations of adjacent triangles are allowed. See

[KS05] for the details.
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Analysis of grid dissipation, dispersion

and stability

D
issipation and dispersion errors play a key role in the quality of an ap-

proximation to the solution of wave propagation phenomena. Consider the

situation shown in Figure 6.1, where a wave traveling with speed α∗ is compared

with its numerical approximation, traveling at speed ah. We define the dispersion

error as

e =
αh

α∗
− 1,

that is, a measure of the error of the computed wave speed versus the exact one,

and the dissipation error as the maximum ratio between the amplitudes

||fh(x− aht)||∞/||f(x− α∗t)||∞.

In Section 6.1 the dissipation and dispersion properties of the semi-discrete al-

gebraic scheme (2.17) are investigated, following the techniques known as Von

Neumann analysis.
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Figure 6.1: Exact and computed traveling waves. The angles are in the x–t plane.

Figure 6.2: Elements numbering for dissipation and dispersion analysis
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6.1 Grid dissipation and dispersion for the prop-

agation of a plane wave

Consider the unbounded mesh shown in Figure 6.2, which can be seen as a rep-

etition of the pattern Ωc = Ω1 ∪ Ω2. In order to investigate the dissipative and

dispersive properties of the numerical schemes considered, we denote by Ω =
⋃

i Ωi

and choose in (1.11) the test functions

ψ̃i(x) =




ψi(x) x ∈ Ωc

0 otherwise.

Adopting the notation of Section 2.3 with C = I + S, the matrices have the

following structure

Mℓ =


Mℓ

1 0 0 0 0 0

0 Mℓ
2 0 0 0 0


 ,

Aℓ,m =


Aℓ,m

1 0 0 0 0 0

0 Aℓ,m
2 0 0 0 0


 ,

Cℓ,m =


Cℓ,m

1,1 Cℓ,m
1,2 Cℓ,m

1,3 Cℓ,m
1,4 Cℓ,m

1,5 Cℓ,m
1,6

Cℓ,m
2,1 Cℓ,m

2,2 Cℓ,m
2,3 Cℓ,m

2,4 Cℓ,m
2,5 Cℓ,m

2,6


 ,

Uℓ =
(
Uℓ

1 Uℓ
2 Uℓ

3 Uℓ
4 Uℓ

5 Uℓ
6

)⊤
.

(6.1)

Since in general every wave could be written as a superposition of plane waves, we

consider as a reference solution a traveling plane wave of unitary amplitude, i.e.,

U = ei(k·x−ωt), (6.2)

for a wave vector k = (kx, ky)⊤. Therefore, if we suppose that |e| = h for every

edge in Figure 6.2, we easily derive

U3 = e−i(hkx/2+hky)U1 = α13U1 U4 = e−ihkxU1 = α14U1,

U5 = e+i(hkx/2+hky)U2 = α25U2 U6 = e+ihkxU2 = α26U2.
(6.3)
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Note that we are assuming that Ωc is a pattern periodically reproducing: it is

therefore crucial, in this context, that the edges in Ω3 and Ω4 are numbered in the

same way as those in Ω1. The same is valid for Ω2 and the remaining triangles.

This issue is not present when dealing with quadrilateral spectral elements, and

stems from the fact that triangular spectral elements are not rotationally invariant.

Substituting relations (6.3) into the vector in (6.1) we are then able to obtain the

linear system

MÜ +
(
C̃ + A

)
U = 0,

where

C̃ℓ,m
K,J = Cℓ,m

K,J +
∑

I

αKIC
ℓ,m
K,I .

For the other two matrices M,A only the part referring to the first two triangles

is different from zero. Now, U has the form (6.2): taking the second derivative

with respect to time we obtain the generalized eigenvalue problem

(
C̃ + A

)
U = ΛMU, (6.4)

with Λ = ω2. Solving problem (6.4) with the matrices generated by the numerical

method, we obtain the generalized eigenvalues Λh = ω2
h, which correspond to waves

traveling with speed

ch =
hωh

2πδ
, (6.5)

where δ is the number of points per wavelength. The pressure and shear waves de-

scribed in Section 1.2.1 are plane waves traveling with speed cP and cS respectively:

between the speeds (6.5) we select those that are the best approximations to cP

and cS and we denote them by cP,h and cS,h. We then denote by eS = cS,h/cS − 1

and eP = cP,h/cP − 1 the approximation errors.

6.1.1 Semi-discrete dispersion error

In what follows, the errors computed will be presented at varying θ = atan(ky/kx),

and their relationship with the order of the approximation N , with the number

of quadrature nodes and with the choice of the interior penalty method (i.e. the

choice of ϑ = −1, 1, 0 in (2.6)). All simulations are performed with α = 2, λ = 2,
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µ = 1 and ρ = 1. This gives a ratio between the wave speeds cP/cS = 2. In Tables

6.1, 6.2, 6.3 and 6.4 the maximum of the errors maxθ |eS(θ)| and maxθ |eP (θ)| are

reported. It is evident how the choice between the basis (3.3) and the one in

Section 3.2.2 is not relevant, since the error can be imputed to the interior penalty

numerical method itself. The next results will be therefore reported only for a

single basis. Moreover, the symmetric interior penalty method performs uniformly

better the non-symmetric and incomplete variants. Tables 6.2 and 6.1 list the

results for the stability function (2.9), while Tables 6.4 and 6.3 list the analogous

ones obtained with the stability function (2.10), in this case only for the boundary

adapted basis (the results are the same for the Dubiner basis). The errors have

the same order of magnitude, but the error resulting from the discretization which

employs (2.10) is uniformly smaller than the one obtained with (2.9).

We see how the increase in the polynomial order N yields a dramatic decrease

in the dispersion error. Decreasing the sampling ratio δ (i.e., increasing the number

of quadrature nodes) can also impact on the error, but with less relevance. The

two errors behave qualitatively in the same way.

Figures 6.6 display the anisotropy curves of the numerical methods, i.e. the

behavior of the ratio between the computed speed and the exact one. IIPG results

are not reported, since they exhibit a behavior qualitatively and quantitatively

similar to NIPG results. It is more evident how the stability function which in-

cludes the whole tensor has a more uniform error: it tends to overestimate the

wave speed, but it doesn’t exhibit the wrong behavior that the other stabiliza-

tion shows. Note that, when approximating seismic waves in complex scenarios

and on unstructured meshes, the quality of the approximation of waves coming

from all angles is crucial. It is worth noting that the distortion of the elements in

the mesh plays a role in the generation of the error: Figure 6.3 is obtained with

the stability function given in (2.10) and the SIPG method, but on a mesh made

of right-angled triangles. Comparing it with Figures 6.6a and 6.6b we note the

impact of the distortion.

We now consider the evolution of the dispersion error with respect to the poly-

nomial order of the basis N , which is represented in Figure 6.4. It is evident how

both methods exhibit an exponential order of convergence, even though the NIPG

arrives at the threshold value ǫ ∼ 10−13 (where rounding errors become relevant)
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only around N = 9. The SIPG method, on the other hand, reaches ǫ around

N = 6. Numerical tests not reported here show that the outcome is invariant to

the choice of the stability function and of the basis among those presented.

Finally, in Figure 6.5 the dispersion error is analyzed varying the sampling ratio

δ. The approximation behaves in the same way as the approximation based on

quadrilateral elements, with an optimal order O(δ2N ) for the symmetric method,

and a sub-optimal order O(δN+1) for the non-symmetric one.

6.1.2 Semi-discrete dissipation error

From (6.2) we derive the dissipation errors

dS = eℑωS,ht, dP = eℑωP,ht, (6.6)

where ωS,h (resp. ωP,h) refers to the square root of the eigenvalue of (6.4) used

in the computation of cS,h (resp. cP,h). A non dissipative scheme is thus one for

which

ℑωP,h = ℑωS,h = 0,

and the closer to zero those values are, the less dissipative is the scheme. The

computed values of ℑωS,h and ℑωP,h are reported in Table 6.5. The values are near

machine precision and the scheme shows evidently almost irrelevant dissipation

errors, with both the basis functions proposed. The dissipation error is invariant

also to the choice of the stability function.
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boundary adapted basis legendre-dubiner basis
δ N SIPG NIPG IIPG SIPG NIPG IIPG
0.5 3 2.13e-03 6.86e-03 6.05e-03 2.13e-03 6.86e-03 6.05e-03
0.25 3 2.18e-05 4.46e-04 4.19e-04 2.18e-05 4.46e-04 4.19e-04
0.29 6 3.80e-11 1.36e-07 9.06e-08 3.81e-11 1.36e-07 9.06e-08

Table 6.1: Maximum error eS over all θ, for the stability function (2.9).

boundary adapted basis legendre-dubiner basis
δ N SIPG NIPG IIPG SIPG NIPG IIPG
0.5 3 4.40e-03 1.16e-02 1.28e-02 4.40e-03 1.16e-02 1.27e-02
0.25 3 2.09e-05 8.24e-04 9.32e-04 2.09e-05 8.24e-04 9.32e-04
0.29 6 2.20e-11 2.68e-07 3.13e-07 2.20e-11 2.68e-07 3.13e-07

Table 6.2: Maximum error eP over all θ, for the stability function (2.9).

boundary adapted basis
δ N SIPG NIPG IIPG
0.5 3 1.21e-03 4.92e-03 3.49e-03
0.25 3 2.36e-05 2.90e-04 1.94e-04
0.29 6 2.01e-11 8.44e-08 4.85e-08

Table 6.3: Maximum error eS over all θ, for the stability function (2.10).

boundary adapted basis
δ N SIPG NIPG IIPG
0.5 3 5.61e-04 6.09e-03 4.26e-03
0.25 3 1.41e-05 4.07e-04 2.87e-04
0.29 6 1.17e-11 1.22e-07 8.18e-08

Table 6.4: Maximum error eP over all θ, for the stability function (2.10).
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Figure 6.3: Dispersion for a mesh made of right-angled triangles. S-waves are considered
on the left, P-waves on the right. Deviations from 1 are magnified by a factor of 100.
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Figure 6.4: Dispersion error for the semi discrete problem, with respect to the polynomial
order N for the (a) SIPG and (b) NIPG methods (δ = 0.2, θ = π/4).
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Figure 6.5: Grid dispersion versus δ, N = 3, for P–waves (a) and S–waves (b).
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(a) Anisotropy curves cS,h/cs for the SIPG (left) and NIPG (right) methods, with sta-
bility function (2.10).
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(b) Anisotropy curves cP,h/cP for the SIPG (left) and NIPG (right) methods, with
stability function (2.10).
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(c) Anisotropy curves cS,h/cS for the SIPG (left) and NIPG (right) methods, with sta-
bility function (2.9).
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(d) Anisotropy curves cP,h/cP for the SIPG (left) and NIPG (right) methods, with
stability function (2.9).

Figure 6.6: Anisotropy curves for N = 3 (-), 4 (- -) and α = 2. Deviations from 1
magnified by a factor of 100.
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boundary adapted basis legendre-dubiner basis
N ℑωS,h ℑωP,h ℑωS,h ℑωP,h

2 -9.6715e-16 -4.2935e-17 -2.5416e-15 -1.5458e-15
3 2.0958e-15 4.7663e-16 2.3934e-15 8.9936e-15
4 -1.8285e-15 2.6355e-16 -1.0875e-14 -1.379e-14
5 -1.1778e-14 5.7042e-16 1.1702e-14 4.6197e-14
6 1.3079e-14 2.1062e-15 4.244e-14 -1.2404e-14
7 1.4445e-14 1.1461e-15 -1.1464e-13 -1.4941e-14
8 9.6095e-15 3.3993e-15 2.0431e-13 1.6433e-13
9 -1.5226e-14 4.9139e-15 -9.1985e-14 5.3414e-14

Table 6.5: Dissipation error for the semi-discrete formulation, δ = 0.2, stability function
(2.9), SIPG method.

6.1.3 Fully discrete dispersion error

To analyze the dispersion error for the fully discrete approximation, we start from

equation (4.4), perform the same operations needed to obtain (6.4) and substitute

the plane wave displacement (6.2). We thus obtain

Mδt−2(e−iω̃htn+1 − 2e−iω̃htn

+ e−iω̃htn−1

)U0 =
(
C̃ + A

)
e−iω̃tn

U0,

with U0 = ek·x. This means

Mδt−2(e−iω̃hδt − 2 + eiω̃hδt)U =
(
C̃ + A

)
U.

Noting that

e−iω̃hδt − 2 + eiω̃hδt = 4 sin

(
ω̃hδt

2

)2

,

we obtain the same eigenvalue problem as in (6.4), this time with

√
Λ =

2

δt
sin

(
ω̃hδt

2

)
.

The computed pulsation can be then obtained by

ω̃h =
2

δt
sin−1

(
δt

2

√
Λ

)
. (6.7)
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Figure 6.7: Dispersion error for the fully discrete formulation for S-waves (left) and P-
waves (right). The dashed lines are the semi-discrete errors, the continuous ones are the
fully discrete errors, for δt = 10−2,−3,−4, δ = 0.2, θ = π/2.

For a sufficiently small δt, the right hand side in (6.7) can be expanded as a Taylor

series, thus giving

ω̃h ∼
√

Λ +O
(
δt2
)
.

We then expect the semi-discrete error to be dominant until it reaches a thresh-

old ∼ Cδt2 and the error due to the time discretization to be dominant afterwards.

We note the fully discrete errors as

ẽS =
ω̃S,h

ωS
− 1 ẽP =

ω̃P,h

ωP
− 1.

The numerical results are presented in Figure 6.7 and confirm the expected be-

haviour.

6.2 Stability and CFL condition

The Leap-Frog time stepping method described in Section 4.2 is an explicit method:

this means that the time step δt is restricted by the Courant-Friedrichs-Lewy con-

dition. Since compressional waves move faster than the other waves, we conclude

that the relation

δt ≤ CCFL
δx

cP
, (6.8)
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limits the time step, if δx represent the smallest distance between nodes. The

constant CCFL has to be determined. Following [DBS10] and the references therein,

we consider the same setting as in Figure 6.2, though this time we take into account

the effect of the mesh size h. Due to the definition of the matrices considered

(i.e. considering how they scale with respect to the mesh size), we rewrite the

generalized eigenvalue problem as

(
C̃ + A

)
U = Λ′MU,

with

Λ′ =

(
h

δt

)2

sin

(
ωhδt

2

)2

,

where the factor 4 disappears since the computations take place on elements of

edge length 2. We can then derive an estimate for the stability parameter by

setting q := cP δt/h, since

q ≤ cP√
Λ′

= CCFL. (6.9)

This relation must hold for any eigenvalue; moreover, the eigenvalues depend on

the angle of incidence of the plane wave, i.e. Λ′
j = Λ′

j(θ), ∀j. Equation (6.9) must

therefore hold for Λ′
M = maxj,θ Λ′

j(θ): by numerically estimating this quantity,

we can investigate the properties of the approximation. Since an analysis of the

eigenvalues of the bilinear form [AH11] shows that Λ . N4/h2 and since Λ′ = h2Λ,

we expect q to scale as O(N−2). This is confirmed by the results presented in

Figure 6.8, where q is plotted against the degree of the approximation N , and by

the orders shown in Table 6.6, with q ∼ N−2 around N = 7. In Table 6.6 the

computed values of q are explicitly listed. The stability function (2.9) provides less

restrictive bounds than (2.10), though this comes at the price of higher dispersion,

as shown in Section 6.1.1. The NIPG method is more restrictive than the SIPG

one, without any gain in the accuracy in this case. Those bounds appear globally

more restrictive than those obtained with spectral methods on meshes made of

tensor-product elements [AMQR12]. Since the minimum distance between Gauss

quadrature nodes δx decreases asymptotically as O(N−2
q ) where Nq is the number
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Figure 6.8: Evolution of the parameter q defined in (6.9) with respect to the degree N ,
for both the stability functions considered, compared to O(N−2).

of quadrature nodes, we also conclude that the modified stability parameter

q′ = cP
δt

δx
,

reaches a constant value. Finally, it is worth noting that those values constitute

only a necessary bound, though it has been found to be sufficient in practice

[DBS10].

SIPG NIPG
Stability (2.9) Stability (2.10) Stability (2.9) Stability (2.10)

N q order q order q order q order
2 0.16 0.13 0.16 0.11
3 0.11 -1.1 0.068 -1.6 0.095 -1.2 0.058 -1.5
4 0.071 -1.4 0.042 -1.7 0.062 -1.5 0.037 -1.6
5 0.05 -1.5 0.028 -1.7 0.044 -1.6 0.025 -1.7
6 0.038 -1.5 0.02 -1.8 0.033 -1.6 0.018 -1.8
7 0.029 -1.8 0.016 -1.8 0.025 -1.7 0.014 -1.6
8 0.023 -1.7 0.012 -1.9 0.02 -1.8 0.011 -1.9
9 0.018 -1.8 0.0098 -1.8 0.016 -1.7 0.0091 -1.6

Table 6.6: Computed values of q, defined in (6.9).
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Convergence analysis

I
n this chapter we analyze the convergence properties of the proposed method in

the setting of a test case with a known and smooth exact solution. We therefore

consider the domain Ω = (−1/2, 1/2)× (0, 1) and we set f such that

uex = cos(t)


sin(πx) sin(πy)

cos(πx) cos(πy)


 , (7.1)

is the exact solution to problem (1.1). We will use the discontinuous norm || · ||DG

on Vh defined in (2.11) and the time dependent norms

||u||L2(0,T ;V ) =

(∫ T

0
||u(t)||2V dt

) 1

2

,

where V can be V = L2(Ω) or V = Vh and ||·||Vh
= ||·||DG. In practice, those norms

are computed discretely and normalized over the time step. All computations are

performed with the stability function (2.10), due to its best dispersion properties.

7.1 Convergence with respect to the time step

In this section the error resulting from the time integration is analyzed and com-

pared with the theoretical results. Specifically, the errors introduced by Leap-Frog

and implicit Newmark methods are considered and their numerical order of con-
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δt 2.5e-4 5e-4 1e-3 2e-3 4e-3

||uex − uh||L2(0,T ;L2(Ω)) 4.45e-10 1.68e-09 6.67e-09 2.67e-08 1.07e-07
Rate 1.9161 1.9911 1.9998 2.0007

Table 7.1: Computed errors for the Leap-Frog scheme.

δt 0.02 0.04 0.08 0.16

||uex − uh||L2(0,T ;L2(Ω)) 5.36e-06 2.15e-05 8.69e-05 6.88e-04
Rate 2.0066 2.0122 2.9857

Table 7.2: Computed errors for the implicit Newmark scheme.

vergence is computed at a high degree of spatial approximation, to rule out any

spatial discretization errors. It is also shown how the time step δt for the implicit

method is not bounded by the CFL condition (6.8).

7.1.1 Leap-frog

The error ||uex−uh||L2(0,T ;L2(Ω)) is represented in Figure 7.1, for the mesh composed

of 4 triangles pictured in Figure 7.2a. The approximation employs the SIPG

method, N = 10, T = 2. The magnitude of the error and the convergence rate are

listed in Table 7.1: the theoretical results are confirmed and the scheme exhibits

extremely low errors. Note that the time steps δt are all below the condition

presented in Section 6.2, since using the computed values of the parameter q we

would get δt ≤ 5 · 10−3.

7.1.2 Implicit Newmark

The implicit Newmark method described in Section 4.1 is implemented on the finer

grid, shown in Figure 7.2b. The error is shown in Figure 7.3, for the parameters

ζ = 1/2 and β = 1/4. The time step is larger than the previous case, and the

CFL condition is not respected: the scheme shown a O(δt2) convergence as with

the leap-frog, while performing only a small fraction of the steps. Nonetheless,

explicit methods are more widely used in the approximation of wave propagation

phenomena, since implicit methods are unsuited to the analysis of large problems

because of their computational cost.
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Figure 7.1: Error for the Leap-Frog time approximation and mesh.
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Figure 7.2: Meshes for the Leap-Frog (left) and implicit Newmark analysis (right)
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Figure 7.3: Error for the implicit Newmark scheme.

7.2 Convergence with respect to the polynomial

order

In this section the relationship between the error eh = uh − uex is measured in

a suitable norm, and the degree of the basis N is considered. All the results

presented use the Leap-Frog time stepping scheme, since the time step δt has to

be low enough that the time discretization error is negligible.

In Figure 7.4 we plot the norms L2 (0, T ;L2(Ω)) and L2 (0, T ;Vh) of the error

versus the polynomial degree, for an approximation with T = 2, δt = 2.5 · 10−4

and the mesh in Figure 7.2a, which is also tabulated in Table 7.3a. The || · ||Vh

error is two orders of magnitude bigger than the L2 error, but the behavior over

N is qualitatively the same. In particular, it seems that there is a strong differ-

ence between even and odd polynomial orders: while the order of convergence is

exponential stepping from a degree 2N − 1 to 2N , while it is almost null from

2N to 2N + 1. The difference between even and odd orders sometimes appears

in the framework of interior penalty and, more generally, discontinuous methods,

and these results show that spectral elements on simplicial elements can feature

this behavior. The investigation of the causes of this behavior is beyond the scope

of this work. It is interesting though to consider the error presented in Figure 7.5,

which is computed with T = 1 and a time step of δt = 5 · 10−4, this time on the

52



CHAPTER 7. CONVERGENCE ANALYSIS

2 3 4 5 6 7 8 9

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

N

Error over polynomial degree; δ t = 2.5e-4, Nquad = 4, T=2

 

 
|| ⋅ ||

L
2
(T, L

2
)

|| ⋅ ||
L

2
(T, DG)

Figure 7.4: Error against degree N , for the mesh made of 4 triangles, N = 2, . . . , 9,
δt = 2.5 · 10−4.

mesh shown in Figure 7.2b. In this case the error slope is smoother than in the

previous case and there is no apparent difference between the even and odd orders.

Note that triangles in the mesh 7.2a are more deformed than those in 7.2b, and

this could constitute a cause for the loss in accuracy.
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N ||eh||L2(0,T ;L2(Ω) ||eh||L2(0,T ;Vh)

2 9.75e-03 2.85e-01
3 9.36e-03 1.51e-01
4 3.25e-04 9.57e-03
5 2.33e-04 5.30e-03
6 5.87e-06 1.49e-04
7 3.21e-06 1.05e-04
8 3.15e-08 1.36e-06
9 2.58e-08 9.25e-07

(a) Mesh of Figure 7.2a.

N ||eh||L2(0,T ;L2(Ω) ||eh||L2(0,T ;Vh)

2 0.0039 0.15
3 0.00037 0.019
4 2.4e-05 0.0016
5 1.9e-06 0.00013
6 9.3e-08 8.9e-06
7 5.1e-09 5.5e-07
8 9.7e-10 6.4e-08
9 9.6e-10 6.8e-08

(b) Mesh of Figure 7.2b.

Table 7.3: Errors for different polynomial orders and for the two meshes considered.
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Figure 7.5: Errors against degree N , for a mesh composed of 28 triangles, N = 2, . . . , 9,
δt = 5 · 10−4.
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Test cases

I
n this chapter the discontinuous approximation employing simplicial spectral

elements is applied to classical benchmarks of seismic wave propagation prob-

lems. The first problem is known as Lamb’s [Lam04] problem and its analysis

dates back to the beginning of the XIX century. It involves the propagation of

the seismic waves in an elastic half plane, with a point source located near the

superior edge. The second test case studies the propagation of a surface wave and

its impact on two edges, one of an homogeneous material and the other made of

two different materials. The third benchmark involves a plane wave impacting on

a cylinder enclosed in a different material. In those last two cases the flexibility

given by triangular elements and by unstructured grids is of great relevance. The

settings presented are widely similar to those listed in [MVSS06]; we used the

Legendre-Dubiner basis.

8.1 Elastic half space with a pointwise force

In this test we consider a domain similar to the one represented in Figure 1.1,

i.e., an ideally semi-infinite plane with null stress conditions imposed on the edge.

In practice, the simulation is carried out on the domain in Figure 8.1, which is

a rectangle of width 4000 meters and height 2000 meters, with a point source

located at the point pf = (1500, 1950), i.e., 50 meters below the free surface, and

two receivers r1 and r2 located respectively at the points r1 = (2200, 2000) and
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Figure 8.1: The domain for the Lamb’s problem simulation.

Figure 8.2: Ricker wavelet.

r2 = (2700, 2000). Null Neumann boundary conditions are imposed on every edge

of the domain. The source is spatially pointwise and modulated in time as a Ricker

wavelet

f =
(
1− 2(fmπ(t− t0))2

)
e−(fmπ)2(t−t0)2

δ(x − pf ) (8.1)

with a frequency fm to be specified, a time delay t0 and where δ(·) is the Dirac

delta. The time evolution of the function can be seen in Figure 8.2. The material

considered in this simulation has the properties

cP 3200 m/s

cS 1847.5 m/s

ρ 2000 kg/m3.

Figure 8.3 provides a close up of the physical phenomenon. Moments after the

source activation, there is a P-wave traveling towards the bottom of the image,

followed by an S-wave which is traveling almost horizontally. At the edge of the
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Figure 8.3: Close up of the waves propagating from the source, for a Ricker wavelet
pointing upwards.

domain, the Rayleigh wave is clearly visible, and the displacement vectors have

the same form as in Figure 1.2. In Figure 8.4 we show the displacements obtained

from an approximation on the unstructured mesh in Figure 8.5, where the area

around the surface is described more accurately. The main event recorded by the

receiver is the transit of the surface wave. This simulation employs polynomials

of order 4, a time step δt = 2.5 · 10−4, and the point source is a Ricker wavelet

directed downwards with a frequency fm = 10 Hz and a delay t0 = 0.1. We are

then able to recover the structure of the surface wave; it is interesting to compare

the computed wave speeds with the analytic ones. The temporal distance ∆t

between the peaks at the two receivers in Figure 8.4b (computed at the available

time steps) is ∆t = 0.294. Considering the distance between the receivers, we get

an empirical speed

ch,Surf ≃ 1700 m/s,

while equation (1.9) gives a speed

cSurf ≃ 1698.6 m/s.
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Figure 8.4: Time plot of the horizontal (left) and vertical (right) displacement at receivers
r1 (- -) and r2 (–).

Figure 8.5: Unstructured mesh for the Lamb’s problem
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Material cP [m/s] cS [m/s] ρ [kg/m3]
I 2500 1250 2000
II 4000 2000 2200

Table 8.1: Properties of the materials for the elastic wedge problem

The error is, therefore, below the temporal resolution of the approximation.

8.2 Propagation of a surface wave in a multi–

material domain

In this case, known also as the “elastic wedge problem”, we consider a square do-

main, which is divided by its diagonal into two different materials, with properties

listed in Table 8.1. Specifically, material I occupies the bottom-right side of the

square, while material II occupies the top-left one. We set a Rayleigh wave (de-

rived as in Section 1.2.2) as the initial solution and we record what happens at

the corners of the domain. Since material II has higher wave speeds, the mesh is

finer in that part of the domain; the set up of the receivers and an example of the

mesh are shown in Figure 8.6. Null Neumann boundary conditions are imposed

on ∂Ω. The recorded seismograms for an approximation with a polynomial order

of 8 and time step δt = 5 · 10−5 are reported in Figures 8.7 and 8.8. In the homo-

geneous corner (Figure 8.8) the effect of the transmitted Rayleigh wave traveling

downwards and of the reflected wave traveling backwards is clearly visible; the

conversion to P-wave happening at that corner doesn’t leave a clear track on the

seismograms. In the heterogeneous corner, as expected, the reflected wave is evi-

dent, while the transmitted one if of definitely inferior amplitude, as is expected.

A closer inspection of the computed fields shows that the phenomena described in

[MVSS06] are indeed resolved by the method.
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Figure 8.6: Domain, mesh and receivers for the elastic wedge problem.
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Figure 8.7: Seismograms at the top left (homogeneous) corner: horizontal (above) and
vertical (below) components.
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Figure 8.8: Seismograms at the top right (heterogeneous) corner: horizontal (above) and
vertical (below) components.

8.3 Plane wave impacting on a cylinder enclosed

in a homogenous space

In this case a plane wave impacts on a circular inclusion buried in an homogeneous

space, as pictured in Figure 8.10. Its purpose is to test the behavior of the numer-

ical method when confronted with sharp changes in the material properties and

the scattering of the plane wave which occurs. The domain is a 2000 m× 2000 m

square, and the circle is located at the center and has a diameter of 500 m. The

properties of the two materials are listed in Table 8.2, with material I inside the

cylinder and material II outside of it. The plane wave is imposed as an initial

conditions and travels downwards starting from 3/4 of the domain height. It is

modulated in time with a 8 Hz central frequency Ricker wavelet and has a P polar-

ization. Periodic boundary conditions are imposed on the left and right boundaries

of the domain, in order to correctly model an ideally infinite plane wave.

All the relevant phenomena happening in this case can be seen in Figure 8.9,

which represents the displacement field at time t = 0.232. Specifically, we see the

P-wave reflected from the top of the circle traveling upwards and an S-wave, which
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Material cP [m/s] cS [m/s] ρ [kg/m3]
I 3000 1225 2
II 2000 817 1

Table 8.2: Properties of the materials for the enclosed cylinder problem.

Figure 8.9: Zoom on the enclosed cylinder during the transit of the plane wave.

results from a P to S conversion on the lateral parts of the circle and is partially

detached and traveling horizontally. Furthermore, an interface wave is present at

the points of contact between the original plane P-wave and the inclusion. Finally,

we note how the transmitted waves inside the cylinder are traveling faster than

their counterparts in the outside material.
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Figure 8.10: Domain for the enclosed cylinder case.
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Conclusions and perspectives

S
tarting from the variational formulation of the elastodynamics equation, we

have built a Discontinuous Galerkin spectral element method on meshes made

of simplex elements. We have tested its dissipation and dispersion errors and its

stability properties in the framework of the Von Neumann analysis. Then, we have

tested the method on 2-dimensional benchmark test cases to show its behavior in

practical scenarios.

From the numerical results obtained, we conclude that the method presented

shows general approximation properties on par with those of the classical discon-

tinuous spectral element method while benefiting from the geometrical flexibility

given by simplicial meshes. Specifically, it has optimal dispersion properties and

shows small dissipation, and the symmetric interior penalty method reaches a

threshold for the error with moderate polynomial orders. The bounds on the CFL

condition are slightly more restrictive than those obtained with the SEM on tensor

product grids; other time stepping methods should be investigated to verify if this

is a consistent property.

The choice of the spectral basis is a delicate issue: the orthonormal basis

gives the benefit of a fully explicit method if an explicit time stepping method is

considered, while on the other hand the computational cost of a fully discontinuous

approximation gets high if a large number of elements is needed. The boundary

adapted basis would allow for a continuous approximation in the sub-domains of

Ω, but this implies the need to solve a linear system with a block-diagonal mass

matrix at every time step. It is anyway worth noting that the boundary adapted
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basis shows stability, dispersion and dissipation properties of the same quality of

both the Legendre-Dubiner basis and the Legendre basis on squares. A comparison

of the computational costs of the different approaches should be carried out more

extensively.

Moreover, the spectral convergence of the method with respect to the polyno-

mial order, for smooth solutions, is a hint to the fact that the spectral basis on

the triangle can have the same approximation properties as the Legendre basis on

squares, in the same norms as those considered for the errors.

In any case, a great advantage of the discontinuous non-conforming approach

is that it is possible to combine elements of different shapes. It would be therefore

interesting to develop a scheme where simplicial elements are employed where the

accuracy in the approximation of the domain geometry is important, with tensor

product elements elsewhere.

Those results suggest that the development of a three dimensional version of

the method would be fruitful, and would provide an interesting tool for the analysis

of seismic events in complex geometries. To summarize, a future development of

this work can be the construction of a three dimensional scheme, with a wider

range of time discretization techniques and with the possibility to use both cubes

and tetrahedra.
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The C++ library

A
longside with the analytical and numerical study presented, a C++ library

implementing the SIPG and Leap-Frog methods has been developed. In this

chapter, we will describe its structure and show its usage in two of the test cases

presented in Chapter 8. The code is available at https://github.com/carlomr/

tspeed.git.

The library is designed to be extended by the addition of new bases, quadrature

rules and time stepping methods. Furthermore its usage in practical applications

has been made as simple as possible. The code may be divided into three layers:

1. the implementation of the geometrical entities, such as

(a) points, edges and triangles,

(b) the mesh;

2. the approximation space described in Chapter 3, i.e.,

(a) shape functions,

(b) quadrature rules,

(c) the finite-dimensional space Vh;

3. the approximation of the equation, including

(a) the matrices for the SIPG spatial approximation introduced in Section

2.3,
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(b) the Leap-Frog time stepping method discussed in Section 4.2.

In the sequel those three parts will be presented in detail.

A.1 Geometrical entities

In this section we will present the classes Point, Edge and Triangle and the class

Mesh. The first three classes are all inheriting some properties, such as the index

and boundary condition, from a base class Entity, The Point class is a simple

class implementing a point in a two dimensional space, with some methods to

obtain the representing the point in the form of an Eigen::Vector2d, in order

to implement algebraic operations on the point. The Edge class is equally simple,

and consists mainly of two points constituting the extremes of the edge and of

geometrical manipulation methods. It is worth mentioning that an object of the

Edge class exposes the public function length() which is useful in computing

(2.8). The Triangle class implements a mesh triangle: we show some of its

relevant public functions in Listing A.1. Specifically, the map (5.1) and its inverse

are implemented in the function map and invmap. The Jacobian (5.2) is also

implemented, along with its inverse and determinant, in the Jac, invJac and

detJ methods respectively. The class also encloses some connectivity information

via the neigh and neighedge functions, which will list the neighbors of the triangle

on every edge and the number of every edge in the neighboring triangle once the

mesh is assembled.

Listing A.1: Important functions of the Triangle class

class Triangle : public Entity

{

public:

//...

Eigen::Matrix2d Jac()const;

Eigen::Matrix2d invJac()const;

double detJ()const;

Point map(Point const & p)const;

Point invmap(Point const & p)const;

int const & neigh(int i)const;
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QuadratureRule<N>

Dunavant<N> Gauss<N>

ShapeFunction<N>

Dubiner<N>BoundaryAdapted<N>

FESpace<N,Q,S>

Figure A.1: Classes for the implementation of the approximation space

bool intriangle(const Point & p)const;

//...

}

The Mesh class reads a mesh generated with Gmsh [GR09], taking the file name

as input, and builds a vector of triangles, setting their connectivity and boundary

properties. An object of the Mesh class exposes the elements via the elements()

method: since many operation involve cycling over all triangles, the C++11 syntax

Mesh Th("meshname.msh")

for(auto ie: Th.elements())

{

//...

}

is used widely throughout the code.

A.2 Approximation space

This part of the code deals with the construction of a spectral element approxima-

tion space on the triangles (defined previously). The classes involved in this layer

and their hierarchy are shown in Figure A.1.

A.2.1 Shape functions

The base class ShapeFunction and its derived classes take the degree N of the

polynomial approximation PN in (2.1) as a template parameter. They contain two

vectors of std::function as private members, in which the basis functions and

their gradients are stored. In practice, the functions are stored as λ-functions as
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is shown in Listing A.2, but the use of functors should also be possible. Using

this method, the functions may be chosen in a way which is not yet linked to the

choice of the quadrature points.

Listing A.2: Dubiner shape functions constructor

Eigen::ArrayXd jacobi_polynomial(int N, int alpha, int beta, ←֓
Eigen::ArrayXd const & z);

template<int N>

Dubiner<N>::Dubiner()

{

//...

for(int j = 0; j<=N; ++j) {

for(int i = 0; i<=N-j; ++i) {

double cij=std::sqrt((2.*i +1)*2.*(i+j+1)/pow(4.,i));

this->M_phi.push_back([=](Arr const & csi,Arr const ←֓
&eta)->Arr{return cij*(pow(2.,i))*(pow((1-eta),i)) ←֓
*jacobi_polynomial(i,0,0,2*csi/(1-eta)-1) ←֓
*jacobi_polynomial(j,2*i+1,0,2*eta-1);});

//...

}}}

The basis functions implemented are the Dubiner basis (3.3) and the boundary

adapted basis described in Section 3.2.2. All the shape function classes expose

public methods which permit their evaluation at an array of points. For the

details, see the Doxygen documentation generated by make doc and available in

the folder doc/.

A.2.2 Quadrature rules

The QuadratureRule base class stores the edge and internal quadrature nodes,

along with the associated quadrature weights. The edge nodes are implemented

directly in the base class, since the optimal edge nodes are the Gauss-Legendre

ones. This also permits a easier future implementation of a p-adaptable scheme.

All classes take the order N of the quadrature rule as a template parameter. The

implementation of the internal nodes is delegated to the the derived classes. In the

Gauss class the nodes are Gauss-Legendre nodes mapped from the reference square

to the reference triangle, as shown in (3.2). The Dunavant class contains the nodes
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introduced in Section 3.3.2 and uses the functions provided in [Bur13], where the

results from [Dun85] are tabulated. Note that, if N is the order of the polynomial

space PN , the method requires a Gauss quadrature rule of order ≥ N + 1 and a

Dunavant quadrature rule of order ≥ 2N . It is furthermore strongly advised to

use Dunavant rules of even order, since some of the odd order rules have negative

weights.

The classes expose a public interface which allows the extraction of the nodes

and weights desired. The methods are listed in detail in the Doxygen documenta-

tion.

A.2.3 Finite dimensional space

The class FESpace brings together the chosen shape basis and quadrature rule. Its

template parameters are, indeed, the order of the approximation N, the quadrature

rule Q and the shape function S. The default is to use the Gauss quadrature of

order N+1 and the Dubiner basis.

Listing A.3: Some methods of the public interface of the FESpace class

template<int N, typename Q = Gauss<N+1>, typename S = Dubiner<N>>

class FESpace

{

public:

//...

Eigen::Vector2d grad(unsigned int k, unsigned int i)const;

Eigen::VectorXd b_edge(unsigned int k, unsigned int iedg)const;

Eigen::Vector2d g_edge(unsigned int k, unsigned int i, unsigned short ←֓
int edg)const;

typedef std::function<std::array<double,2>(double,double)> ListFun;

Eigen::VectorXd transform(ListFun const & fun)const;

Eigen::VectorXd loc_rhs(Geo::Triangle const & ie, ListFun const & ←֓
fun)const;

void points_out(std::string const &fname)const;

void field_out(std::string const &fname, Eigen::VectorXd const &uh, ←֓
unsigned int step)const;

Eigen::MatrixXd base_mass()const

Eigen::MatrixXd base_invmass()const

//...
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}

The main task of the FESpace class is to compute the values of the shape

functions at the quadrature nodes (see the matrix B in (5.5)) and to provide

an interface between the physical function u(x, y) and its expansion coefficients

û introduced in (5.3). A subset of the public methods in shown in Listing A.3,

while a description of the full public interface may be found in the documentation.

The first three listed functions return the values of the basis functions and of

their gradients at the quadrature nodes, the other ones deal with more functional

aspects. Specifically, transform implements the forward transform (5.6), while

field_out implements the transform into the physical space (5.7) and writes the

values of the field at the points output by points_out. The method loc_rhs is

the L2(ie) projection of a function f , and it returns the vector r as output, where

r[i] =
∫

ie

f ·ψi.

The methods base_mass and base_invmass return the plain mass matrix over the

reference element

M̃[i, j] =
∫

T 2

ψjψi

and its inverse M̃−1, respectively. This is extremely useful when dealing with non

orthogonal bases, since every sub-block of the mass and inverse mass matrix may

be computed by

MK = ρK |JFK
|M̃

M−1
K =

(
ρK |JFK

|M̃
)−1

.

A.3 Approximation of the equation

This part of the library deals with the implementation of the SIPG and Leap-

Frog methods for the elastodynamic equation. First, we will introduce the part

regarding the algebraic structure and the spatial approximation of the equation.

Next, the implementation of the time stepping method is considered.
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BaseMat

MyMat MyMatBlockDiag

Figure A.2: Inheritance for the monodimensional matrices

A.3.1 Algebraic structure and semi-discrete approxima-

tion

In this section we will describe the details of the implementation of the matrices

introduced in Section 2.3 and we will adopt the same notation used in that section.

We will furthermore call monodimensional matrix any of the matrices Sij ,Aij, Iij,

for i, j = 1, 2 and Mi, for i = 1, 2.

Matrix structure

Figure A.2 shows the inheritance structure for the classes involved in the implemen-

tation of the monodimensional matrices. Since those matrices have a block-sparse

structure which may be determined from the mesh connectivity, the implementa-

tion exploits this property. The class MyMat uses the compressed sparse row (CSR)

format, where instead of the single values, the full blocks are stored. This is well

suited for the description of the monodimensional blocks of the matrices S and

I. The block at row J and column K thus corresponds to Sℓm
JK or Iℓm

JK . Noting

that every row can contain a maximum of 4 blocks (the diagonal one and the ones

referring to the three neighbors), we see how every element is accessed in constant

time. This implementation has many advantages, since the matrix structures are

never modified and every local block can be computed and copied into the monodi-

mensional matrices once, thus reducing the access to the sparse matrix. The class

MyMatBlockDiag is the class for the monodimensional blocks of M and A. It fol-

lows the same idea as MyMat, but, since those matrices are block-diagonal, there is

no need to use a CSR format, and only the index K is used to point to the block

Mℓ
K or Aℓm

K . see how classes which handle the implementation of the full matrices
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are the template classes MyMatMultiDim<T> and MyMatMultiDimBlockDiag<T>.

Those classes are mainly a container of the monodimensional blocks of the matri-

ces considered. Specifically, the former contains the 4 blocks Cℓm, for ℓ,m = 1, 2.

They are therefore used for S and I if T=MyMat and for A if T=MyMatBlockDiag.

The class MyMatMultiDimBlockDiag<T>, with T=MyMatBlockDiag, is, on the other

hand, designed for M. Those classes implement some algebraic operation needed

for the implementation of the time advancement method and for the access to their

elements: those are detailed in the documentation.

Semi-discrete approximation

The computation of the matrices deriving from the semi-discrete approximation is

(2.17) is done in the Matrices class. Every matrix is defined as an object of the

suitable class among those defined in the previous section and is stored as a private

member in the class. The core cycle of the constructor is shown in Listing A.4:

every element is considered, and the local blocks of the matrices are computed and

stored in the global matrices. In practice, this class is not constructed directly: it

will instead be called by the TimeAdvance class, which is the class taking care of

the actual numerical solution to the problem.

Listing A.4: Core of the constructor for the Matrices class

template <int N, typename Q, typename T >

Matrices::Matrices(FESpace_ptr<N,Q,T> Xh, Parameters const & ←֓
P):A(Xh->mesh(), Xh->nln()),S(Xh->mesh(), ←֓
Xh->nln()),I(Xh->mesh(), Xh->nln()),M(Xh->mesh(), ←֓
Xh->nln()),invM(Xh->mesh(), Xh->nln())

{

//...

for(auto ie: Xh->mesh()->elements())

{

sigmaeps(ie, Xh, sigma, eps, P.lambda(ie.id()), P.mu(ie.id()));

sigmaeps_edge(ie, Xh, sigma_edge, eps_edge, P.lambda(ie.id()), ←֓
P.mu(ie.id()));

stress_loc(ie, sigma, eps, Xh);

stability(Xh, ie, P);

interelement(Xh, ie, sigma_edge);
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mass(Xh, ie, P.rho(ie.id()));

}

I.symmetrize();

}

A.3.2 Time stepping

The base class TimeAdvance and the derived class LeapFrog take care of the time

advancement and of the solution to the fully discrete linear system. An extract

of the public interface of the class is shown in Listing A.5. It consists of methods

used to set some parameters in the approximation (such as δt, T , α in (2.8), u0

and v0) and of the stepping methods first_step() and step(). Two additional

methods are shown: they deal with the recording of the solution at the receivers

and with the output of the recorded values to a file.

The class LeapFrog implements the methods step (4.4) and first_step (4.3)

introduced in Section 4.2, while the rest of the public interface is inherited. This

structure was developed to allow for the expansion of the available time stepping

methods. The usage of the time stepping class will be more clear from the examples

presented next.

Listing A.5: Extract of the public interface of the class TimeAdvance

class TimeAdvance

{

public:

template <int N, typename Q, typename S>

TimeAdvance(FESpace_ptr<N,Q,S> Xh, Parameters const & p, Receivers ←֓
const & r);

void first_step();

void step();

void set_dt(double dt){M_dt = dt;};

void set_tmax(double tmax);

void set_penalty(double p);

void add_force(std::shared_ptr<Force> f);

template<int N, typename Q, typename S>

void set_initial_v(FESpace_ptr<N,Q,S> Xh, ←֓
std::function<std::array<double,2>(double,double)> fun);
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template<int N, typename Q, typename S>

void set_initial_u(FESpace_ptr<N,Q,S> Xh, ←֓
std::function<std::array<double,2>(double,double)> fun);

void eval_receivers();

void write_receivers(std::string const & fn)const;

//...

}

A.4 Examples

In this section we will consider the implementation of the Lamb’s problem (Section

8.1) and of the elastic wedge problem (Section 8.2).

A.4.1 Lamb’s problem implementation

The code starts with the inclusion of the TSPEED header file and with the decla-

ration of the namespace:

#include"TSPEED.hpp"

using namespace Tspeed;

After the definition of some parameters, the mesh is loaded and some statistics

are printed (number of elements, geometrical properties etc.):

Mesh_ptr Th(new Mesh(std::string("./Meshes/Lamb_fullyunstruct3.msh")));

Th->stats();

The functional space is thus created: this example employs the Dunavant quadra-

ture rule and the boundary adapted basis. An object of the class parameters is

created and the material properties are assigned.

FESpace_ptr<N, Dunavant<2*N>, BoundaryAdapted<N>> Xh(new ←֓
FESpace<N,Dunavant<2*N>,BoundaryAdapted<N>>(Th));

Parameters p(Th);

p.setp("lambda", 6, 6.8270e+09);

p.setp("mu", 6,6.8265125e+09);

p.setp("rho", 6, 2000 );
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Note that the number 6 is the region number: this is defined in the geo file from

which the mesh is generated. Indeed, in the geo file generating this mesh, the

surface was defined by

Plane Surface(6) = {5} ;

where 5 indicates the closed line enclosing the domain. Next, the receivers are

loaded and the pointwise Ricker wavelet force is created:

Receivers r2(Xh, std::string("Receivers/lamb.rcv"));

Force_ptr f( new PointWiseForce([](const double & t){return ←֓
std::array<double,2>{{0,-(1-2*M_PI*M_PI*(100)*(t-0.1)*(t-0.1)) * ←֓
exp(-M_PI*M_PI*(100)*(t-0.1)*(t-0.1))}};}, Geo::Point(1500,1950), Xh));

The time advancing object is now created, and the parameters and initial displace-

ment and velocity are prescribed:

LeapFrog TA(Xh, p, r2);

TA.set_dt(dt);

TA.set_tmax(tmax);

TA.add_force(f);

TA.set_penalty(1);

TA.set_initial_u(Xh,[](double x, double y){return ←֓
std::array<double,2>{{0,0}};});

TA.set_initial_v(Xh,[](double x, double y){return ←֓
std::array<double,2>{{0,0}};});

Since everything is now set, the first step of the method is performed, and the

displacement at the receivers is recorded

TA.first_step();

TA.eval_receivers();

and, consequently, the method advances until the final time is reached, while

recording the displacement at the receivers every 2 steps.

int step = 0;

while(TA.is_running())

{

t+=dt;

TA.step();

if(++step%2 == 0)
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TA.eval_receivers();

}

Finally, the recorded position are written to file (one file per receiver is output).

TA.write_receivers("Receivers_out/lamb");

A.4.2 Elastic wedge problem implementation

The code for this case is widely similar to the one presented for Lamb’s problem,

though in this case the functional space is defined as

FESpace_ptr<N> Xh(new FESpace<N>(Th));

which amounts to choosing the Gauss quadrature rule and the Dubiner basis.

Furthermore, we show the ability of the library to deal with multiple domains: the

material properties are assigned as

p.setp("lambda", 1, 6.25e+09);

p.setp("lambda", 2, 1.76e+10);

p.setp("mu", 1, 3.125e+09);

p.setp("mu", 2, 8.8e+09);

p.setp("rho", 1, 2000);

p.setp("rho", 2, 2200);

where, as before, the mesh was generated from a geo containing the lines

Plane Surface(2) = {5};

Plane Surface(1) = {6};

In this case the force is null and the initial Rayleigh wave has a quite complicated

structure which may be found in the source file. Finally, inside the time loop we

print the field every 20 steps and record the displacement at the receivers every

second step.

while(TA.is_running())

{

++step;

t+=dt;

TA.step();
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if(step%2 == 0)

TA.eval_receivers();

if(step%20==0)

Xh->field_out("Fields_out/wedge_field", TA.u(), step);

}
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