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Seismic hazard assessment

(counting process framework)
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N(t) counts the “strong” earthquakes up to

time t in a given (Italian) seismogenic zone

2

The geophysical risk λ is the instantaneous

conditional expected number of events per

time unit (formally, the stochastic intensity

of N with respect to its observed history)

Assuming exchangeable inter-event times

T1, T2, . . . is not uncommon, usually in combi-

nation with of a parametric model; this gives

λ(t) = ρ̂
(

t − SN(t)

)

where Si is the time of the i-th event and ρ̂ is

the posterior pointwise expected hazard rate

of the unknown inter-event time distribution

The nonparametric point of view has the

advantage of giving a time-varying (possibly

non-monotone) geophysical risk assessment

without imposing any functional form on λ
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Prior hazard rate proposal

ρ(t) = ξ0k0(t) +
∞
∑

j=1

ξjk(t − σj), t ≥ 0

• ξ0, ξ1, ξ2, . . . are i.i.d. and positive

• σj = τ1 + · · · + τj for j ≥ 1

• τ1, τ2, . . . are i.i.d. with exponential law

• ξ and τ are independent

• k is a probability density on R

• k0 is a positive function on R+ which is

integrable in a neighbourhood of zero
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Theorem 1 If E[ξ0] < ∞ & P{ξ0 = 0} < 1,

the trajectories of ρ are a.s. well-defined and

non-defective hazard rates:

∃t > 0 :
∫ t

0
ρ(s)ds < ∞ &

∫ ∞

0
ρ(s)ds = ∞.

Remark. In particular, this shows that the

construction is valid if ξ0 follows a gamma

distribution (conjugate choice)

Theorem 2 Let both k0 and k be r times

continuously differentiable on their domains.

Furthermore, let k(i), the i-th derivative of k,

be integrable on R and such that k(i)(x) ↓ 0,

as x → −∞. Then, a.s. the trajectories of ρ

are r times continuously differentiable on R+.

Remark. For example, if k is a zero mean

normal probability density, the construction

gives infinitely smooth hazard rates

5

The proposed hazard rate construction can

be interpreted in terms of countably many

(defective) competing hazard sources; this

gives insight into the prior distribution. . .
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. . . and leads to a straightforward MCMC

approximation of the posterior distribution.
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A time-scale equivariant procedure is given

to express weak prior opinions as follows:

• a prior pointwise expected hazard rate is

imposed by suitably choosing k0, so that

E[ρ(t)] ≡ r0

where r0 is given by prior knowledge

• prior variability is controlled by letting
√

lim
t→∞

Var[ρ(t)] = Hr0

where H should be “big enough”

• prior oscillations are controlled by letting

T∞

√

lim
t→∞

E[ρ′(t)2] = 2(Hr0)M∞

where T∞ is a time-horizon of interest

and M∞ is a prior guess of the number

of extremes in [0, T∞]
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Pointwise expected value together with 2.5%

and 97.5% quantiles (95% credible interval)

Solid lines refer to proposed prior, dashed

lines to non-informative conjugate gamma

prior for exponential inter-event times

The first 46 inter-event times (exact) are

marked with X, the last one (right censored)

is marked with O
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