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ABSTRACT. Essential graphsandlargest chain graphsare well-established graphical representations
of equivalence classes of DAGs and chain graphs (CGs) respectively, especially useful in the context of
structural learning. Recently, Roverato and La Rocca (2004) introduced the notion of alabelled block
ordering of verticesB as a flexible tool for specifying subfamilies of CGs. In particular, both the family
of DAGs and the family of “unconstrained” CGs are classes ofB -consistentCGs for the appropriate
choice ofB . Equivalence classes ofB -consistent CGs are represented by means ofB -essential graphs.
In this paper, we give an efficient procedure for the construction of B -essential graphs that is based
on the idea of a topological sorting of meta-arrows. In this way we also provide an efficient procedure
for the construction of both largest chain graphs and essential graphs. The key feature of the proposed
procedure is that every meta-arrow needs to be processed only once.

1 INTRODUCTION

A graphical Markov model for a random vectorXV is a family of probability distributions
satisfying a collection of conditional independencies encoded by a graph with vertex setV.
Every variable is associated with a vertex of the graph and the conditional independencies be-
tween variables are determined through aMarkov property. Two different Markov properties
are available, and in this paper we refer to the so called LWF Markov property; see Cowell
et. al.(1999) for details.

Three main typologies of graphical models have been introduced: models fordirected
acyclic graphs(DAGs) models forundirected graphs(UGs) and models forchain graphs
(CGs); the latter have both directed edges (arrows) and undirected edges (lines) but not semi-
directed cycles. The introduction of CG models was motivated by substantive background
knowledge on the existence of ablock ordering of variables(Wermuth and Lauritzen (1990));
nevertheless, Lauritzen and Richardson (2002) criticallydiscussed the role of block ordering
of variables and, in particular, they pointed out that, in structural learning, restricting the
attention to CG models with a particular pre-specified blockordering may preclude finding
the most parsimonious model. A partial solution to this problem was provided by Roverato
and La Rocca (2004) who introduced a more flexible way to specify subsets of CGs through
a labelled block ordering of verticesB which identifies a subclass ofB -consistentCGs.

Several different CGs, with common vertex set, may be equivalent with respect to a given
Markov property, in the sense that they define the same statistical model. Markov equivalence
is an equivalence relation that induces a partition of the set of CGs into equivalence classes.
From a statistical perspective, the point of interest is thestatistical model. However, if a sta-
tistical model is represented by using an arbitrary graph inthe respectiveMarkov equivalence



class, then the non-unique nature of the graphical description may result in difficulties. More
specifically, structural learning procedures that deal with the space of CGs instead of the
space of equivalence classes may face several problems concerning computational efficiency
and the specification of prior distributions. On the other hand, the drawback of considering
equivalence classes is that in this case most of the advantages deriving from the graphical rep-
resentation of the models are lost, unless it is possible to characterise each equivalence class
through a single representative CG. Frydenberg (1990) showed that the problem of choosing
a representative for CGs has a natural solution because every equivalence class of CGs con-
tains alargest chain graph, which is the graph with the largest amount of undirected edges
within the equivalence class. The problem of Markov equivalence is also of interest for the
class of all DAGs Markov equivalent to a given DAGD , but in this case there is no DAG
providing a natural representation of the class. Typically, equivalence classes of DAGs are
characterised by means of the the smallest CG larger then every element of the class, that
was called theessential graphby Anderssonet al. (1997). Roverato and La Rocca (2004)
dealt with the graphical characterisation of equivalence classes ofB -consistent CGs. They
provided a representative, called theB -essential graph, as well as a procedure for its con-
struction.

The usefulness of a graphical representative is related to the availability of procedures to
practically deal with it. In particular, a structural learning algorithm may require the repeated
application of a procedure for the construction of the representative on the basis of any other
graph in the Markov equivalence class. In this paper, we provide an efficient procedure for the
construction ofB -essential graphs. Following the results of Roverato and LaRocca (2004)
and Roverato (2005) the building-blocks of the procedure aremeta-arrows, rather than single
arrows, and we show that when meta-arrows are sorted according to a suitable topological
ordering each of them needs to be considered only once. We also remark that, by properly
choosingB , this procedure can be used to construct both largest CGs andessential graphs.

The paper is organised as follows. In Section 2 we introduce the notion ofB -essential
graph, together with some basic concepts and notation for graph and graphical model theory.
In Section 3 we deal withB -essential graph construction, first discussing the topological
sorting of meta-arrows, then describing the proposed algorithm and showing its correctness.

2 B -ESSENTIAL GRAPHS

In this section we review the theory of graphical models required in this paper. We introduce
the notation we use as well as a few relevant concepts, but we omit the definitions of concepts
such aschain componentof a CG, (minimal) complexin a CG,equivalence class, essential
graph, largest CG, Markov equivalence, parentof a vertex set andsemi-directed cyclein a
graph; we refer to Cowellet al.(1999) for a full account of the theory of graphs and graphical
models, and to Roverato and La Rocca (2004) for the theory related toB -consistent CGs.

We denote an arbitrary graph byG = (V,E), whereV is a finite set ofverticesandE ⊆
V ×V is a set ofedges. We say thatα ∈ V andγ ∈ V are joined by anarrow pointing atγ,
and writeα → γ ∈ G , if (α,γ) ∈ E but (γ,α) 6∈ E. We writeα−−γ ∈ G if both (α,γ) ∈ E and
(γ,α) ∈ E, and say that there is an undirected edge, orline, betweenα andγ. If A andD are
two chain components of a CGG such that there existα ∈ A andδ ∈ D with α → δ ∈ G , we



define themeta-arrow A⇉ D as the set of all arrows inG pointing fromA to D, i.e. we let
A ⇉ D = {α → δ ∈ G | α ∈ A,δ ∈ D}. A meta-arrow can be “merged” in the following way.

Definition 1. LetG = (V,E) be a CG andA⇉ D one of its meta-arrows. The graph obtained
fromG bymerging(the chain components connected by)A⇉ D is the graph obtained fromG
by replacing every arrowα → δ ∈ A ⇉ D with the corresponding lineα−−δ.

For a partitionV1, . . . ,Vk of the vertex setV, a labelled block orderingB of V is defined as a
sequenceB = (Vℓ1

1 , . . . ,Vℓk
k ), shortlyB = (Vℓi

i )k
i=1, such thatℓi ∈ {u,e,g}, i = 1, . . . ,k. A CG

may, or may not, be consistent with a given labelled block ordering.

Definition 2. Let B = (Vℓi
i )k

i=1 be a labelled block ordering of the vertex setV. We say that
the CGG = (V,E) is B -consistentwhen the following conditions hold:

(a) all edges joining vertices in different blocks ofB are arrows pointing from blocks with
lower numbering to blocks with higher numbering;

(b) for all i such thatℓi = u, the subgraphGVi is an UG;
(c) for all i such thatℓi = d, the subgraphGVi is a DAG.

Moreover, whenG satisfies the above conditions with (c) relaxed to

(c′) for all i such thatℓi = d, the subgraphGVi is a CG with decomposable chain components
and there is no flagα → γ−−δ ∈ G such thatγ−−δ ∈ GVi

we say thatG is weaklyB -consistent. We will call aB -consistent CG aB -CG and a weakly
B -consitent CG awB -CG for short.

A B -consistent CGG identifies the class[G ]B of all theB -consistent CGs equivalent toG .
This can characterised by theB -essential graphG B , defined as the smallestwB -CG larger
than every element of[G ]B . Furthermore,G B is the uniquewB -CG equivalent toG with no
B -insubstantial meta-arrows (Roverato and La Rocca (2004)).

Definition 3. For a labelled block orderingB = (Vℓi
i )k

i=1 of a vertex setV, let G = (V,E)
be awB -CG andA ⇉ D a meta-arrow ofG . We say that the arrowhead ofA ⇉ D is B -
insubstantialin G when the following conditions hold:

(a) A∪D ⊆Vi for some blockVi of B ;
(b) paG (D)∩A is complete;
(c) paG (D)\A⊆ paG (α), for all α ∈ paG (D)∩A;
(d) ℓi = d and paG (D)\A= paG (α), for all α ∈ paG (D)∩A.

Roverato and La Rocca (2004) showed that theB -essential graphG B can be constructed
by successively mergingB -insubstantial meta-arrows ofG , thus obtaining a sequence of
equivalentwB –CGs, until noB -insubstantial meta-arrow is left. However, this procedure is
not efficient because, when a meta-arrow is merged, previously B -substantial meta-arrows
may becomeB -insubstantial. Consequently, a meta-arrow that is found to beB -substantial
needs to be checked again in the following (possibly severaltimes) in order to verify whether
its status has changed or not. To cope with this inefficiency,we provide in the next section a
procedure in which every meta-arrow needs to be checked onlyonce.



3 B -ESSENTIAL GRAPH CONSTRUCTION

In this section, we first introduce atopological orderingfor the meta-arrows of aB -CG G ,
and discuss the issue of sorting the meta-arrows ofG according to this ordering, then we
illustrate an algorithm for the construction ofG B that takes advantage of considering the
meta-arrows ofG in the suggested topological order.

3.1 TOPOLOGICAL SORTING OF META-ARROWS

Let A andD be two distinct chain components of a CGG . We will say thatA precedes D, and
write A≺D, when there exists a sequenceA=C0,C1, . . . ,Cr = D, r ≥ 1, of chain components
of G such thatCi−1 ⇉ Ci ∈ G , for all i = 1, . . . , r. It is immediate to check that≺ is apartial
orderingof the chain components ofG and we will call it theirnatural topological ordering.
Given a CGG , its chain components can be sorted according to their natural topological
ordering (i.e. given a well-ordering that extends the partial ordering≺) by applying the well
knowntopological sortalgorithm (see for example Cowellet. al.(1999)) to the DAG of chain
components ofG . Note that, in general, the well-ordering extending≺ is not unique.

The natural topological ordering of the chain components ofa CGG induces two possible
lexicographicalorderings on the meta-arrow ofG , depending on whether the heads or the tails
of the meta-arrows are compared first. In particular, to our aims, we find useful to compare
heads first, that is to say thatA⇉ D precedes C⇉ F , and writeA⇉ D≺C ⇉ F , whenD≺ F
or D = F andA≺C. We will refer to this partial ordering of the meta-arrows ofG as to their
heads-first topological ordering, and we remark that it satisfies the two following conditions:

(i) if A ⇉ C∈ G andC ⇉ D ∈ G , thenA ⇉ C≺C ⇉ D;
(ii) if A ⇉ D ∈ G , A ⇉ C∈ G andC ⇉ D ∈ G , thenA ⇉ C≺ A ⇉ D ≺C ⇉ D.

A well-ordering of the meta-arrows ofG that extends their heads-first topological ordering
can be obtained by visiting the edges of the DAG of chain components ofG , after its vertices
(i.e. the chain components ofG ) have been, in turn, sorted. A similar sorting algorithm was
given by Chickering (1995) for the edges of a DAGD , as a first step in identifying the arrows
belonging to the essential graph ofD . In the following, the topological sorting of the meta-
arrows of a CGG according to≺ will be performed by an algorithmsortMetaArrows
which, due to space reasons, we do not give explicitly.

3.2 ALGORITHM FOR THE CONSTRUCTION OFG B

Let G = (V,E) be an arbitraryB -CG. Algorithm 1 takesG as input and gives as output the
B -essential graphG B . It is evident that every meta-arrow ofG is considered only once. What
has to be shown is that, given that the meta-arrows ofG are first sorted by means of the
algorithmsortMetaArrows, this is enough to findG B . In other words, we need to show
that Algorithm 1 is correct. This is guaranteed by Theorem 1,whose proof takes advantage
of the following lemma.

Lemma 1. Let A⇉ D be the meta-arrow considered on line 5 of Algorithm 1; then D= Ti .

Remark. In the light of Lemma 1, line 5 of Algorithm 1 simplifies to

let A ⇉ Ti be the unique meta-arrow ofH such thatRi ⊆ A



Algorithm 1 Pseudo-code forB -essential graph construction
Input: aB -CGG = (V,E)
Output: theB -essential graphG B

1: let (Ri ⇉ Ti , i = 1, . . . ,m) = sortMetaArrows(G )
2: let H = G
3: for i = 1 tom do
4: if the arrows ofRi ⇉ Ti are not undirected edges inH then
5: let A ⇉ D be the unique meta-arrow ofH such thatRi ⊆ A andTi ⊆ D
6: if the arrowhead ofA ⇉ D is B -insubstantial inH then
7: mergeA ⇉ D in H
8: end if
9: end if

10: end for
11: return H

Proof. Assume by contradiction thatA ⇉ D is considered withTi ⊂ D. Then, there exists
another chain componentS of G such thatS⊂ D and eitherS⇉ Ti ∈ G or Ti ⇉ S∈ G . As
the meta-arrow ofG joining SandTi was merged at a previous iteration of the algorithm, the
possibilityTi ⇉ S∈G is ruled out by ordering condition (i). Therfore, it holds thatS⇉ Ti ∈G .
Moreover, the chain componentsRi andS are adjacent inG , otherwise any given arrow of
S⇉ Ti would form a minimal complex inG with each arrow ofRi ⇉ Ti and this would make
impossible forSandTi to be included in the same chain componentD of the equivalentwB -
CGH . As the possibilityS⇉ Ri ∈ G would give a semi-directed cycle inH , it necessarily
holds thatRi ⇉ S∈ G . However, this results in a contradiction, as thenRi ⇉ Ti precedes
S⇉ Ti by ordering condition (ii).

Theorem 1. For all input B -CGG , the output of Algorithm 1 is theB -essential graphG B .

Proof. It is enough to show, thanks to the results by Roverato and La Rocca (2004), that
wheneverA⇉ Ti is not merged inH then all of its arrows belong toG B : we do this by finite
induction on the iteration counteri.

Let Ri ⇉ Ti be the first meta-arrow ofG considered by Algorithm 1 such that the arrow-
head ofA ⇉ Ti is notB -insubstantial inH . According to Definition 3, this can be for one or
more of the following reasons:

(1) A⊆Vj andTi ⊆Vh with j < h;
(2) paH (Ti)∩A is not complete;
(3) ∃α ∈ paH (Ti)∩A such that∃γ ∈ paH (Ti)\A not belonging to paH (α);
(4) ∃α ∈ paH (Ti)∩A such that∃γ ∈ paH (α) not belonging to paH (Ti)\A

andA∪Ti is part of a block labelled with ‘d’.

If condition (1) holds, then all arrows ofA ⇉ Ti belong toG B because of theB -consistency
of G B . If condition (2) holds, then there existα andα′ belonging toA such that(α,Ti ,α′)
is a complex. Therefore, there are arrows ofA ⇉ Ti belonging to a minimal complex and all
arrows ofA ⇉ Ti necessarily belong toG B . If condition (3) holds, then eitherα → γ ∈ H or
α andγ are not adjacent. The first case is impossible, as by orderingcondition (ii) the meta-
arrow ofG includingα → γ would have been considered beforeRi ⇉ Ti and thus merged.



Note the role played here by Lemma 1. Soα andγ are not adjacent and(α,Ti ,γ) is a complex.
Therefore, there is an arrow ofA ⇉ Ti which is part of a minimal complex and all arrows of
A ⇉ Ti necessarily belong toG B . Finally, if condition (4) holds, letCα ⊆ A be the chain
component ofG to whichα belongs. Then, asCα ≺ Ti , the meta-arrow ofG includingγ → α
was considered beforeRi ⇉ Ti and thus merged. Therefore, condition (4) cannot hold.

Now letRi ⇉ Ti be any meta-arrow ofG considered by Algorithm 1 such that the arrow-
head ofA ⇉ Ti is notB -insubstantial inH , and assume that the thesis holds for all meta-
arrows ofG considered before. Clearly, conditions (1) and (2) can be dealt with as above.
The same happens for condition (3), except for the caseα → γ ∈ H . In this case, however,
ordering condition (ii) implies (note the role of Lemma 1) that the meta-arrow ofG including
α → γ was considered before (and not merged). Therefore, the inductive hypothesis gives
α → γ ∈ G B and all arrows ofA ⇉ Ti belong toG B otherwise the latter would possess a
semi-directed cycle. Finally, if condition (4) holds, letτ be any son ofα in Ti . It holds that
γ andτ are not adjacent, becauseτ → γ ∈ H would imply a semi-directed cycle inH . Hence
α → τ ∈ G B because the alternativeα−−τ ∈ G B , given thatγ → α ∈ G B by the inductive
hypothesis, would imply the presence of the flagγ → α−−τ in the wB -CG G B , which is
impossible.
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