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ABSTRACT. Essential graphsndlargest chain graphsre well-established graphical representations
of equivalence classes of DAGs and chain graphs (CGs) riagggcespecially useful in the context of
structural learning. Recently, Roverato and La Rocca (R00@doduced the notion of belled block
ordering of verticess as a flexible tool for specifying subfamilies of CGs. In pautar, both the family

of DAGs and the family of “unconstrained” CGs are classes afonsisteniCGs for the appropriate
choice ofs. Equivalence classes sf-consistent CGs are represented by mears-esential graphs

In this paper, we give an efficient procedure for the consivncof B-essential graphs that is based
on the idea of a topological sorting of meta-arrows. In this/wve also provide an efficient procedure
for the construction of both largest chain graphs and esdemnaphs. The key feature of the proposed
procedure is that every meta-arrow needs to be processgomcg.

1 INTRODUCTION

A graphical Markov model for a random vectiy is a family of probability distributions
satisfying a collection of conditional independenciesasled by a graph with vertex set
Every variable is associated with a vertex of the graph aaddmditional independencies be-
tween variables are determined througlarkov property Two different Markov properties
are available, and in this paper we refer to the so called LWirkigl property; see Cowell
et. al.(1999) for details.

Three main typologies of graphical models have been intedumodels fodirected
acyclic graphs(DAGs) models forundirected graphgUGs) and models fochain graphs
(CGs); the latter have both directed edges (arrows) andertdd edges (lines) but not semi-
directed cycles. The introduction of CG models was motivdtg substantive background
knowledge on the existence obbock ordering of variableéWermuth and Lauritzen (1990));
nevertheless, Lauritzen and Richardson (2002) criticdilgussed the role of block ordering
of variables and, in particular, they pointed out that, irustural learning, restricting the
attention to CG models with a particular pre-specified blodkering may preclude finding
the most parsimonious model. A partial solution to this peabwas provided by Roverato
and La Rocca (2004) who introduced a more flexible way to $peabsets of CGs through
alabelled block ordering of vertices which identifies a subclass @f-consistenCGs.

Several different CGs, with common vertex set, may be etprivavith respect to a given
Markov property, in the sense that they define the sametatatimmodel. Markov equivalence
is an equivalence relation that induces a partition of th®@E€Gs into equivalence classes.
From a statistical perspective, the point of interest isstiaéistical model. However, if a sta-
tistical model is represented by using an arbitrary graghemrespectivélarkov equivalence



class then the non-unique nature of the graphical descriptiop masult in difficulties. More
specifically, structural learning procedures that deahwlite space of CGs instead of the
space of equivalence classes may face several problemsroémgcomputational efficiency
and the specification of prior distributions. On the othemahe drawback of considering
equivalence classes is that in this case most of the adwestiggiving from the graphical rep-
resentation of the models are lost, unless it is possiblaéaoacterise each equivalence class
through a single representative CG. Frydenberg (1990) stithat the problem of choosing
a representative for CGs has a natural solution becausg egeivalence class of CGs con-
tains alargest chain graphwhich is the graph with the largest amount of undirectedesdg
within the equivalence class. The problem of Markov eqeimat is also of interest for the
class of all DAGs Markov equivalent to a given DAG, but in this case there is no DAG
providing a natural representation of the class. Typicalyuivalence classes of DAGs are
characterised by means of the the smallest CG larger thay element of the class, that
was called theessential graptby Anderssoret al. (1997). Roverato and La Rocca (2004)
dealt with the graphical characterisation of equivaleriasses ofs-consistent CGs. They
provided a representative, called theessential graphas well as a procedure for its con-
struction.

The usefulness of a graphical representative is relatdtetavailability of procedures to
practically deal with it. In particular, a structural le@rg algorithm may require the repeated
application of a procedure for the construction of the reengative on the basis of any other
graphin the Markov equivalence class. In this paper, weigeoan efficient procedure for the
construction ofs -essential graphs. Following the results of Roverato anékRaeca (2004)
and Roverato (2005) the building-blocks of the procedueeraata-arrowsrather than single
arrows, and we show that when meta-arrows are sorted aogotalia suitable topological
ordering each of them needs to be considered only once. Weetsark that, by properly
choosings, this procedure can be used to construct both largest CGesmaahtial graphs.

The paper is organised as follows. In Section 2 we introdheenbtion of 3 -essential
graph, together with some basic concepts and notation &mtgand graphical model theory.
In Section 3 we deal witlB-essential graph construction, first discussing the tagodd
sorting of meta-arrows, then describing the proposed glgorand showing its correctness.

2 B-ESSENTIAL GRAPHS

In this section we review the theory of graphical models meglin this paper. We introduce
the notation we use as well as a few relevant concepts, buinitdlze definitions of concepts
such aschain componendf a CG, finimal) complexin a CG,equivalence clas®ssential
graph largest CG Markov equivalencgparentof a vertex set andemi-directed cyclen a
graph; we refer to Cowedt al. (1999) for a full account of the theory of graphs and graphica
models, and to Roverato and La Rocca (2004) for the theoaye@ktos -consistent CGs.
We denote an arbitrary graph lsy= (V,E), whereV is a finite set olverticesandE C
V x V is a set ofedges We say thaty € V andy € V are joined by ararrow pointing aty,
and writea — y€ g, if (a,y) € E but(y,a) ¢ E. We writea —y € ¢ if both (a,y) € E and
(y,a) € E, and say that there is an undirected edgédine; betweern andy. If A andD are
two chain components of a C& such that there exist € Aandd € D witha — d € g, we



define themeta-arrow A= D as the set of all arrows ig pointing fromAto D, i.e. we let
A=D={a—0d0€¢g |aeAdeD}. Ameta-arrow can be “merged” in the following way.

Definition 1. Letg = (V,E) be a CG and = D one of its meta-arrows. The graph obtained
from ¢ by merging(the chain components connected Byx D is the graph obtained frop
by replacing every arrow — 6 € A= D with the corresponding ling —2o.

For a partitiorvy, . ..,V of the vertex seV, alabelled block orderings of V is defined as a
sequences = (Vfl,...,vf"), shortlys = (Vfi)}‘:l, suchthat; € {u,e g},i=1,...,k. ACG
may, or may not, be consistent with a given labelled blocledrdy.

Definition 2. Let# = (V)% ; be a labelled block ordering of the vertex SetWe say that
the CGg = (V,E) is 3-consistentvhen the following conditions hold:

(a) all edges joining vertices in different blocks®fare arrows pointing from blocks with
lower numbering to blocks with higher numbering;

(b) for alli such that; = u, the subgraplgy; is an UG;

(c) foralli such that; = d, the subgraplgy; is a DAG.

Moreover, wheng satisfies the above conditions with (c) relaxed to

(c) for alli such that; = d, the subgraplyy; is a CG with decomposable chain components
and there is no flag — y—©o € g such thay—d € Gy,

we say thatg is weaklys-consistentWe will call a 8-consistent CG &-CG and a weakly
B-consitent CG avs-CG for short.

A s-consistent CG; identifies the clasks|? of all the 3-consistent CGs equivalent tp.

This can characterised by tireessential graph; Z, defined as the smallests-CG larger
than every element df; |%. Furthermoreg 2 is the uniquevs-CG equivalent ta; with no
B-insubstantial meta-arrows (Roverato and La Rocca (2004))

Definition 3. For a labelled block ordering = (\/i[i)ik:l of a vertex seV, let g = (V,E)
be aws-CG andA = D a meta-arrow ofg. We say that the arrowhead &f= D is 3-

insubstantiain ¢ when the following conditions hold:

(&) AuD CV, for some blockv; of 3;

(b) pg;(D)NAis complete;

(©) pg; (D) \AC pa;(a), foralla € pa; (D)NA;

(d) 4i=dand pa (D)\A= pg;(a), foralla € pa; (D)NA.

Roverato and La Rocca (2004) showed that thessential grapls ? can be constructed
by successively merging -insubstantial meta-arrows a@f, thus obtaining a sequence of
equivalenws—-CGs, until nos-insubstantial meta-arrow is left. However, this procedsr
not efficient because, when a meta-arrow is merged, prdyi®isubstantial meta-arrows
may becomes-insubstantial. Consequently, a meta-arrow that is fownoets -substantial
needs to be checked again in the following (possibly sevienak) in order to verify whether
its status has changed or not. To cope with this inefficieweyprovide in the next section a
procedure in which every meta-arrow needs to be checkedony.



3 B-ESSENTIAL GRAPH CONSTRUCTION

In this section, we first introducetapological orderingfor the meta-arrows of &-CG ¢,
and discuss the issue of sorting the meta-arrows @fccording to this ordering, then we
illustrate an algorithm for the construction gf® that takes advantage of considering the
meta-arrows of; in the suggested topological order.

3.1 TOPOLOGICAL SORTING OF METAARROWS

Let AandD be two distinct chain components of a @G We will say thatA precedes Dand
write A < D, when there exists a sequerfee Cy,Cy,...,C; =D, r > 1, of chain components
of g suchthaCi_1 =G € g, foralli=1,...,r. Itisimmediate to check that is apartial
orderingof the chain components gf and we will call it theirnatural topological ordering
Given a CGg, its chain components can be sorted according to their alattojpological
ordering (i.e. given a well-ordering that extends the padidering<) by applying the well
knowntopological sortalgorithm (see for example Cowelt. al.(1999)) to the DAG of chain
components of; . Note that, in general, the well-ordering extendings not unique.

The natural topological ordering of the chain components©6G g induces two possible
lexicographicabrderings on the meta-arrow gf depending on whether the heads or the tails
of the meta-arrows are compared first. In particular, to égmsawe find useful to compare
heads first, that is to say that= D precedes Cz F, and writeA—= D <C = F, whenD < F
or D = F andA < C. We will refer to this partial ordering of the meta-arrowsg#ts to their
heads-first topological orderingand we remark that it satisfies the two following conditions

() ifAmZCegandC=Dc¢c g,thenA=C<C=D;
(i) if AZDeg,AzCegandC=2Deg,thenA=ZC<A=D<C=D.

A well-ordering of the meta-arrows @f that extends their heads-first topological ordering
can be obtained by visiting the edges of the DAG of chain camepts ofg , after its vertices
(i.e. the chain components gf) have been, in turn, sorted. A similar sorting algorithm was
given by Chickering (1995) for the edges of a DAG as a first step in identifying the arrows
belonging to the essential graphof In the following, the topological sorting of the meta-
arrows of a CGg according to< will be performed by an algorithraor t Met aAr r ows
which, due to space reasons, we do not give explicitly.

3.2 ALGORITHM FOR THE CONSTRUCTION OFgQg

Let ¢ = (V,E) be an arbitrarys-CG. Algorithm 1 takes; as input and gives as output the
B-essential graply . It is evident that every meta-arrow gfis considered only once. What
has to be shown is that, given that the meta-arrowg afre first sorted by means of the
algorithmsor t Met aAr r ows, this is enough to find; 2. In other words, we need to show
that Algorithm 1 is correct. This is guaranteed by Theoremwhgse proof takes advantage
of the following lemma.

Lemma 1. Let A= D be the meta-arrow considered on line 5 of Algorithm 1; thea ).
RemarkIn the light of Lemma 1, line 5 of Algorithm 1 simplifies to
let A= T; be the unique meta-arrow ef such thaRk C A



Algorithm 1 Pseudo-code foB-essential graph construction
Input: a3-CGg = (V,E)
Output: the B-essential graply ?

1: let (R = T;,i=1,...,m) = sortMetaArrow$g )

2:letH =g

3: fori=1tomdo

4:  if the arrows oR; = T; are not undirected edges i then
5: let A= D be the unique meta-arrow of such thaR C AandT, CD
6: if the arrowhead oA = D is B-insubstantial i then
7 mergeA=D in #
8: end if
9: endif
10: end for
11: return #

Proof. Assume by contradiction tha& = D is considered withl;  D. Then, there exists
another chain componeS8tof ¢ such thalSC D and eithetiS= Tic g or Ty =2 S€ G. As

the meta-arrow of; joining SandT, was merged at a previous iteration of the algorithm, the
possibility Ty = Se ¢ is ruled out by ordering condition (i). Therfore, itholdatb =T, € .
Moreover, the chain componerfgs andS are adjacent in;, otherwise any given arrow of
S= T, would form a minimal complex i with each arrow oR; = T; and this would make
impossible forSandT; to be included in the same chain componerdf the equivalentvs -

CG # . As the possibilityS= R € g would give a semi-directed cycle iff, it necessarily
holds thatR; = S € . However, this results in a contradiction, as tHgn= T, precedes
S= T; by ordering condition (ii).

Theorem 1. For all input 3-CG g, the output of Algorithm 1 is the-essential graph; %.

Proof. It is enough to show, thanks to the results by Roverato and aec&® (2004), that
wheneveA = T; is not merged i then all of its arrows belong tg *: we do this by finite
induction on the iteration counter

LetR = T, be the first meta-arrow af considered by Algorithm 1 such that the arrow-
head ofA = T; is not 3-insubstantial i/ . According to Definition 3, this can be for one or
more of the following reasons:

(1) ACV; andT, C VW, with j < h;

(2) pa, (Ti)NAis not complete;

(3) Ja € pa, (Ti)NAsuch thaBy € pa, (Ti) \ Anot belonging to pa(a);

(4) Ja € pa, (Ti)NAsuch thaBy € pa, (a) not belonging to pa(Ti) \ A
andAUT; is part of a block labelled with ‘d’.

If condition (1) holds, then all arrows @& = T; belong tog ? because of the-consistency
of g*. If condition (2) holds, then there existanda’ belonging toA such that(a, T;,a’)

is a complex. Therefore, there are arrows\ofz T; belonging to a minimal complex and all
arrows ofA = T; necessarily belong tg 2. If condition (3) holds, then either — ye # or

a andy are not adjacent. The first case is impossible, as by ordedndition (ii) the meta-
arrow of ¢ includinga — y would have been considered befé&te= T; and thus merged.



Note the role played here by Lemma 1.&andy are not adjacent and, Ti, y) is a complex.
Therefore, there is an arrow 8f= T; which is part of a minimal complex and all arrows of
A = T; necessarily belong tg . Finally, if condition (4) holds, leCy C A be the chain
component of; to whicha belongs. Then, &4 < Ti, the meta-arrow of includingy — a
was considered befoR® = T; and thus merged. Therefore, condition (4) cannot hold.
Now letR; =% T; be any meta-arrow of considered by Algorithm 1 such that the arrow-
head ofA = T, is not 3-insubstantial in7/, and assume that the thesis holds for all meta-
arrows ofg considered before. Clearly, conditions (1) and (2) can ktddéth as above.
The same happens for condition (3), except for the casey € # . In this case, however,
ordering condition (ii) implies (note the role of Lemma 1atithe meta-arrow of including
o — y was considered before (and not merged). Therefore, theciwdunypothesis gives
o —vye ¢? and all arrows ofA = T, belong tog? otherwise the latter would possess a
semi-directed cycle. Finally, if condition (4) holds, lebe any son ofx in T;. It holds that
y andt are not adjacent, because- y € # would imply a semi-directed cycle ir . Hence
o — 1 € G? because the alternatice—1 € %, given thaty — o € 6% by the inductive
hypothesis, would imply the presence of the flag: o —1 in the ws-CG g%, which is
impossible.
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