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Abstract

Nonparametric inference on the hazard rate is an alternative to

density estimation for positive variables which naturally deals with

right censored observations. It is a classic topic of survival analysis

which is here shown to be of interest in the applied context of seismic

hazard assessment. This paper puts forth a new Bayesian approach to

hazard rate estimation, based on building the prior hazard rate as a

convolution mixture of a probability density with a compound Poisson

process. The resulting new class of nonparametric priors is studied in

view of its use for Bayesian inference: first, conditions are given for

the prior to be well defined and to select smooth distributions; then, a

procedure is developed to choose the hyperparameters so as to assign a

constant expected prior hazard rate, while controlling prior variability;

finally, an MCMC approximation of the posterior distribution is found.

The proposed algorithm is implemented for the analysis of some Italian

seismic event data and a possible adjustment to a well established class

of prior hazard rates is discussed in some detail.
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1 Introduction

It is well known that the unknown distribution of positive variables can be

described in terms of its hazard rate function, whenever it is safe to assume

that such distribution be absolutely continuous with respect to the Borel-

Lebesgue measure on the positive half-line. This is especially interesting in

survival analysis, that is when variables are times to event and the hazard

rate can be interpreted as the instantaneous conditional probability density

of event. Here, the topic of statistical inference on the hazard rate is dealt

with from a Bayesian nonparametric point of view and its relevance in the

applied context of seismic hazard assessment is pointed out.

Interest in Bayesian nonparametric hazard rate estimation dates back to

the early work by Dykstra and Laud (1981), who introduced the weighted

gamma process—extended gamma process in their terminology—as a tool

for modelling prior hazard rates. They obtained the Bayes estimator under

quadratic loss, i.e. the pointwise posterior mean, both for the hazard rate

itself and for the corresponding survival function. Padgett and Wei (1981)

did the same, but building the prior hazard rate as a compound Poisson

process with positive deterministic jump-sizes. The main drawback of both

proposals is a lack of generality, in that they both assume an increasing

hazard rate, as pointed out by the authors themselves. Furthermore, both

processes are pure jump ones and therefore they cannot properly model

smooth hazard rates.

The paper by Dykstra and Laud (1981) originated a narrow but fertile

streamline of research, mainly aimed at achieving greater generality. First,

Ammann (1984, 1985) obtained both “bath-tub” and “U-shaped” hazard

rates, by considering differences of weighted gamma processes. Then, in the

context of multiplicative intensity models, Lo and Weng (1989) were able

to build an unrestricted—possibly smooth—hazard rate as the mixture of a

kernel with a weighted gamma measure on an Euclidean space. Eventually,

James (2003) extended the framework to deal with semiparametric models

and also let the measure space be an arbitrary Polish one.

In principle, posterior computations for all of the above priors can be

carried out exactly, the difficulty being essentially the same as for the basic
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priors by Dykstra and Laud (1981). However, these exact computations

rely on enumerating all possible partitions of the observations and thus, in

practice, simulation techniques are needed. Lo and Weng (1989) suggested

to sample partitions by means of the so-called chinese restaurant algorithm,

which was later improved by devising weighted versions of it; see in particular

the recent paper by Ho and Lo (2001). For their part, Laud et al. (1996)

discretised the time axis in order to find a posterior MCMC approximation

for priors in the class by Dykstra and Laud (1981). More recently, without

resorting to time discretisation, Ishwaran and James (2004) gave two Gibbs

samplers for posteriors originated by priors in the wider class by James

(2003).

On the other hand, to the best of the author’s knowledge, the paper

by Padgett and Wei (1981) remained isolated. This was probably due to

the restrictive assumption of deterministic jump-sizes, which was crucial

for the posterior computations to be feasible. Nowadays, thanks to the

upsurge of MCMC methods, this restriction is no longer necessary. Indeed,

building on the Ph.D. thesis by La Rocca (2003), this paper shows that a

general compound Poisson process with positive jump-sizes can be effectively

used in a convolution mixture with a probability density to build a flexible

prior hazard rate admitting a straightforward Gibbs sampler. The suggested

construction can be seen as generalising the forgotten one by Padgett and

Wei (1981), in light of the above described contributions following the paper

by Dykstra and Laud (1981).

The paper is organised as follows. Section 2 introduces the topic of

Bayesian nonparametric inference on the hazard rate, showing its relevance

in the applied context of seismic hazard assessment. Section 3 investigates

some properties of the proposed class of prior distributions, eventually giving

a time-scale equivariant procedure to elicitate a single prior in the class.

Section 4 furnishes an MCMC approximation of the posterior distribution.

Section 5 applies the suggested MCMC algorithm to the analysis of some

Italian earthquake catalogue data. Section 6 discusses the opportunity of

using a compound Poisson process as an approximation to a weighted gamma

process.
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2 Motivation

Let t1, . . . , tn be n observed survival times which are either exact or right

censored, according to some binary variables o1, . . . , on: if oi = 1, the event

{Ti = ti} has been observed and ti is exact ; if oi = 0, the event {Ti > ti}

has been observed and ti is right censored. In the above, T1, . . . , Tn are

positive random variables modelling the observations, which are supposed

to be i.i.d. with probability density ρ(t) exp{−
∫ t

0 ρ(s)ds}, t ≥ 0, given the

unknown hazard rate ρ. Assuming non-informative censoring, that is a

censoring mechanism independent of the observations, the model likelihood

is given by

L(ρ) =
n

∏

i=1

ρ(ti)
oi exp

{

−

∫ ti

0
ρ(s)ds

}

. (1)

In order to carry out Bayesian inference on ρ, first ρ itself needs to be

built as a stochastic process such that

ρ ≥ 0, ∃t > 0 :

∫ t

0
ρ(s)ds < ∞,

∫ ∞

0
ρ(s)ds = ∞. (2)

Conditions (2) are easily shown to be necessary and sufficient for ρ to be a

valid hazard rate. Then, for each observation Ti as above, it holds that

ρ(s) = lim
h↓0

1

h
P(s ≤ Ti ≤ s + h | Ti ≥ s), s ≥ 0, (3)

where P is conditional on ρ itself, as the model is a Bayesian one. Therefore,

the distribution of ρ will express prior beliefs on the unknown instantaneous

conditional probability density of event and this will guide its elicitation.

Once ρ has been built, its posterior distribution can be found via the

Bayes formula. For example, if the Bayes estimator of ρ under quadratic

loss is the posterior quantity of interest, as will be the case for seismic hazard

assessment, one needs to compute

E [ρ(s) | (ti, oi)
n
i=1] =

E [ρ(s)L(ρ)]

E [L(ρ)]
, s ≥ 0. (4)

A proof of Bayes formula for general dominated models can be found, for

example, in the book by Schervish (1995, pages 16–17). From a practical

point of view, an MCMC algorithm may well be needed in order to exploit
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formula (4); see the paper by Tierney (1994) for a nice introduction to

MCMC methods.

Interest for the hazard rate in survival analysis is mainly due to the

interpretation given by formula (3). However, for positive variables, it is

always possible to consider the hazard rate in place of the probability density,

as the two exist precisely for the same distributions. In particular, this will

be convenient if there are right censored observations, as it is often the case

in survival analysis, because in this case Bayes formula becomes awkward

to deal with, once the likelihood (1) has been rewritten in terms of the

unknown probability density. Moreover, hazard rate estimation can be of

interest in the applied context of seismic hazard assessment, as the next

subsection shows.

2.1 Seismic hazard assessment

According to Vere-Jones (1995), when the object is statistical analysis, an

earthquake is essentially described by five coordinates: latitude, longitude

and depth of its first motion, together with its origin time and the so-called

magnitude, which is a measure of the event size on a logarithmic scale.

Then, a suitable framework for statistical modelling is offered by the theory

of point processes, which reduces to the theory of counting processes, if the

analysis concentrates on the distribution of origin times. This is commonly

done by fixing a suitable space-magnitude window, i.e. by only considering

strong events in a given seismogenic region.

Let 0 = S0 < S1 < · · · < Sn < · · · be an increasing sequence of random

variables modelling the event times at issue. An equivalent representation

is given by the counting process

N(t) =
∑

i≥1

I{Si≤t}, t ≥ 0

or, alternatively, by the sequence of inter-event times Ti = Si − Si−1, i ≥ 1.

A nice way to specify the distribution of N is by assuming exchangeability of

the inter-event times, that is by letting N be a renewal process, conditionally

on the unknown distribution of Ti. This is to be considered a reasonable

assumption, if the strongest earthquakes only are at issue; see for example
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the reflections by Wu et al. (1995). Indeed, there are many examples in the

literature where a parametric renewal model is used to analyse a seismic

event sequence. Here, however, the emphasis will be on the nonparametric

point of view, which avoids imposing any functional form upon the inter-

event time distribution.

An important goal in seismic hazard assessment is the evaluation of

what Vere-Jones (1995) calls the geophysical risk, that is the instantaneous

conditional expected number of events per time unit. Indeed, this is nothing

else than the stochastic intensity

λ(t) = lim
h↓0

1

h
E[N(t + h) − N(t)|Ot], t ≥ 0 (5)

of the counting process N with respect to the observed history O, where

Ot is the σ-algebra of events generated by N(s), 0 ≤ s ≤ t; refer to the

book by Brémaud (1981) for a rigourous treatment of stochastic intensity.

The importance of geophysical risk evaluation is made clear by a simple yet

penetrating decision model due to Ellis (1985) in which the optimal strategy

to call an earthquake alert is to wait for λ to exceed a suitable threshold.

Letting the inter-event times Ti, i ≥ 1 be i.i.d. ∼ ρ(t) exp{−
∫ t

0 ρ(s)ds}dt,

conditionally on the unknown hazard rate ρ, as discussed above, it is possible

to compute the geophysical risk (5) in what will be called the nonparametric

renewal model as

λ(t) = ρ̂t

(

t − SN(t)

)

ρ̂t(s) = hN(t)

(

s;T1, . . . , TN(t), t − SN(t)

)

hn(s; t1, . . . , tn, tn+1) = E[ρ(s) | T1 = t1, . . . , Tn = tn, Tn+1 > tn+1]

that is through the Bayes estimator of ρ under quadratic loss, where it is

worth noting that the last observation is right censored. This result can be

proven by first conditioning on ρ and Ot toghether, thus finding the well

known renewal intensity ρ(t−SN(t)), t ≥ 0, then noting that the trace of Ot

on {N(t) = n} is the same as the trace on {Tn+1 > t−Sn} of the σ-algebra of

events generated by T1, . . . , Tn. In this way, Bayesian nonparametric hazard

rate estimation, carried out on the inter-event times, becomes a tool for

nonparametric geophysical risk evaluation.
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3 Prior distribution

It is here suggested that the prior hazard rate ρ be built as

ρ(t) = ξ0k0(t) +
∞
∑

j=1

ξjk(t − σj), t ≥ 0, (6)

where ξ0, ξ1, ξ2, . . . are positive independent random variables, with ξ1, ξ2, . . .

identically distributed, σ0 = 0 and σj = τ1 + · · · + τj, j ≥ 1, with τ1, τ2, . . .

independent of ξ0, ξ1, ξ2, . . . and i.i.d. ∼ E(q), while k0 is a positive real

function defined on R+ and integrable on a neighborhood of 0, and k is

a probability density on R. Note that E(q) is the exponential distribution

having expected value q−1, where q > 0. It will been shown in the following

that formula (6) defines, under mild conditions, a valid and possibly smooth

hazard rate function.

Neglecting for a moment the first term, whose role will be clarified later,

the proposed construction turns out to be a convolution mixture of the

probability density k with the compound Poisson process µ having jump-

times σj, j ≥ 1 and jump-sizes ξj , j ≥ 1. In fact, formula (6) can be

rewritten as ρ(t) = ξ0k0(t) +
∫

R+
k(t − s)µ(ds), t ≥ 0, thus proving itself a

special case of the general mixture by Lo and Weng (1989). The novelty here

is the use of a compound Poisson process in place of the weighted gamma

process, which allows to replace the integral with a series and thus leads,

first of all, to a useful interpretation of the adopted construction.

Introduce a family θij, j ≥ 0, i ≥ 1 of positive random variables such

that, conditionally on σ and ξ, they are independent and θij follows the

distribution determined by the hazard rate ξjkj(t−σj), t ≥ 0, where kj = k

for j ≥ 1. Then, define the positive random variables T ′
i = minj θij, i ≥ 1

and observe that, conditionally on σ and ξ, they have the same distribution

as the observations and can therefore replace them in the statistical model.

This allows to interpret each observation Ti as being originated by countably

many competing hazard sources, in that it is the minimum of a sequence of

latent survival times. Note that, in this interpretation, each hazard source

is characterized by its location σj together with its size ξj and contributes

to the hazard shape via k, for j ≥ 1, or via k0, for j = 0.
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Before investigating further the suggested class of prior distributions, it

is appropriate to check that its definition be well posed. To this end, it is

sufficient to show that ρ defined by (6) almost surely satisfies conditions (2).

In fact, this is done below in the proof of Theorem 1. Preliminarily, it is

worth considering a couple of formulas concerning the integration of a Borel

function f ≥ 0 with respect to a compound Poisson process µ:

E

∫

R+

fdµ = qE[ξ1]

∫

R+

f(s)ds, (7)

Var

∫

R+

fdµ = qE
[

ξ2
1

]

∫

R+

f2(s)ds, (8)

where it is assumed that all quantities of interest are finite. About the proof,

both (7) and (8) can be proven via a standard monotone argument.

Theorem 1 The trajectories of the stochastic process ρ defined by (6) are

almost surely valid hazard rates, if E[ξ0] < ∞, E[ξ1] < ∞ and P{ξ1 = 0} < 1.

Proof. First, it holds that ρ ≥ 0 by construction. Then, thanks to Fubini-

Tonelli theorem and the Strong Law of Large Numbers, it also holds that

∫ t

0
ρ(s)ds = ξ0K0(t) +

∞
∑

j=1

ξj[K(t − σj) − K(−σj)] → ∞, as t → ∞,

where K0(t) =
∫ t

0 k0(s)ds, K(t) =
∫ t

−∞ k(s)ds and the convergence is almost

sure. Finally, it follows from formula (7) with f(s) = K(t − s) − K(−s),

s ∈ R+, that

E

∫ t

0
ρ(s)ds = E[ξ0]K0(t) + qE[ξ1]

∫ t

−∞
[t − max{s, 0}]k(s)ds,

which is finite for t small enough, implying
∫ t

0 ρ(s)ds < ∞ almost surely. �

Remark. Under the hypotheses of Theorem 1, which can be thought of as in

force from now on, each latent variable θij with j 6= 0 is defective, as almost

surely P{θij = ∞} = exp{−
∫ ∞
0 ξjk(s − σj)ds} ≥ exp{−ξj} > 0. As for

j = 0, each θij is defective if and only if K0(∞) =
∫ ∞
0 k0(s)ds < ∞.

A nice feature ot the construction given by formula (6) is that it gives rise

to smooth hazard rates, if such are k0 and k. More precisely, the following

result holds, where k(i) denotes the ith derivative of k.
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Theorem 2 Let k0 and k be r times continuously differentiable on their

respective domains. Furthermore, for all i = 0 . . . r, let k(i) be integrable

on R and such that |k(i)(x)| ↓ 0, as x → −∞. Then, the trajectories of ρ

defined by (6) are almost surely r times continuously differentiable on R+.

Proof. First of all, it is clear that the first term ξ0k0 in the right hand side

of formula (6) is r times continuously differentiable on R+ if and only if

such is k0. As for the series
∑∞

j=1 ξjk(t− σj), t ≥ 0, take for now r = 0 and

consider the issue of its continuity.

It will be enough, due to a well known result on real functions defined

by series, to prove almost sure uniform convergence on [0, t], for all t ≥ 0.

To this aim, having fixed t ≥ 0, note that

∞
∑

j=η

ξjk(s − σj) ≤
∞
∑

j=η

ξjk(t − σj), ∀s ≤ t

if η is taken big enough for k(x), x ≤ t − ση to be decreasing; recall that by

hypothesis k(x) ↓ 0, as x → −∞, and by construction σj ↑ ∞, as j → ∞.

Therefore, uniform convergence on [0, t] follows from simple convegence in t.

Now, let r = 1 and consider the first derivative of ρ. The “series of the

derivatives” is almost surely absolutely convergent, because it holds that

E





∞
∑

j=1

ξj|k
′(t − σj)|



 = qE[ξ1]

∫ t

−∞
|k′(x)|dx < ∞

thanks to formula (7), a change of variable and the integrability of k′ on R.

Furthermore, following the same reasoning as above, it can be shown that

convergence is uniform. Therefore, almost surely, the trajectories of ρ are

continuously differentiable on R+ and it holds that

ρ′(t) = ξ0k
′
0(t) +

∞
∑

j=1

ξjk
′(t − σj), t ≥ 0. (9)

The general case r > 1 can be dealt with similarly, thus finding an

expression analogous to (9) for higher order derivatives of ρ. �

As an example, take k(x) = (2πv)−
1

2 exp{−x2/2v}, x ∈ R, that is let k be

a zero mean normal probability density with variance v. With this choice,
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the hypotheses of Theorem 2 are satisfied for all positive r, so that the

hazard rate ρ is almost surely infinitely smooth. For the sake of simplicity

and concreteness, all what follows will be based on this particular choice;

the next subsection shows that the resulting family of prior distributions for

smooth hazard rates is, at least, flexible enough to express weak opinions.

3.1 Elicitation

In order to devise an elicitation procedure for priors in the family defined

by equation (6) it is worth considering the pointwise prior mean hazard rate

E[ρ(t)] = E[ξ0]k0(t) + qE[ξ1]K(t), t ≥ 0, (10)

where K(t) =
∫ t

−∞ k(s)ds and equation (10) can be proven via formula (7).

Equation (10) shows that, given a valid hazard rate function r, it is possible

to let E[ρ(t)] = r(t), for all t ≥ 0, whenever r is bounded away from zero, by

taking k0 = E[ξ0]
−1(r − qE[ξ1]K). In particular, the special case of interest

r ≡ r0, expressing weak prior opinions, will be considered in the following;

in this case, the constraint on r can be written as qE[ξ1] ≤ r0 and can be

conveniently satisfied by letting qE[ξ1] = r0, so that k0(t) → 0 as t → ∞

and the hazard source in the origin is “local” as the other ones. Indeed,

once k0 has been chosen after k so as to make the prior hazard rate flat,

there are no apparent reasons to further distinguish the zeroth hazard source

from the other ones and the simplifying assumption E[ξ0] = E[ξ1], implying

k0 = q(1 − K), can also be made.

Furthermore, consider the pointwise prior variance of ρ

Var[ρ(t)] = Var[ξ0]k
2
0(t) + qE

[

ξ2
1

]

∫ t

−∞
k2(u) du, t ≥ 0 (11)

and take its limit as t → ∞, that is qE[ξ2
1 ]‖k‖

2
2, as a single number measure

of prior variability. Equation (11) can be obtained via formula (8) and thus,

since ‖k‖2
2 = (4πv)−

1

2 for the chosen zero mean normal probability density,

the overall prior variability will be measured by V = q(4πv)−
1

2 E
[

ξ2
1

]

.

Finally, consider the pointwise prior mean square slope of ρ

E
[

ρ′(t)2
]

= Var[ξ0]k
′
0(t)

2 + qE
[

ξ2
1

]

∫ t

−∞
k′(u)2 du, t ≥ 0 (12)
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and take its limit as t → ∞, that is qE[ξ2
1 ]‖k′‖2

2, as an average measure of

prior instantaneous rate of change. Equation (12) can be derived by first

noting that E[ρ′(t)] = 0, for all t ≥ 0, then applying formula (8) as above.

Thus, the average prior instantaneous rate of change will be measured by

Z = q(16πv3)−
1

2 E
[

ξ2
1

]

, since for k′(x) = −x(2πv3)−
1

2 exp{−x2/2v}, x ∈ R,

it holds that ‖k′‖2
2 = (16πv3)−

1

2 .

Assume now that T∞ is a finite time-horizon of interest, meaning that

the goal of the analysis is to find ρ̂(t), 0 ≤ t ≤ T∞, and let M∞ be a “typical”

number of extreme points (maxima and minima) to be found within such

time horizon in a prior hazard rate trajectory. Then, as each extreme roughly

corresponds to travelling away from and back to the mean for a round trip

distance of approximately two standard deviations, it is sensible to impose

Z
1

2 T∞ = 2M∞V
1

2 and this allows to set v = 8−1T 2
∞M−2

∞ .

Eventually, let ξ0, ξ1, ξ2, . . . be i.i.d. ∼ G(a, b) where G(a, b) is the gamma

distribution having expected value ab−1 and variance ab−2. This choice is

a conjugate one, aimed at making Gibbs sampling easy, as the next section

will show. Since E[ξ1] = q−1r0, it holds that b = aqr−1
0 and it is enough to

fix a together with q. To this aim, let V
1

2 = Hr0, where H plays the role

of an overall coefficient of variation; then E[ξ2
1 ] = (1 + a−1)E[ξ1]

2 implies

(1 + a−1) = qH2‖k‖−2
2 , where ‖k‖2

2 = 2
1

2 π− 1

2 M∞T−1
∞ , and q follows from a.

Since large values of a correspond to small values of q, that is few large-sized

hazard sources, while small values of a correspond to large values of q, that

is many small-sized hazard sources, the hyperparameter a−1 can be seen as a

measure of “nonparametricity” with a critical value of a = 1 corresponding

to a change in the shape of the gamma distribution. Notice that the expected

number of hazard sources in [0, T∞] will be qT∞ = 2
1

2 π− 1

2 M∞H−2(1+a−1).

In conclusion, a single prior from the family defined by equation (6) is

selected once r0, H, T∞, M∞ and a have been chosen. It is worth noting that

the elicitation procedure is time-scale equivariant: indeed, for T ∗
i = Ti/T0,

i ≥ 1, the obvious choices are r∗0 = T0r0, H∗ = H, T ∗
∞ = T∞/T0, M∗

∞ = M∞

and a∗ = a, so that ρ∗(u), u ≥ 0, is distributed as T0ρ(T0u), u ≥ 0, that is

as the unknown hazard rate of T ∗
i when ρ is the unknown hazard rate of Ti.

11



4 Posterior distribution

It is here shown that, when the prior hazard rate is defined by equation (6),

it is straightforward to find an MCMC approximation of the corresponding

posterior distribution. Indeed, the interpretation of equation (6) in terms

of competing hazard sources allows to devise a sort of Gibbs sampler which

admits a direct implementation in any programming language. To this aim,

let γi be the hazard source originating ti, for all i = 1 . . . n, so that ti = θiγi
;

the complete likelihood is then given by

L(ξ, σ) =

n
∏

i=1

[ξγi
kγi

(ti − σγi
)]oie−ξ0K0(ti)−

P∞
j=1

ξj [K(ti−σj)−K(−σj)],

where it is worth noting that γi plays a role for exact observations only, that

is when oi = 1. Considering the prior distribution for (σ, ξ), the following

full-conditionals for (γ, σ, ξ) are found:

℘(γi|γ−i, σ, ξ) ∝ ξγi
kγi

(ti − σγi
); (13)

℘(ξ0|γ, σ, ξ−0) ∝ ξ
a0−1+

Pn
i=1 I{γi=0}

0

· e−ξ0{b0+
Pn

i=1
K0(ti)}; (14)

℘(ξj |γ, σ, ξ−j) ∝ ξ
a1−1+

Pn
i=1

I{γi=j}

j

· e−ξj{b1+
Pn

i=1
[K(ti−σj)−K(−σj)]}; (15)

℘(σj |γ, σ−j , ξ) ∝ e−ξj

Pn
i=1[K(ti−σj)−K(−σj)]

· I(σj−1,σj+1)(σj)
∏

i:γi=j

k(ti − σj). (16)

Note that, in light of the above remark, equation (13) is to be sampled for i

such that oi = 1 only, while equations (15) and (16) matter for all j ≥ 1.

Sampling from the full-conditional (13) is trivial, once the attention has

been restricted to a finite number of hazard sources, say F , as it is in practice

necessary. This should be done so as to obtain a good approximation of ρ

on [0, T∞], that is letting σF+1 > T∞ + 3v
1

2 . The simplest possibility is

to take F such that a priori P{Π0 ≤ F} ≥ 0.95, where Π0 is a Poisson

variable having expected value qT∞ +3qv
1

2 ; the same condition should then

be checked a posteriori, via the MCMC output, possibly coming to a larger

value of F . Another possibility would be to let F vary at each iteration, so
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that σF+1 is the location of the first hazard source to the right of T∞ +3v
1

2 ;

this was done by Arjas and Gasbarra (1994) in a similar context and avoids

checking a posteriori. In both cases, the full-conditional (16) for j = F

should be changed by replacing I(σj−1 ,σj+1)(σj) with I(σF−1,∞)(σF )e−qσF to

account for the lack of conditioning on σF+1.

The full-conditionals (14) and (15) are gamma distributions and thus

simulation from them is standard, once it has been noted that K is well

known and K0 can be rewritten as

K0(t) = q
{

t[1 − K(t)] + (2π)−
1

2 v
1

2 [1 − exp (−t2/2v)]
}

, t ≥ 0

thanks to Fubini-Tonelli theorem and some direct computations.

Finally, sampling from the full-conditional (16) is not immediate, but it is

simplified by the fact that the support is compact. A convenient possibility

is the slice sampling technique described by Neal (2003) which can be used

as a step within any random scan Gibbs sampler, preserving reversibility

and target distribution. See, for example, the recent book by Madras (2002,

pages 72–73) for a discussion on reversibility and Gibbs sampling.

5 Data analysis

Historical exposition of Italy to seismic hazard gave rise to an outstanding

tradition of earthquake data recording and studying. A very recent outcome

of this tradition is the catalogue by Gruppo di Lavoro CPTI (2004), which

can be considered as the state of the art for the Italian region. The CPTI04,

as it is named for short, records 2550 events starting from the Ancient World

(first event dated June 253 BC) up to the end of year 2002. Every event

is described via detailed information, including its magnitude, origin time

and location; furthermore, most events are associated with one of the 36

seismogenic zones described by Gruppo di Lavoro MPS (2004, Appendix 2).

In what follows, attention will be focussed on seismogenic zone 923

(namely Appennino Abruzzese) where the terrific Avezzano earthquake of

1915 was originated. Indeed, this was the zone originating the greatest

number of events in CPTI04 and the catalogue is deemed to be reasonably

complete for this zone, so that it is a good test-bed for the nonparametric

13
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Figure 1: Observed sample path of the process counting seismic events with

moment magnitude greater than 5.1 in zone 923 from 1650 to 2002.

renewal model. In particular, according to Gruppo di Lavoro MPS (2004,

page 34), mainly on the basis of historical evidence, the event sequence of

zone 923 can be considered complete starting from year 1650 for earthquakes

with moment magnitude greater than 5.1. There are 47 such earthquakes

in CPTI04 associated with zone 923, up to the end of year 2002, and the

observed sample path of the process counting them is reported in Figure 1.

The 46 exact inter-event times of Figure 1 are considered for the analysis,

together with the right censored one spanning from the origin of the last

event to the end of the catalogue and corresponding to the grey area on the

right of Figure 1. Note that there is also a grey area on the left of Figure 1,

corresponding to a left censored inter-event time which unfortunately cannot

be handled by the nonparametric renewal model. Roughly speaking, inter-

event times (in years) are exact up to the second decimal digit, as the origin

day is available but for a couple of events and for these it can be set to

the 15th of the origin month. Furthemore, note that the Gregorian calendar
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was already in force in year 1650, so that it is not necessary to adjust for it;

see the book by Stewart (1997) for a nice discussion of this issue.

The analysis is carried out by means of the R language and environment

for statistical computing and graphics. First, a couple of classical techniques

are used to assess the relevance of the nonparametric renewal model: a plot

of the inter-event time series auto-correlation function shows no evidence

against the renewal hypothesis, while the two-sided Kolmogorov-Smirnov

test rejects at 5% significance the hypothesis of (exponential inter-event

times with) constant hazard rate
∑n

i=1 oi/
∑n

i=1 ti = 0.132, thus raising

interest in the nonparametric point of view. Then, the methodology put

forth in this paper is applied: a prior in the proposed family is selected by

letting r0 = 0.1, T∞ = 50, H = 1, M∞ = 1, a = 1, and the corresponding

posterior is approximated via the suggested MCMC algorithm. Note that

r0 is set to the “correct” order of magnitude for the data, while T∞ roughly

corresponds to their range, H is intended to be a “big” coefficient of variation

for positive quantities, M∞ espresses the belief that seismic hazard is slowly

varying and a takes its critical value. The posterior hazard rate is plotted

in Figure 2, both as pointwise expected value and as pointwise 2.5% and

97.5% quantiles, computed on a chain of length 8000 obtained by thinning

the 80000 samples following a burn-in of 40000 iterations. Finally, the simple

conjugate gamma-exponential model is considered for comparison: assuming

ρ(t) = ρ0, for all t ≥ 0, and letting ρ0 ∼ G(a, b), with a > 0 and b > 0, it

is well known that ρ0 | t, o ∼ G (a +
∑n

i=1 oi, b +
∑n

i=1 ti) and thus, for the

data at issue, and passing to the non-informative limit a = b = 0, the

posterior distribution ρ0 | t, o ∼ G(46, 348) is found.

According to Figure 2, the estimated hazard rate for the nonparametric

renewal model is “bath-tub” shaped: there is an increase in seismic hazard

immediately after an event occurs, then the hazard goes down to a sort

of quiescence level and eventually it goes up again, possibly due to stress

accumulation. Note that the after-event increase has nothing to do with

aftershocks, as neither these nor foreshocks are recorded in the CPTI04.

Indeed, the most prominent feature of the “bath-tub” is quiescence, as the

mean hazard rate can be seen going well below the lower bound of the

credible band for the conjugate gamma-exponential model.
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Figure 2: Posterior hazard rate for the inter-event times of zone 923. Solid

lines refer to the nonparametric renewal model, dashed lines to the conjugate

gamma-exponential one. Pointwise 2.5% quantile, mean and 97.5% quantile

are plotted for both models. The 46 exact observations are marked with X,

the right censored one with O.
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6 Discussion

The opportunity of using prior distributions in the family put forth by this

paper as an approximation of prior distributions in the family by Lo and

Weng (1989) is here discussed. This is intended to be a viable alternative

to the exhisting approximation techniques mentioned in the Introduction,

with no need for time discretisation and very general applicability.

Let µ be a completely random measure on the positive half-line, having

no deterministic component. It is well known that the distribution of µ is

characterised by the pointwise Laplace transform of its distribution function,

that is by

E

[

e−zµ(t)
]

= exp

{

−

∫ ∞

0
(1 − e−zu)Lt(du)

}

, z ≥ 0,

where Lt is the Lévy measure in the Lévy-Khinchine representation of µ(t),

for t ≥ 0; see the monograph by Kingman (1993, pages 79–82) for details.

In particular, if µ is a weighted gamma process, then

Lt(du) = u−1

∫ t

0
e−b(s)u a(ds) du (17)

for suitable a and b; see the paper by Laud et al. (1996). Moreover, simple

computations show that, if µ is a compound Poisson process, then

Lt(du) = qtg(u) du, (18)

where g(s)ds denotes the law of its jump-sizes. In the following, it will be

shown that (17) can be effectively approximated by (18).

Consider for simplicity b ≡ b0 (namely a homogeneuos weighted gamma

process) and let a(t) = a0t, for all t ≥ 0. Then, equation (17) becomes

Lt(du) = a0t u−1e−b0udu and it would be tempting to take g(u) = u−1e−b0u

and q = a0 in (18). Unfortunately, this would give
∫ ∞
0 g(u)du = ∞, which

is clearly unacceptable. The point is that weighted gamma processes jump

infinitely many times in finite time intervals, differently from compound

Poisson processes. A somewhat natural solution is to ignore the smallest

jumps, that is to consider Ld
t (du) = a0tu

−1e−b0u
I[d,∞)(u)du, t ∈ R+, for

some suitable threshold d > 0. It is immediate to check that Ld
t corresponds
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to a compound Poisson process with intensity qd = a0

∫ ∞
d

u−1e−b0u du and

jump-size density gd(u) = a0q
−1
d u−1e−b0u

I[d,∞)(u), u ≥ 0. The effectiveness

of this approximation relies on the fact that, if (dn)n≥0 is an infinitesimal

sequence of thresholds, then

∫ ∞

0
(1 − e−zu)Ldn

t (du) →

∫ ∞

0
(1 − e−zu)Ld

t (du), as n → ∞

for all positive t and z, and thus the approximating sequence of compound

Poisson process converges in law to the given wieghted gamma one; see the

book by Kallenberg (1975, page 22).

With regards to the posterior MCMC algorithm, it has to be noted that

gd is not a gamma density, because it is zero on (0, d) and the exponent of u

is −1. Therefore, the approximating compound Poisson process, having

Lévy measure Ld
t , slightly differs from the ones considered in the previous

sections. The only change, however, concerns the jump-size full-conditional

℘(ξj |γ, σ, ξ−j) ∝ ξ
Pn

i=1
I{γi=j}−1

j e−ξj{b0+
Pn

i=1
[K(ti−σj)−K(σj)]}I{ξj≥d}

which is a truncated gamma, if only
∑n

i=1 I{γi=j} ≥ 1, while slice-sampling,

for example, can deal with the case
∑n

i=1 I{γi=j} = 0.
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