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Abstract

In graphical modelling, the existence of substantive background knowledge on block

ordering of variables is used to perform structural learning within the family of chain

graphs in which every block corresponds to an undirected graph and edges joining

vertices in different blocks are directed in accordance with the ordering. We show that

this practice may lead to an inappropriate restriction of the search space and introduce

the concept of labelled block ordering B corresponding to a family of B-consistent chain

graphs in which every block may be either an undirected graph or a directed acyclic

graph or, more generally, a chain graph. In this way we provide a flexible tool for

specifying subsets of chain graphs, and we observe that the most relevant subsets of

chain graphs considered in the literature are families of B-consistent chain graphs for the

appropriate choice of B. Structural learning within a family of B-consistent chain graphs

requires to deal with Markov equivalence. We provide a graphical characterisation of

equivalence classes of B-consistent chain graphs, namely the B-essential graphs, as well

as a procedure to construct the B-essential graph for any given equivalence class of

B-consistent chain graphs. Both largest chain graphs and essential graphs turn out to

be special cases of B-essential graphs.

Keywords: B-essential graph; background knowledge; block ordering; chain graph; condi-

tional independence; graphical model; labelled block ordering; Markov equivalence; Markov

property; meta-arrow.

1 Introduction

A graphical Markov model for a random vector XV is a family of probability distributions

satisfying a collection of conditional independencies encoded by a graph with vertex set V .

Every variable is associated with a vertex of the graph and the conditional independencies

between variables are determined through a Markov property. A chain graph (CG) has

both directed edges (arrows) and undirected edges (lines) but not semi-directed cycles.

Two different Markov properties have been proposed for CGs: the Lauritzen-Wermuth-

Frydenberg (LWF) Markov property (Lauritzen and Wermuth, 1989 and Frydenberg, 1990)

∗Address for correspondence: Dipartimento di Scienze Sociali Cognitive e Quantitative, Via Giglioli Valle,

9, 42100 Reggio Emilia, Italy.

1



and the Andersson-Madigan-Perlman Markov property (Andersson et al., 2001). Here,

we consider the case in which the conditional independence structure of XV is encoded

by a CG G under the LWF-Markov property and G has to be learnt from data. Recent

monographs on this subject include Pearl (1988, 2000), Whittaker (1990), Cox and Wermuth

(1996), Lauritzen (1996), Jordan (1998), Cowell et al. (1999) and Edwards (2000).

The first step of any structural learning procedure is the specification of a search space,

i.e. of a set of candidate structures, and this operation may present difficulties when using

graphical models. A first problem derives from Markov equivalence. Let Hp ≡ H denote

the set of all CGs on p = |V | vertices. Two different CGs in H may encode the same

conditional independence structure and this induces a partition of H into equivalence classes

each characterised by a largest chain graph (Frydenberg, 1990; Studený, 1997; Volf and

Studený, 1999 and Roverato, 2005). The search space can thus be taken to be the set of all

largest CGs on p vertices. However, it is common practice to perform structural learning

on predefined subsets of H identified on the basis of substantive background knowledge on

the problem. From a Bayesian perspective this amounts to giving zero prior probability to

a subset of structures on the basis of subject matter knowledge.

The translation of the available background knowledge into a corresponding restriction

of the search space represents a crucial step of any structural learning procedure. Indeed,

it is important to exploit any background knowledge that may lead to a dimensionality

reduction of the search space both for computational reasons and because, otherwise, the

selected structure might be incompatible with expert knowledge on the problem. On the

other hand, an erroneous interpretation of the existing background knowledge may lead to

the exclusion from the search space of the “true” structure (or more realistically of a subset

of relevant structures) thereby making any subsequent learning algorithm ineffective.

The two subsets of CGs most frequently recurring in the literature are the family of CGs

with no undirected edges, called directed acyclic graphs (DAGs), and the family of CGs

with no arrows, called undirected graphs (UGs); see, among others, Madigan et al. (1996),

Cowell et al. (1999, Chapter 11), Giudici and Green (1999), Chickering (2002), Roverato

(2002) and Drton and Perlman (2004). We recall that the family of all DAGs on p vertices

can be partitioned into equivalence classes characterised by the so-called essential graphs

(Andersson et al., 1997a and Studený, 2004).

The restriction of the search space to either the family of essential graphs or the family

of UGs may be justified by background knowledge on the kind of association between

variables. On the other hand, the introduction of CG models with both directed and

undirected edges was motivated by substantive background knowledge on the existence of

a block ordering of variables (Wermuth and Lauritzen, 1990). Lauritzen and Richardson

(2002) provided the following general instances of this framework:

(a) variables may be divided into risk factors, diseases and symptoms;
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(b) in a longitudinal study variables may be grouped according to time;

(c) in a cross-sectional study, variables may be divided into purely explanatory variables,

intermediate variables and responses (Cox and Wermuth, 1996).

Traditionally, when such a block ordering is available, structural learning is performed

within the family of CGs whose edges joining vertices in the same block are undirected while

edges joining vertices in different blocks are directed according to the ordering (Wermuth

and Lauritzen, 1990; Whittaker, 1990; Cox and Wermuth, 1996). This is motivated by

a “causal” interpretation of relationships between variables belonging to different blocks,

while variables belonging to a same block are considered to be “on an equal footing”;

see, for instance, Mohamed et al. (1998), Pigeot et al. (2000) and Caputo et al. (2003).

However, as noticed by Cox and Wermuth (1993, 2000) and Lauritzen and Richardson

(2002), undirected edges represent a very special kind of equal footing. In fact, as far

as background knowledge is concerned, two variables joined by an arrow are on an equal

footing whenever the direction of the arrow is not known in advance. Our standpoint is

that the existence of a block ordering of variables is not sufficient to imply that edges

within blocks are undirected, and that such a further restriction of the search space is

justified only when additional knowledge on the kind of association allowed within blocks

is available. Hence, we make an explicit distinction between prior knowledge on variable

ordering and on the kind of association relating variables within blocks, and introduce the

concept of labelled block ordering of vertices, denoted by B, as a formal way to encode

background knowledge of both types. Every specification of B is associated with a family

of B-consistent CGs, denoted by H(B), made up of all structures in H compatible with the

background knowledge encoded by B. We obtain in this way a flexible tool for specifying

subsets of H and, in Section 3, we provide a list of relevant subsets of CGs considered in

the literature that are families of B-consistent CGs for the appropriate choice of B. This

includes the family of UGs, the family of DAGs and every family of “traditional” CGs

with undirected edges within blocks. Structural learning within the set H(B) requires to

deal with Markov equivalence of structures compatible with the available block ordering.

We provide a graphical characterisation of equivalence classes of B-consistent CGs, namely

the B-essential graphs, as well as a procedure for deriving the B-essential graph associated

with an equivalence class. This generalises several existing results on Markov equivalence

and provides an unified view to the subject. In particular, B-essential graphs coincide with

largest CGs when H(B) = H and with essential graphs when H(B) is the family of all DAGs

on p vertices.

The paper is organised as follows. Section 2 reviews the required graphical model theory.

Section 3 introduces and motivates the family of B-consistent CGs while Section 4 deals with

the graphical characterisation of equivalence classes of B-consistent CGs. Finally, Section 5

contains a brief discussion.
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2 Preliminaries and Notation

Here we review graph theory and Markov equivalence as required in this paper. We introduce

the notation we use as well as a few relevant concepts, but we omit the definitions of well

established concepts such as connected component of a graph, decomposable undirected

graph, parent, path, skeleton and subgraph; we refer to Cowell et al. (1999) for a full account

of the theory of graphs and graphical models.

2.1 Graph theory

We denote an arbitrary graph by G = (V, E), where V is a finite set of vertices and E ⊆ V ×V

is a set of edges. We say that α and γ are joined by an arrow pointing at γ, and write

α → γ ∈ G, if (α, γ) ∈ E but (γ, α) 6∈ E. We write α −−γ ∈ G if both (α, γ) ∈ E and

(γ, α) ∈ E and say that there is an undirected edge, or line, between α and γ. For a subset

A ⊆ V we denote by GA the subgraph induced by A and by paG(A) the parents of A in G,

or simply by pa(A) when it is clear from the context which graph is being considered.

A semi-directed cycle of length r is a sequence α0, α1, . . . , αr = α0 of r different vertices

such that either αi−1 −−αi or αi−1 → αi for all i = 1, . . . , r and αi−1 → αi for at least one

value of i.

A chain graph (CG) is a graph with both arrows and lines but no semi-directed cycles

and we denote by Hp ≡ H the set of all CGs on |V | = p vertices. A CG with no arrows is

an undirected graph (UG) whereas a CG with no lines is a directed acyclic graph (DAG).

Hereafter, to stress that a graph is a DAG, we denote it by D = (V, E). For a pair of

vertices α, γ ∈ V of G = (V, E), we write α ⇋ γ if either α = γ or there is an undirected

path between α and γ. It is straightforward to see that ⇋ is an equivalence relation that

induces a partition of the vertex set V into equivalence classes called the chain components

of G. If T ⊆ V is a chain component of G then GT is and undirected graph and when GT is

decomposable we say that T is a decomposable chain component. Furthermore, by saying

that a CG has decomposable chain components we mean that all its chain components are

decomposable.

A triple (α, δ, γ) is an immorality of G if the subgraph of G induced by {α, δ, γ} is

α → δ ← γ. A sequence of vertices (α, δ1, . . . , δk, γ) is a minimal complex in G if the

subgraph induced by {α, δ1, . . . , δk, γ} looks like

α → δ1 −−δ2 −− · · · −−δk−1 −−δk ← γ (1)

so that a minimal complex with k = 1 is an immorality.

Definition 1 Two CGs are called complex-equivalent if they have the same skeleton and

the same minimal complexes. 2

A triple (α, δ, γ) is a flag of G if the subgraph of G induced by {α, δ, γ} is either α → δ −−γ

or α−−δ ← γ. A no flag chain graph (NF-CG) is a CG containing no flags; note that both
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UGs and DAGs are NF-CGs. Every minimal complex with k > 1 is associated with two

flags: α → δ1 −−δ2 and δk−1 −−δk ← γ. Therefore, an NF-CG has no minimal complexes

other than immoralities and, consequently, two NF-CGs are complex-equivalent if and only

if they have the same skeleton and the same immoralities.

For two graphs G1 = (V, E1) and G2 = (V, E2) with the same skeleton, we say that

G1 is larger than G2, denoted by G2 ⊆ G1, if E2 ⊆ E1, i.e. G1 may have undirected edges

where G2 has arrows. We write G2 ⊂ G1 if E2 ⊂ E1. The following result (Roverato, 2005,

Proposition 1) is useful to check complex-equivalence of nested CGs.

Proposition 1 Let G = (V, E), G′ = (V, E′) and G′′ = (V, E′′) be three CGs with the same

skeleton. If G ⊆ G′ ⊆ G′′ and G is complex-equivalent to G′′, then G′ is complex-equivalent

to G and G′′.

The union of two CGs G1 = (V, E1) and G2 = (V, E2) is the smallest graph larger than

G1 and G2; formally G1 ∪ G2 = (V, E1 ∪ E2). It is clear that G1 ∪ G2 may not be a CG and,

following Frydenberg (1990, p. 347), we denote by G1 ∨ G2 the smallest CG larger then G1

and G2, that is the CG obtained by changing into undirected edges all the arrows in G1 ∪G2

which are part of a semi-directed cycle (see also Consequence 2.5 of Volf and Studený, 1999).

Frydenberg (1990, Proposition 5.4) proved the following result.

Theorem 2 Two CGs G1 = (V, E1) and G2 = (V, E2) with the same skeleton are complex-

equivalent if and only if they are both complex-equivalent to G1 ∨ G2.

For a family K of CGs with common vertex set V we denote by ∪K = {∪G | G ∈ K} the

smallest graph larger than every element of K and by ∨K = {∨G | G ∈ K} the smallest CG

larger than every element of K. There are nontrivial families of CGs closed with respect to

the ∨-union operation, as the following result shows.

Proposition 3 If G1 = (V, E1) and G2 = (V, E2) are two equivalent NF-CGs then G1 ∨ G2

is an NF-CG. Moreover, if G1 and G2 have decomposable chain components then G1 ∨ G2

has decomposable chain components.

Proof. The CG G1 ∨ G2 is an NF-CG by Theorem 7 of Roverato (2005). Assume now that

G1 and G2 have decomposable chain components. By Lemma 2 of Studený (2004) it holds

that G1 and G2 are equivalent to some DAG D. Then, it follows from Theorem 2 that D is

also equivalent to G1∨G2 which therefore has decomposable chain components by Lemma 2

of Studený (2004). 2

2.2 Markov equivalence

Let XV = (Xα)α∈V be a collection of random variables taking values in the sample space

X = ×α∈V Xα. The spaces Xα, α ∈ V , are supposed to be separable metric spaces endowed

with Borel σ-algebras so that the existence of regular conditional probabilities is ensured.
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A graphical Markov model uses a graph with vertex set V to specify a set of conditional

independence relations, called a Markov property, among the components of X. Denote by

M(G,X ) the set of probability distributions on X that satisfy the conditional independence

relations associated with G by the LWF Markov property (Lauritzen and Wermuth, 1989

and Frydenberg, 1990). Two graphs G1 = (V, E1) and G2 = (V, E2) are said to be Markov

equivalent, denoted by G1 ∼ G2, if M(G1,X ) = M(G2,X ) for every product space X indexed

by V . Markov equivalence is an equivalence relation and for a CG G = (V, E) we denote

by [[G]] the class of all CGs equivalent to G. Similarly, for a DAG D = (V, E), we denote

by [D] the class of all DAGs Markov equivalent to D. Note that [D] ⊆ [[D]].

The skeleton and the minimal complexes of a CG G = (V, E) are sufficient to deter-

mine the set of conditional independencies encoded by G (Frydenberg, 1990, Theorem 5.6;

Andersson et al., 1997b, Theorem 3.1 and Verma and Pearl, 1991).

Theorem 4 Two CGs are Markov equivalent if and only if they are complex-equivalent.

As a consequence of Theorem 4, having adopted the LWF-Markov property, no formal

distinction between Markov and complex equivalence is necessary and in the rest of this

paper we shall simply say that two CGs are equivalent.

It is well known that structural learning procedures dealing with the space of CGs instead

of the space of equivalence classes may face several problems concerning computational

efficiency and the specification of prior distributions; see Chickering (2002) for a discussion

on the difficulties deriving from Markov equivalence of DAGs. For this reason it is of interest

to characterise every equivalence class by means of a single graph providing a suitable

representation of the whole class. The class [[G]] of all CGs equivalent to a CG G is naturally

represented by means of the largest chain graph G‡ = ∨[[G]] = ∪[[G]] (Frydenberg, 1990;

Studený, 1996, 1997; Volf and Studený, 1999; Roverato, 2005). Similarly, the equivalence

class [D] of a DAG D is naturally represented by the so-called essential graph D∗ = ∪[D],

which Andersson et al. (1997a) showed to be a CG, that is D∗ = ∨[D]. We recall that

the essential graph is also known in the literature as completed pattern (Verma and Pearl,

1992), maximally oriented path for a pattern (Meek, 1995) and completed p-dag (Chickering,

2002).

The notion of meta-arrow plays an important role in the characterisation of equivalence

classes of CGs (2004; Studený, 2004; Roverato and Studený; Roverato, 2005).

Definition 2 Let A and D be two chain components of a CG G. The meta-arrow A ⇉ D

is the set of all arrows in G pointing from A to D, that is formally A ⇉ D = {α → δ ∈ G |

α ∈ A, δ ∈ D}. 2

The chain components of a nonempty meta-arrow can be merged to form a single chain

component as follows.

Definition 3 Let G = (V, E) be a CG and A ⇉ D one of its meta-arrows. The graph
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obtained from G by merging (the chain components of) A ⇉ D is the graph obtained

from G by replacing every arrow α → δ ∈ A ⇉ D with the corresponding line α −−δ. 2

Interest in (merging) meta-arrows is due to the fact that if G ⊆ G′ are two CGs with the

same skeleton and A ⇉ D is a meta-arrow of G, then necessarily either every arrow or no

arrow of A ⇉ D corresponds to a line in G′. Indeed, if only some, but not all, the arrows

in A ⇉ D were lines in G′, then there would be a semi-directed cycle in G′.

Roverato (2005) proposed a procedure for the construction of both largest CGs and

essential graphs based on successive merging of meta-arrows. The existence of such a

procedure is guaranteed by the following result (Roverato, 2005, Theorems 7 and 10).

Theorem 5 Let G = (V, E) and G′ = (V, E′) be two equivalent CGs such that G ⊂ G′.

Then, there exists a finite sequence G = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G′, with r ≥ 1, of equivalent

CGs such that Gi can be obtained from Gi−1 by merging exactly one of its meta-arrows, for

all i = 1, . . . , r. Furthermore, if G and G′ are NF-CGs, it is possible to let G1, . . . ,Gr be

NF-CGs.

Note that this theorem can be applied to the construction of the essential graph D∗ because

it was shown by Studený (2004) that D∗ is the largest NF-CG equivalent to D. In order to

practically take advantage of Theorem 5, it is necessary to characterise those meta-arrows

of a (NF-)CG which, if merged, lead to an equivalent (NF-)CG. This requires the notion of

(strongly) insubstantial arrowhead of a meta-arrow.

Definition 4 Let A ⇉ D be a meta-arrow of the CG G = (V, E). The arrowhead of A ⇉ D

is insubstantial in G if the following conditions are satisfied:

(a) paG(D) ∩ A is complete;

(b) paG(D) \ A ⊆ paG(α), for all α ∈ paG(D) ∩ A.

Furthermore, if it also holds that

(c) paG(D) \ A = paG(α), for all α ∈ paG(D) ∩ A,

then the arrowhead of A ⇉ D is said to be strongly insubstantial. 2

Roverato (2005, Theorems 8 and 11) provided a connection between Definition 4 and the

operation of merging meta-arrows.

Theorem 6 Let A ⇉ D be a meta-arrow of the CG G = (V, E). The CG G′ obtained

from G by merging the meta-arrow A ⇉ D is a CG equivalent to G if and only if the

arrowhead of A ⇉ D is insubstantial in G. Furthermore, if G is an NF-CG, then G′ is an

NF-CG if and only if the arrowhead of A ⇉ D is strongly insubstantial in G.

The results given in this section can be used to implement an efficient procedure for

the construction of both largest CGs and essential graphs. Moreover, they were used by

Roverato (2005) and Studený (2004) to provide a graphical characterisation of both largest

CGs and essential graphs.
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3 B-consistent chain graphs

In this section we introduce the concept of labelled block ordering B of vertices and describe

how B can be used to specify the appropriate subset H(B) of B-consistent CGs. To clarify

the meaning of B and eventually to reach a definition we proceed in steps.

Consider first the situation in which it is assumed that the independence structure of XV

is encoded by a CG but no further information is available, neither on the existence of a

block ordering of variables nor on the kind of association between variables. In this case

we write B = (V ) and the appropriate search space for structural learning is the family of

all largest CGs on p vertices. Assume now that, although no ordering of the variables can

be specified, it is believed that the conditional independence structure of XV is encoded

by a DAG. Then the appropriate search space is the family of all essential graphs on p

vertices. Another common situation is when the association between every pair of variables

is believed to be symmetric. In this case structural learning is restricted to the subset of all

UGs on p vertices; see Cox and Wermuth (2000) and Lauritzen and Richardson (2002) for

a discussion on the interpretation of undirected edges. We write B = (V d) to denote that

background knowledge specifies no ordering of variables but indicates that the conditional

independence structure of XV is encoded by a DAG and, similarly, we write B = (V u) for

the case of UGs. A consistent notation for the unrestricted case is B = (V g) ≡ (V ).

We remark that (V d), (V u) and (V g) represent three different types of background

knowledge that lead to three different restrictions of the search space. Nevertheless, in all

three cases, variables are regarded to be on an equal footing because every association is

either asymmetric with unknown direction or symmetric. In the following we will refer to

this situation as to the one-block case.

Consider now the situation in which background knowledge indicates that the set V is

partitioned into ordered blocks V1, . . . , Vk such that edges between vertices in different blocks

are arrows pointing from blocks with lower numbering to blocks with higher numbering. If

no further information is available about the relationship between variables in a same block,

then we argue that the available background knowledge is compatible with all CGs consistent

with the block ordering and such that the subgraphs GVi
, i = 1, . . . , k, are themselves CGs.

In our notation this is written as B = (V g
1
, . . . , V g

k ) or, equivalently, as B = (V1, . . . , Vk).

An instance of this situation is given in the following example adapted from Lauritzen and

Richardson (2002).

Example 1 Let T represent a randomised treatment so that, for instance, T = 1 denotes

that a patient has been treated with a given drug and T = 0 indicates placebo. Furthermore,

let X and Y represent two responses of the experiment. Since the treatment is randomised,

edges between V1 = {T} and V2 = {X, Y } correspond to causal effects, namely to arrows

pointing from T to variables in V2. It follows that, if the kind of relationship between X and

Y is unknown, then background knowledge implies the block structure in Figure 1 (a) but,
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T
X

Y

T
X

Y

(a) (b)

Figure 1: Block ordering of variables does not imply undirected edges within blocks. (a)
block ordering of variables. (b) instance of CG compatible with the ordering.

at the same time, it is also compatible with the model given in Figure 1 (b). Nevertheless,

a traditional CG modelling procedure would rule out the presence of an arrow between X

and Y and, as a consequence, model (b) in Figure 1 from the search space. 2

As well as for the one-block case, also in the multiple-bock case additional subject matter

knowledge on the kind of association within blocks may indicate that for a given block Vi

either only arrows or only lines are allowed. We incorporate this information in B by adding

a label to Vi. In this way B specifies a block structure where every block may be an UG,

a DAG or, more generally, a CG.

Definition 5 Let V1, . . . , Vk be a partition of a set of vertices V . A labelled block ordering

B of V is a sequence (V ℓi

i , i = 1, . . . , k) such that ℓi ∈ {u, e, g} and with the convention that

Vi = V g
i . 2

Every labelled block ordering B of V identifies a subset of H made up of all CGs that satisfy

the constraints imposed by B.

Definition 6 Let B = (V ℓi

i , i = 1, . . . , k) be a labelled block ordering of the vertex set V .

We say that the CG G = (V, E) is B-consistent if

(a) all edges joining vertices in different blocks of B are arrows pointing from blocks with

lower numbering to blocks with higher numbering;

(b) for all i such that ℓi = u, the subgraph GVi
is an UG;

(c) for all i such that ℓi = d, the subgraph GVi
is a DAG.

2

Hereafter we use the shorthand B-CG for “B-consistent CG” and denote by H(B) the family

of all B-CGs on |V | vertices.

Example 1 (continued). In this example no restriction can be imposed on the kind

of association within blocks. Hence, we represent the existing background knowledge by
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the labelled block ordering B = (V g
1
, V g

2
) and, consequently, the space H(B) is made up

of all structures in H such that every edge involving T is an arrow pointing to either X

or Y . On the contrary, traditional CG modelling corresponds to the labelled block ordering

B′ = (V u
1 , V u

2 ). It is easy to see that H(B′) ⊂ H(B); in particular, the graph (b) of Figure 1

is contained in H(B) but not in H(B′). 2

It is worth noting that B-CGs are modular objects. They can be thought of as DAGs of

boxes where every box is either an UG or a DAG, or more generally a CG. We remark that

B cannot be used to encode any arbitrary background knowledge on the network structure;

nevertheless, it is a versatile tool and, to our knowledge, every relevant subclass of CGs

considered in the literature is a class of B-CGs for the appropriate choice of B. As shown

above, the families of DAGs, UGs and CGs are all families of B-CGs. When every block

of B is made up of exactly one variable, then the class of B-CGs is the class of all DAGs

consistent with a given full ordering of variables. The family of CGs traditionally used in

the literature is the class of B-CGs with B = (V u
i , i = 1, . . . , k). If B = (V u

1 , V d
2 ) then H(B)

is a family of recursive causal graphs (Kiiveri et al., 1984 and Richardson, 2001). Of special

interest is also the family of B-CGs with B = (V d
i , i = 1, . . . , k), namely the subset of all

DAGs consistent with a given block ordering of variables. Structural learning within this

family of graphs is implemented in the Tetrad program (Spirtes et al., 2001 and Meek,

1995). Furthermore, the latter family of graphs is also implicitly used in the context of

probabilistic expert systems involving both continuous and discrete variables where, for

computational convenience, vertices are partitioned as B = (V d
1 , V d

2 ) with V d
1 corresponding

to the discrete variables and V d
2 to the continuous variables (see Cowell et al., 1999, p. 136).

The implementation of structural learning algorithms with respect to the family H(B)

requires to deal with Markov equivalence of B-consistent CGs. In the next section we

consider the characterisation of equivalence classes of B-CGs. This requires the extension

of the family of B-CGs to the family of weakly B-consistent CGs, shortly wB-CGs, obtained

by relaxing condition (c) of Definition 6 as follows:

(c′) for all i such that ℓi = d, the subgraph GVi
is a CG with decomposable chain compo-

nents and there is no flag α → γ −−δ ∈ G such that γ −−δ ∈ GVi
.

We denote by H+(B) the family of all wB-CGs and remark that H(B) ⊆ H+(B) because

condition (c) of Definition 6 implies condition (c′) above. Note that, if B = (V d), then

H+(B) is the family of NF-CGs with decomposable chain components.

4 Graphical characterisation of B-CGs

In the graphical characterisation of equivalence classes of CGs one single graph replaces

a whole class of CGs and, as a consequence, the amount of information carried by the

characterising graph constitutes a central issue in the choice of the representative. For
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instance, in the characterisation of the class [[G]] of all CGs equivalent to the CG G = (V, E),

the largest CG G‡ = ∪[[G]] constitutes a natural representative because:

(i) G‡ is a CG equivalent to G;

(ii) two vertices are joined by an arrow in G‡ if and only if they are joined by an arrow

with the same direction in every G′ ∈ [[G]];

(iii) every G′ ∈ [[G]] can be recovered from G‡ by properly directing certain lines.

We remark that properties (ii) and (iii) are a consequence of the fact that G‡ is the union of

all CGs in [[G]] and that property (ii) is especially important in causal discovery because it is

used to identify the associations between variables that might have a causal interpretation

(Spirtes et al., 2001).

In the characterisation of the class [D] of all DAGs equivalent to the DAG D both the

largest CG D‡ and the essential graph D∗ = ∪[D] could be used, but the latter representative

is preferred because it satisfies all three properties above (suitably rephrased by replacing G

with D, G‡ with D∗ and [[G]] with [D]). More precisely, properties (i) and (iii) are satisfied

by both D‡ and D∗ whereas property (ii) is only satisfied by D∗ because it is the smallest

graph larger than every element of [D].

Let G ∈ H(B) be a B-CG. It seems natural, at this point, to represent the B-equivalence

class [G]B = {G′ ∈ H(B) | G′ ∼ G} of G by means of the smallest graph larger than every

element of [G]B, which we call the B-essential graph of G.

Definition 7 For a B-CG G, the B-essential graph of G is the graph GB = ∪[G]B. 2

The B-essential graph is constructed so as to satisfy properties (ii) and (iii) above (suitably

rephrased by replacing G‡ with GB and [[G]] with [G]B) and in this section we show that

property (i) also holds, i.e. that GB is a CG equivalent to G. Furthermore, we provide a

graphical characterisation of GB and a procedure to construct B-essential graphs.

We remark that in general GB /∈ [G]B, as well as D∗ /∈ [D]. Indeed, if B = (V d) then

[G]B = [G] and GB = G∗, while for B = (V g) it holds that [G]B = [[G]] and GB = G‡. Thus,

the material in this section unifies and generalises some existing results for essential graphs

and largest CGs.

4.1 GB is a CG equivalent to G

Frydenberg (1990) showed that the ∨-union of CGs equivalent to a given CG G is a CG

equivalent to G (see Theorem 2). Here we prove that GB is a CG equivalent to G by showing

that it can be obtained as the ∨-union of CGs equivalent to G.

It is easy to check that for two equivalent CGs G′,G′′ ∈ [G]B the ∨-union G′ ∨ G′′ is not

necessarily a B-CG and thus may not belong to [G]B. For this reason it is convenient to

deal with the wider class of wB-CGs introduced in Section 3. For a wB-CG G ∈ H+(B) let
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[G]B+ = {G′ ∈ H+(B) | G′ ∼ G} be the corresponing wB-equivalence class and let GB
+ = ∪[G]B+,

so that if G ∈ H(B) then [G]B ⊆ [G]B+ and GB ⊆ GB
+. We now show that the class [G]B+ is

closed with respect to the ∨-union operation.

Lemma 7 For a labelled block ordering B = (V ℓi

i , i = 1, . . . , k) of a vertex set V , let

G = (V, E) and G′ = (V, E′) be two wB-CGs. Then

(i) if α0, α1, . . . , αr = α0 is a semi-directed cycle in G ∪ G′, then there exists a block Vi

of B such that {α0, α1, . . . , αr} ⊆ Vi;

(ii) if the subset U ⊆ V is the union of some blocks of B, that is either Vi ∩ U = ∅ or

Vi ∩ U = Vi for all i = 1, . . . , k, then it holds that (G ∨ G′)U = GU ∨ G′
U .

Proof. (i). For a vertex α ∈ V let i(α) denote the index of the block Vi of B such that

α ∈ Vi. Hence, to the semi-directed cycle α0, α1, . . . , αr = α0 it is associated the sequence

i(α0), i(α1), . . . , i(αr) = i(α0) and we prove point (i) by showing that this sequence is

constant, i.e. that i(α0) = i(α1) = · · · = i(αr) = i. We first note that i(αj−1) ≤ i(αj)

for all j = 1, . . . , r. Indeed, as a consequence of the weak B-consistency of G and G′,

i(αj−1) > i(αj) would imply both αj−1 ← αj ∈ G and αj−1 ← αj ∈ G′ and, consequently,

αj−1 ← αj ∈ G ∪ G′ would be an arrow pointing against the direction of the cycle, which

is not possible. We conclude that the sequence is non-decreasing and, since i(αr) = i(α0),

it can only be constant. Point (ii) follows directly from point (i) and the definition of the

∨-union operation. 2

We remark that, as a consequence of point (ii) of Lemma 7, the ∨-union operation on

wB-CGs is local with respect to blocks; formally (G ∨ G′)Vi
= GVi

∨ G′
Vi

for all i = 1, . . . , k.

Theorem 8 Let B be a labelled block ordering of a vertex set V . If G = (V, E) and

G′ = (V, E′) are two equivalent wB-CGs, then G ∨ G′ is a wB-CG equivalent to G and G′.

Proof. The graph G ∨ G′ is a CG by construction and it is equivalent to G by Theorem 2

(Frydenberg, 1990). We now show that G ∨ G′ satisfies conditions (a), (b) and (c′) which

define wB-CGs. First, condition (a) holds since every between-block arrow of G and G′ is

also an arrow in G ∪ G′ and Lemma 7 (i) guarantees that no between-block arrow of G ∪ G′

can become a line in G ∨ G′ as part of a semi-directed cycle in G ∪ G′. Condition (b) is

trivially true because (G ∨ G′)Vi
= GVi

= G′
Vi

is an UG for all i such that ℓi = u.

In order to prove condition (c′) it is sufficient to show that, for all i such that ℓi = d,

(G ∨ G′)Vi
is an NF-CG with decomposable chain components and that, if there exists an

arrow α → γ ∈ G ∨ G′ with γ ∈ Vi and α ∈ Vj , so that j < i, then (G ∨ G′)Vi∪{α} is

an NF-CG. By Lemma 7 (ii) (G ∨ G′)Vi
= GVi

∨ G′
Vi

and thus, since both GVi
and G′

Vi
are

NF-CGs with decomposable chain components, such is (G ∨G′)Vi
by Proposition 3. Assume

now that α → γ ∈ G∨G′ with γ ∈ Vi and α ∈ Vj , so that j < i. It is easy to see that, letting
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Ṽ = Vi ∪ {α}, both GṼ and G′
Ṽ

are NF-CGs and that, if we set B̃ = ({α}, V d
i ), then GṼ

and G′
Ṽ

are wB̃-CGs. Clearly, both in GṼ ∨G′
Ṽ

and in (G ∨G′)Ṽ every edge involving α is an

arrow pointing at a vertex in Vi. Furthermore, by Lemma 7, both (GṼ ∨ G′
Ṽ

)Vi
= GVi

∨ G′
Vi

and (G ∨ G′)Vi
= GVi

∨ G′
Vi

. We can conclude that (G ∨ G′)Vi∪{α} = GṼ ∨ G′
Ṽ

and the result

follows because, by Proposition 3, GṼ ∨ G′
Ṽ

is an NF-CG. 2

It follows from Theorem 8 that, unlike the class [G]B, the class [G]B+ is closed with respect

to the ∨-union operation so that there exists a largest CG in [G]B+.

Corollary 9 For a labelled block ordering B of a vertex set V , let G = (V, E) be a B-CG.

Then it holds that

(i) ∨[G]B+ ∈ [G]B+;

(ii) GB
+ = ∨[G]B+.

Proof. Point (i) is an immediate consequence of Theorem 8 whereas point (ii) follows from

the fact that the class [G]B+ contains a largest CG. 2

The reason for introducing the graph GB
+ is that, in fact, it coincides with GB for all G ∈ H(B).

Theorem 10 For a labelled block ordering B of a vertex set V let G = (V, E) be a B-CG.

Then, it holds that GB = GB
+.

Proof. In this proof we make use of the following facts.

Fact 1. If H is an NF-CG with decomposable chain components, then it is possible to

direct the undirected edges of H so as to obtain a DAG equivalent to H. For a proof

see Roverato (2005, Appendix A).

Fact 2. If H is an NF-CG with decomposable chain components and α −−γ ∈ H,

then the procedure described in Fact 1 can be used to construct two DAGs D′ and D′′

both equivalent to H and such that α → γ ∈ D′ while α ← γ ∈ D′′. For a proof see

Roverato (2005, Appendix A).

Fact 3. For a wB-CG G̃ let G̃′ be any graph obtained from G̃ by replacing every

subgraph G̃Vi
such that ℓi = d with a DAG DVi

equivalent to G̃Vi
constructed as

described in Fact 1. Then G̃′ is a B-CG equivalent to G̃.

It is straightforward to see that G̃′ is a B-CG and we now show that it is equivalent

to G̃. By construction G̃′ has the same skeleton as G̃ and, moreover, G̃Vi
has the

same minimal complexes as G̃′
Vi

for all i = 1, . . . , k. Hence, we only have to check

that G̃ and G̃′ have the same minimal complexes involving between-block arrows.

More precisely, differences between the two CGs can only involve complexes which
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are immoralities α → γ ← δ with γ ∈ Vi, ℓi = d, and, without loss of generality,

α /∈ Vi. Note that if an immorality of this type is present in G̃′ then it must also be

present in G̃ because otherwise there would be a flag α → γ −−δ ∈ G̃ with γ −−δ ∈ Vi.

Hence, every immorality of this type in G̃′ is an immorality in G̃, but the converse is

also true because G̃′ ⊆ G̃, and we can conclude that G̃′ and G̃ are equivalent.

It is clear that GB ⊆ GB
+ so that to prove that GB = GB

+ it is sufficient to show that GB
+ ⊆ GB,

i.e. that γ−−δ ∈ GB
+ implies γ−−δ ∈ GB. To this aim, let G′ be a B-CG obtained form GB

+ as

described in Fact 3. If γ and δ belong to a block Vi such that ℓi 6= d, then γ−−δ ∈ G′ ∈ [G]B

and therefore γ −−δ ∈ GB. Otherwise, if γ and δ belong to a block Vi such that ℓi = d, and

γ → δ ∈ G′, then by Fact 2 we can construct a second B-CG G′′ equivalent to G such that

δ → γ ∈ G′′ so that γ −−δ ∈ G′ ∪ G′′ ⊆ GB. 2

We are now in a position to give the main result of this section.

Corollary 11 For a labelled block ordering B of a vertex set V , let G = (V, E) be a B-CG.

Then GB is a CG equivalent to G.

Proof. This is an immediate consequence of Theorem 10 and Corollary 9 above. 2

4.2 Construction and characterisation of GB

We have shown that GB is a wB-CG and that it represents a natural characterising graph

for the class [G]B. We now provide a procedure to construct GB starting from an arbitrary

B-CG G and then characterise those CGs which are B-essential graphs, that is the CGs that

represent some B-equivalence class.

Generalising the approach put forth by Roverato (2005), we propose a greedy strat-

egy based on the operation of merging meta-arrows of wB-CGs. The following theorem

guarantees that our procedure is well defined.

Theorem 12 For a labelled block ordering B of a vertex set V , let G = (V, E) and G′ =

(V, E′) be two equivalent wB-CGs such that G ⊂ G′. Then, there exists a finite sequence

G = G0 ⊂ G1 ⊂ · · · ⊂ Gr = G′, with r ≥ 1, of equivalent wB-CGs such that Gj is obtained

from Gj−1 by merging exactly one of its meta-arrows, for all j = 1, . . . , r.

Proof. To prove the desired result it is sufficient to show that there exists a wB-CG Ḡ

with G ⊂ Ḡ ⊆ G′ and such that Ḡ can be obtained from G by merging exactly one of its

meta-arrows; recall that in this case Ḡ is necessarily equivalent to G and G′ by Proposition 1.

From the definition of wB-CG it follows that the differences between G and G′ may only

involve subgraphs GVi
and G′

Vi
for i = 1, . . . , k. More precisely, we can always find a block Vi

of B such that GVi
⊂ G′

Vi
and either ℓi = g or ℓi = d.

Consider first the case in which ℓi = g. By Theorem 5 we can find a CG ḠVi
(equivalent

to GVi
) with GVi

⊂ ḠVi
⊆ G′

Vi
and such that ḠVi

is obtained from GVi
by merging exactly
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one meta-arrow. Let Ḡ be the graph obtained by replacing GVi
with ḠVi

in G. It is not

difficult to see that Ḡ fulfills all the desired properties: it is a wB-CG with G ⊂ Ḡ ⊆ G′ by

construction and it can be obtained from G by merging one of its meta-arrows.

Consider now the case in which ℓi = d. We can follow the same procedure used for

ℓi = g with the only difference that we take ḠVi
in the family of NF-CGs. The existence of

a suitable NF-CG is guaranteed by Theorem 5. In this way we construct a CG Ḡ that can

be obtained from G by merging one of its meta-arrows and such that G ⊂ Ḡ ⊆ G′, and we

only have to show that Ḡ is weakly B-consistent. More precisely, since G and Ḡ only differ

for the subgraph corresponding to block Vi, and we have chosen ḠVi
so that it is a NF-CG

equivalent to GVi
, it is sufficient to show that Ḡ has no flags α → δ −−γ with δ, γ ∈ Vi and

α /∈ Vi. This follows by noticing that the presence of such a flag in Ḡ would imply that

α → δ −−γ ∈ G′ because α → δ is a between-block arrow and, since Ḡ ⊆ G′, every line of Ḡ

is a line in G′. However, G′ has no flags of this kind because it is weakly B-consistent. 2

By Theorem 12 we can find GB = GB
+ by successively merging meta-arrows of wB-CGs,

starting from any given B-GC G. However, in order to turn Theorem 12 into an efficient

algorithm, we need a characterisation of those meta-arrows which can be merged obtaining

an equivalent wB-CG. This is given by Theorem 13 below, in terms of meta-arrows which

have B-insubstantial arrowhead.

Definition 8 For a labelled block ordering B = (V ℓi

i , i = 1, . . . , k) of a vertex set V , let

G = (V, E) a wB-CG and A ⇉ D a meta-arrow of G. We say that the arrowhead of A ⇉ D

is B-insubstantial if the following conditions hold:

(a) A ∪ D ⊆ Vi for some block Vi of B;

(b) if ℓi = g, the arrowhead of A ⇉ D is insubstantial in G;

(c) if ℓi = d, the arrowhead of A ⇉ D is strongly insubstantial in G.

2

Note that, in the above definition, having fixed A ⇉ D, only one among (b) and (c) is

relevant. We also remark that if ℓi = d then condition (c) of Definition 4 simplifies to

paG(D) \ A = paG(A) (Roverato, 2005 Proposition 2).

Theorem 13 For a labelled block ordering B = (V ℓi

i , i = 1, . . . , k) of a vertex set V , let

G = (V, E) a wB-CG and A ⇉ D a meta-arrow of G. Then, the CG G′ obtained from G by

merging the meta-arrow A ⇉ D is a wB-CG equivalent to G if and only if the arrowhead

of A ⇉ D is B-insubstantial.

Proof. Assume first that the CG G′ obtained from G by merging the meta-arrow A ⇉ D is

a wB-CG equivalent to G. Then, since G′ is weakly B-consistent, it holds that A ∪ D ⊆ Vi
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for some block Vi of B with either ℓi = g or ℓi = d. By Theorem 6, the arrowhead of

A ⇉ D is insubstantial and if ℓi = g we are finished. We now show that if ℓi = d then

pa(D)\A = pa(A) in G so that the arrowhead of A ⇉ D is also strongly insubstantial. As

G′ is weakly B-consistent, there are no flags in G′ involving lines of G′
Vi

. Since every arrow of

A ⇉ D is a line in G′, this implies that pa(A) = pa(D) in G′. Furthermore, by construction

paG(D)\A = paG′(D), and paG(A) = paG′(A) so that pa(D)\A = pa(A) in G as required.

Conversely, assume that the arrowhead of A ⇉ D is B-insubstantial in G. In this case

Theorem 6 implies that G′ is a CG equivalent to G so that it remains to show that G′ is

weakly B-consistent. By point (a) of Definition 8 we can find a block Vi, with either ℓi = g

or ℓi = d, such that A∪D ⊆ Vi. This implies both that (a) of Definition 6 holds for G′, and

that weak B-consistency of G′ has to be checked only with respect to block Vi. If ℓi = g

there is nothing to prove. If ℓi = d then we have to show that (i) G′ contains no flag

γ → α−−δ such that α−−δ ∈ G′
Vi

and (ii) that the G′
Vi

has decomposable chain components.

Point (i) follows by noticing that γ → α −−δ ∈ G′ implies γ → α ∈ G because G ⊆ G′ and,

more precisely, that either γ → α ← δ ∈ G or γ → α → δ ∈ G because γ → α −−δ /∈ G

by (c′) in the definition of weak B-consistency. However, γ → α ← δ cannot belong to G

because, in this case, G and G′ would not be equivalent. Furthermore, γ → α → δ cannot

belong to G because γ ∈ paG(α) and γ /∈ paG(δ) would imply that the arrowhead of the

meta-arrow A ⇉ D to which α → β belongs be not strongly B-insubstantial. We conclude

that γ → α −−δ /∈ G′. Point (ii) follows by noticing that if the arrowhead of A ⇉ D is

B-insubstantial in G then it is strongly insubstantial in GVi
, so that by Theorem 6 G′

Vi
is a

NF-CG equivalent to GVi
and thus it has decomposable chain components. 2

It follows from Theorem 13 that we can start from any B-CG G = (V, E) and successively

merge meta-arrows with B-insubstantial arrowhead until we obtain the B-essential graph GB

in which no meta-arrow can be merged. We also remark that this procedure can be applied

to every block of B independently of other blocks, i.e. blocks can be processed in parallel.

Furthermore, if two B-CGs G and G̃ differ only with respect to the subgraph induced by

the block Vi, then the corresponding B-essential graphs GB and G̃B will also differ only with

respect to the subgraphs GB
Vi

and G̃B
Vi

; and the same is true if the difference involves more

than one block. This property could be exploited to develop an efficient search procedure

in the space of B-essential graphs.

We conclude with the announced characterisation of those CGs which are B-essential

graphs and thus represent some B-equivalence class.

Theorem 14 A graph G̃ is the B-essential graph GB of a B-equivalence class [G]B for some

B-CG G if and only if

(i) G̃ is a wB-CG;

(ii) no meta-arrow of G̃ has B-insubstantial arrowhead.
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Proof. If G̃ = GB for some B-CG G, then (i) follows from Theorem 10 and (ii) holds because

otherwise, by Theorem 13, a larger wB-CG could be found in [G]B+, but this is not possible

because by Theorem 10 GB is the largest CG in [G]B+. Conversely, if (i) holds then [G′]B+ is

well defined and, by Theorem 12 and Theorem 13, point (ii) implies that G̃ is the largest

element of [G̃]B+. 2

5 Discussion

As shown by Lauritzen and Richardson (2002), the interpretation of CGs is not as straight-

forward as it may appear. In particular, undirected edges represent a very special kind of

symmetric association between variables. For this reason, constraining an edge between two

vertices, if present, to be a line, cannot be simply motivated by the assumption that the

two corresponding variables are on an equal footing and, in fact, it may constitute a much

stronger assumption than believed. As well as “traditional” CG modelling, the framework

of B-CGs allows to implement prior knowledge on variable block ordering, but is also gives

additional flexibility in the specification of associations within blocks.

A related issue concerns the confounding effect of latent variables. Lauritzen and

Richardson (2002) showed that, due to the presence of latent variables, the most appro-

priate CG for a given problem may present arrows pointing against the causal ordering

of the variables. In this case they suggest that a possible strategy is to ignore the block

ordering when performing structural learning, which in our framework amounts to setting

B = (V g). However, it may also be known that latent variables are only connected with

a proper, possibly small, subset of variables XA with A ⊂ V . In this case B-CGs allow

the implementation of a mixed strategy in which the substantive labelled block ordering B

is first specified, and then certain successive blocks are merged into a single block Vi with

label ℓi = g in such a way that A ⊆ Vi.

We remark that B-essential graphs are interesting objects. Both largest CGs and essen-

tial graphs are special cases of B-essential graphs. More interestingly, however, B-essential

graphs may be thought of as DAGs of boxes where every box is an undirected subgraph for

UG-boxes, an essential subgraph for DAG-boxes and a largest chain subgraph for CG-boxes.

Indeed, it is easy to check that the characterisation of essential graphs provided by Studený

(2004) and Roverato (2005) can also be used to characterise the DAG-boxes of B-essential

graphs if, in checking strong insubstantiality of meta arrows, also the parents outside the

box are considered. In a similar way the characterisation of largest CGs given by Roverato

(2005) can also be used to characterise the CG-boxes of B-essential graphs.
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Studený, M. (1996). On separation criterion and recovery algorithm for chain graphs.

In Uncertainty in Artificial Intelligence: Proceedings of the Twelfth Conference (eds

F. Jensen & E. Horvitz), 509–516. Morgan Kaufmann, San Francisco.

19
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Volf, M. and Studený, M. (1999). A graphical characterisation of the largest chain graphs.

Int. J. Approx. Reasoning, 20, 209–236.

Wermuth, N. and Lauritzen, S.L. (1990). On substantive research hypotheses, conditional

independence graphs and graphical chain models (with discussion). J. Roy. Statist.

Soc. B, 52, 21–72.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley,

Chichester.

20


