Verifica di ipotesi e p-value

Un'introduzione minimale

Luca La Rocca1

Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università degli Studi di Modena e Reggio Emilia

Insegnamento di Analisi Statistica dei Dati Corsi di Laurea Magistrale in Informatica e Matematica Anno Accademico 2018/2019

http://personale.unimore.it/rubrica/dettaglio/llarocca

Ipotesi nulla

Dato un modello statistico, indicizzato dal parametro $\theta \in H$, per il dato $z \in \mathcal{Z}$, si dice ipotesi statistica un suo sottomodello (senz'altro individuato da un sottoinsieme H_0 di H).

Un'ipotesi $H_0 \subset H$ si dice ipotesi nulla quando rappresenti uno "status quo" contro il quale si cerca evidenza nel dato; riterremo $\theta \in H_0$ sino a prova contraria (fornita da z).

Per esempio, se consideriamo il modello esponenziale per i tempi di sopravvivenza non censurati della tabella 1.4, nel testo di riferimento, supponendoli i.i.d. $\text{Exp}(1/\mu)$, può interessarci come ipotesi nulla

$$H_0: \mu = 1000 \ (giorni)$$

individuata dal singoletto $\{\mu_0\} = \{1000\}$ di $H = \mathbb{R}_+^*$...

Ipotesi semplici e composite

... si dice semplice un'ipotesi statistica individuata da un singolo valore del parametro e composita un'ipotesi statistica che non sia semplice.

Per esempio, se consideriamo $X \sim \text{Binom}(m,\pi)$ e $Y \sim \text{Binom}(n,\psi)$, indipendenti, per i conteggi della tabella 3.1, nel testo di riferimento, definito il rapporto dei pronostici $\rho = \{\pi/(1-\pi)\}/\{\psi/(1-\psi)\}$, potrebbe interessarci come ipotesi nulla

$$H_0: \rho = 1$$

individuata dal sottospazio parametrico $\{(\pi, \psi) \in]0, 1[^2 : \pi = \psi\}.$

Discrepanza dall'ipotesi nulla

Supponiamo che $d_0(z)$ quantifichi la discrepanza tra H_0 e z, nel senso che $d_0(z)=0$ se z è perfettamente compatibile con H_0 , mentre $d_0(z)<\underline{d}<0$ o $d_0(z)>\overline{d}>0$ indicano scarsa compatibilità.

Avremo tipicamente

$$d_0(z) = \inf_{\theta \in H_0} d(\theta, z),$$

o più semplicemente $d_0(z)=d(\theta_0,z)$ se $H_0=\{\theta_0\}$, dove $d(\theta,z)$ quantifica la discrepanza tra θ e z (con $d(\hat{\theta}(z),z)=0$ per un opportuno stimatore $\hat{\theta}$ per θ come in particolare quello di massima verosimiglianza).

Statistica test

Nell'esempio del modello esponenziale, possiamo prendere

$$d(\mu, x_{1:n}) = \frac{\bar{x}_n - \mu}{\mu} = \frac{\bar{x}_n}{\mu} - 1,$$

di modo che dati scarsamente compatibili con μ_0 corrisponderanno a valori particolarmente bassi o alti della statistica test $n\bar{X}_n/\mu_0$ (ottenuta dal pivot $n\bar{X}_n/\mu\sim \mathrm{Gamma}(n,1)$ ponendo $\mu=\mu_0$).

Valori "estremi" della statistica test ci forniranno evidenza "sufficiente" per rifiutare H_0 ; altrimenti, visto che $\theta \in H_0$ sino a prova contraria, finiremo per accettare H_0 (almeno provvisoriamente).

Regione di rifiuto

Diremo regione di rifuto l'insieme dei dati scarsamente compatibili con l'ipotesi nulla:

$$\mathcal{R} = \{z \in \mathcal{Z} \mid d_0(z) < \underline{d} \circ d_0(z) > \overline{d}\}$$

nel caso bilaterale o

$$\mathcal{R} = \{ z \in \mathcal{Z} \mid d_0(z) < \underline{d} \}$$

nel caso unilaterale sinistro e

$$\mathcal{R} = \{z \in \mathcal{Z} \mid d_0(z) > \overline{d}\}$$

nel caso unilaterale destro.

Ipotesi alternativa

Si dice ipotesi alternativa il complemento dell'ipotesi nulla in H: $H_1 = H \setminus H_0$.

Nell'esempio del modello esponenziale, avremo

$$\mathcal{R} = \{x_{1:n} \in \mathbb{R}^n_+ \mid n\bar{x}_n/\mu_0 < \underline{\underline{g}}_n \text{ o } n\bar{x}_n/\mu_0 > \overline{\underline{g}}_n\},$$

se $H_1 = \{ \mu \in \mathbb{R}_+^* \mid \mu \neq \mu_0 \}$, cioè nel caso bilaterale, oppure

$$\mathcal{R} = \{ x_{1:n} \in \mathbb{R}^n_+ \mid n\bar{x}_n/\mu_0 > \overline{g}_n \},$$

se $H_1 = \{ \mu \in \mathbb{R}_+^* \mid \mu > \mu_0 \}$, cioè nel caso unilaterale destro; in questo caso $H = [\mu_0, \infty[$ o $H_0 =]0, \mu_0]$.

Analogamente nel caso unilaterale sinistro. Si noti che è l'ipotesi alternativa a determinare il tipo di regione di rifiuto.

Errori di prima e seconda specie

Si dice errore di prima specie l'errore commesso quando $\theta \in H_0$; poiché $\theta \in H_0$ sino a prova contraria, cercheremo di controllare la probabilità di commetterlo

$$\alpha = \mathbb{P}_{\theta_0}\{X_{1:n} \in \mathcal{R}\} = \sup_{\theta \in \mathcal{H}_0} \mathbb{P}_{\theta}\{X_{1:n} \in \mathcal{R}\},$$

per esempio richiedendo $\alpha = 0.05$ (livello di significatività).

Si dice errore di seconda specie l'errore commesso quando $\theta \in H_1$; poiché tipicamente $\sup_{\theta \in H_1} \mathbb{P}_{\theta} \{ X_{1:n} \in \mathcal{R} \} = \alpha$, dobbiamo accontentarci di valutare la potenza della procedura di verifica di ipotesi

$$\beta = \mathbb{P}_{\theta_1}\{X_{1:n} \in \mathcal{R}\}$$

in corrispondenza di un particolare valore alternativo per θ .

Il p-value

In pratica si preferisce spesso calcolare

$$p = \mathbb{P}\{d_0(Z) > d_0(z^{\bullet})\}$$

in caso di alternativa unilaterale destra e

$$p = \mathbb{P}\{d_0(Z) < d_0(z^{\bullet})\}$$

in caso di alternativa unilaterale sinistra, dove z^{\bullet} è il dato osservato, raddoppiando il valore ottenuto in caso di alternativa bilaterale.

In questo modo si ottiene il minimo valore di α per cui si rifiuta H_0 e si finisce per rifiutare H_0 quando il valore p, detto anche livello di significatività osservato, è "piccolo".

Un p-value

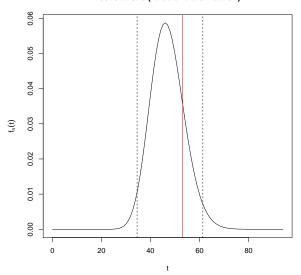
Nell'esempio del modello esponenziale per i tempi di sopravvivenza non censurati della tabella 1.4, nel testo di riferimento, considerando per semplicità l'alternativa unilaterale $\mu>\mu_0$, possiamo calcolare

$$p = \mathbb{P}_{\mu_0}(n\bar{X}_n/\mu_0 > n\bar{x}_n^{\bullet}/\mu_0) = 0.1819,$$

dove $n\bar{x}_n^{\bullet}/\mu_0=53.146$ è il valore osservato della statistica test $n\bar{X}_n/\mu_0$ ($n=47, \bar{x}_n^{\bullet}=1130.766$ e $\mu_0=1000$).

Il p-value così ottenuto <u>non</u> è abbastanza piccolo da rifiutare H_0 , perché dovremmo accettare un errore di prima specie del 18%; lo sarebbe ancora meno con l'alternativa bilaterale (p=0.3638).

Test statistic (value and distribution)



Il test esatto di Fisher

Nel caso dell'ipotesi nulla

$$H_0: \rho = 1$$

sul rapporto dei pronostici $\rho = \{\pi/(1-\pi)\}/\{\psi/(1-\psi)\}$ relativo a $X \sim \text{Binom}(m,\pi)$ e $Y \sim \text{Binom}(n,\psi)$, indipendenti, si può usare come statistica test $X \mid X+Y=x^{\bullet}+y^{\bullet}$ la cui distribuzione, se $\rho=1$, è ipergeometrica $(x^{\bullet}+y^{\bullet})$ estrazioni, m+n biglie in tutto, m biglie bianche) qualunque sia il valore di $\pi=\psi$.

Significatività asintotica

Se $T_n=g_n(X_{1:n})$ è uno stimatore asintoticamente normale (di ordine $1/\sqrt{n}$) per $\xi=h(\theta)$, con errore standard asintotico $\sqrt{V_n/n}$, possiamo usare

 $Z_n = \frac{T_n - \xi_0}{\sqrt{V_n/n}} \approx \text{Norm}(0,1)$

come statistica test per calcolare un p-value approssimato contro l'ipotesi nulla $h(\theta) = \xi_0$.

Troveremo $p=2\{1-\Phi(|z_n^{\bullet}|)\}$, con l'alternativa bilaterale $h(\theta)\neq \xi_0$, dove z_n^{\bullet} è il valore osservato di Z_n e Φ la funzione di ripartizione normale standard.

Dualità con gli intervalli di confidenza

Se $d_0(z)=d(\theta_0,z)$ e $d(\theta,Z)$ è un pivot, la cui inversione produce l'intervallo di confidenza $[\underline{T},\overline{T}]$ per θ , al livello γ , allora

$$Z \in \mathcal{R} \qquad \Leftrightarrow \qquad \theta_0 \notin [\underline{T}, \overline{T}]$$

e
$$\mathbb{P}_{\theta_0}\{Z \in \mathcal{R}\} = 1 - \gamma$$
.

Si noti che $\mathbb{P}_{\theta}\{\underline{T} \leq \theta \leq \overline{T}\} = \gamma$ è un'affermazione probabilistica relativa a un evento auspicabilmente osservato, valida per qualunque valore del parametro θ , mentre $p = \mathbb{P}\{d_0(Z) > d_0(z^{\bullet})\}$ è un'affermazione probabilistica relativa a un evento non osservato, valida per un valore del parametro che stiamo mettendo in dubbio. . . .

Una prassi discutibile

 \dots ciò nonostante si è affermato l'uso di richiedere p < 0.05 come precondizione per sostenere la validità di una nuova scoperta.

Al riguardo, occorre tenere presente che ci sono buone ragioni per abbassare la soglia di un ordine di grandezza

```
https://www.nature.com/articles/s41562-017-0189-z
```

e più in generale per abbandonare del tutto la prassi in questione

```
http://andrewgelman.com/2017/09/26/
abandon-statistical-significance/
```

ridimensionando il ruolo del p-value nell'analisi dei dati.

Due caveat e uno spunto di lettura

- Il p-value non è la probabilità che l'ipotesi nulla sia vera.
- Il p-value non può fornire evidenza in favore dell'ipotesi nulla.
- The American Statistical Association's statement on p-values

```
http://amstat.tandfonline.com/doi/abs/10.1080/
00031305.2016.1154108#.WfKC14bONE4
```

is a recent synthesis on null hypothesis significance testing.