Consistenza e normalità asintotica Definizioni ed esempi

Luca La Rocca¹

Dipartimento di Scienze Fisiche, Informatiche e Matematiche Università degli Studi di Modena e Reggio Emilia

Insegnamento di Analisi Statistica dei Dati Corsi di Laurea Magistrale in Informatica e Matematica Anno Accademico 2018/2019

Definizione di consistenza in media quadratica

Una successione di stimatori

$$T_1 = g_1(X_1), T_2 = g_2(X_{1:2}), \ldots, T_n = g_n(X_{1:n}), \ldots$$

per $\xi = h(\theta)$ si dice consistente in media quadratica quando si abbia $T_n \stackrel{L^2(\mathbb{P}_{\theta})}{\longrightarrow} h(\theta)$, per $n \to \infty$, vale a dire

$$\lim_{n\to\infty} \mathrm{MSE}_{T_n,\xi}(\theta)\to 0,$$

comunque si prenda $\theta \in H$.

Due esempi di consistenza in media quadratica

Nel caso di un campione casuale da una popolazione normale:

- $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ è consistente in media quadratica, per μ , perché $\mathrm{MSE}_{\bar{X}_n,\mu}(\mu,\sigma^2) = \sigma^2/n \to 0$, per $n \to \infty$, comunque si prendano $\mu \in \mathbb{R}$ e $\sigma^2 \in \mathbb{R}_+$;
- $D_n^2=n^{-1}\sum_{i=1}^n(X_i-\bar{X}_n)^2$ è consistente in media quadratica, per σ^2 , perché $\mathrm{MSE}_{D_n^2,\sigma^2}(\mu,\sigma^2)=\sigma^4(2n-1)/n^2\to 0$, per $n\to\infty$, comunque si prendano $\mu\in\mathbb{R}$ e $\sigma^2\in\mathbb{R}_+$.

3/8

Due implicazioni della consistenza in media quadratica

Se $T_1, T_2, \ldots, T_n, \ldots$ è una successione di stimatori per $\xi = h(\theta)$ consistente in media quadratica, allora necessariamente:

• $T_1, T_2, ..., T_n, ...$ è asintoticamente corretta per $\xi = h(\theta)$, nel senso che

$$\lim_{n\to\infty}\mathbb{E}_{\theta}(T_n)=h(\theta),$$

comunque preso $\theta \in H$ (in virtù della decomposizione dell'errore quadratico medio in termini di distorsione quadratica e varianza);

• $T_1, T_2, ..., T_n, ...$ è consistente in probabilità per $\xi = h(\theta)$, nel senso che $T_n \xrightarrow{\mathbb{P}_{\theta}} h(\theta)$, per $n \to \infty$, vale a dire

$$\lim_{n\to\infty} \mathbb{P}_{\theta}(|T_n - h(\theta)| < \epsilon) \to 1, \quad \text{per ogni } \epsilon > 0,$$

comunque preso $\theta \in H$ (in virtù della disuguaglianza di Markov).

Campione casuale da una popolazione normale

In effetti, per esempio, possiamo verificare che

- $B_{\mu,\sigma^2}(D_n^2;\sigma^2) = -\sigma^2/n \to 0$, per $n \to \infty$, quindi D_n^2 è uno stimatore asintoticamente corretto per σ^2 ;
- $\bar{X}_n \stackrel{\mathbb{P}_{\mu,\sigma^2}}{\longrightarrow} \mu$, per $n \to \infty$, in virtù della Legge dei Grandi Numeri (versione debole), quindi \bar{X}_n è uno stimatore consistente per μ .

Definizione di normalità asintotica

Una successione di stimatori

$$T_1 = g_1(X_1), T_2 = g_2(X_{1:2}), \ldots, T_n = g_n(X_{1:n}), \ldots$$

per $\xi=h(\theta)$ si dice asintoticamente normale (di ordine $1/\sqrt{n}$) quando esista una funzione $v_\infty: H \to \mathbb{R}_+^*$ (detta varianza limite) tale che $\sqrt{n}\{T_n-h(\theta)\} \xrightarrow{\mathbb{L}_\theta} \mathrm{Norm}(0,v_\infty(\theta))$, per $n\to\infty$, vale a dire

$$\lim_{n\to\infty}\mathbb{P}_{\theta}\left\{\frac{T_n-h(\theta)}{\sqrt{v_{\infty}(\theta)/n}}\leq t\right\}=\Phi(t), \qquad \text{per ogni } t\in\mathbb{R},$$

comunque preso $\theta \in H$, dove $\Phi(t) = \int_{-\infty}^{t} \exp\left\{-x^2/2\right\}/\sqrt{2\pi} \, dx$, $t \in \mathbb{R}$, è la funzione di ripartizione normale standard.

Normalità asintotica in pratica

Se T_n è asintoticamente normale (di ordine $1/\sqrt{n}$, con varianza limite v_{∞}) per $\xi=h(\theta)$, quando n è "grande", possiamo approssimare la sua distribuzione con una distribuzione normale di media $h(\theta)$ e varianza $v_{\infty}(\theta)/n$:

$$T_n \approx \text{Norm}\left(h(\theta), \frac{v_{\infty}(\theta)}{n}\right);$$

possiamo pertanto considerare T_n approssimativamente corretto con $\mathrm{RMSE}_{T_n,\xi}(\theta) = \sqrt{v_\infty(\theta)/n}$ e regolarci di conseguenza.

7/8

Teorema Limite Centrale

Se X_1, X_2, \ldots, X_n sono i.i.d. come X con $\mu = \mathbb{E}(X) \in \mathbb{R}$ e $\sigma^2 = \operatorname{Var}(X) \in \mathbb{R}_+^*$, allora $\sqrt{n}(\bar{X}_n - \mu) \stackrel{\mathbb{L}}{\longrightarrow} \operatorname{Norm}(0, \sigma^2)$, di modo che \bar{X}_n è uno stimatore asintoticamente normale (di ordine $1/\sqrt{n}$) per μ con varianza limite costante (pari a σ^2) nel modello statistico di tutte le distribuzioni con varianza finita e non nulla.

In pratica, se n è "grande" e vogliamo stimare la media della popolazione X con lo stimatore \bar{X}_n , possiamo regolarci come se X fosse normale, purché sia ragionevole supporre che X abbia varianza finita e non nulla.