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Basic elements of Bayesian Statistical Inference

(X,dX) sample space (Polish)

(Θ,dΘ) parameter space (Polish)

[Θ] set of all p.m.’s on (X,B(X)) endowed with the
topology of weak convergence of p.m.’s (Polish)

{m(·,θ)}θ∈Θ statistical model, i.e. a probability kernel from
(Θ,B(Θ)) into (X,B(X))

π prior p.m. on (Θ,B(Θ))
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Bayesian paradigm and posterior distribution

There are (Ω,A ,P) and two random elements

x̃ : Ω→ X sample (observable)

θ̃ : Ω→Θ random parameter

such that, for all A ∈B(X) and B ∈B(Θ),

P[x̃ ∈ A, θ̃ ∈ B] =

∫
B

m(A,θ)π(dθ) . (1)

The posterior distribution π(·, x̃) stands for the r.c.d. P[θ̃ ∈ · | x̃],
where π(·,x) is a probability kernel from (X,B(X)) into
(Θ,B(Θ)) such that, for all A ∈B(X) and B ∈B(Θ),

P[x̃ ∈ A, θ̃ ∈ B] =

∫
A

π(B,x)P◦ x̃−1(dx) . (2)
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Some common question in Bayesian statistics (I)

Question 1: Since the main tool of Bayesian statistics, i.e. the
Bayes theorem, is not always applicable (e.g., it does not work on
non-dominated models), how to evaluate (or, at least,
approximate) the posterior distribution?

See, e.g., Kolmogorov (1933), Renyi (1955), Dubins (1975),
Pfanzagl (1979).

For example, given x0 ∈ supp(P◦ x̃−1), one wonders whether

P[x̃ ∈ Uδ(x0), θ̃ ∈ ·]
P[x̃ ∈ Uδ(x0)]

is a good approximation (for small δ) to π(·,x0) or not, maybe
uniformly in x0.
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Some common question in Bayesian statistics (II)

Question 2: How to formalize the well-known concept of
continuous dependence from the data for a posterior
distribution?

See, e.g., Zabell (1979), Tjur (1982, 1984), Ionescu-Tulcea
(1984).

This concept would establish a point of contact with the theory of
continuous dependence on initial data, well-known in the field of
ODE’s and PDE’s.

Recent consideration of this question in the realm of Inverse
Problems, tackled from a Bayesian point of view. See Cotter,
Dashti, Robinson and Stuart (2010), Vollmer (2013).
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Some common question in Bayesian statistics (III)

Question 3: How to handle the presence of an error term ε̃,
independent of (θ̃, x̃), w.r.t. the original model? More
formally, are

E
[
|P[θ̃ ∈ B | x̃]−P[θ̃ ∈ B | x̃ + ε̃]|

]
or

E
[
d[Θ](P[θ̃ ∈ · | x̃],P[θ̃ ∈ · | x̃ + ε̃])

]
“small” if ε̃ is “small” in some sense?

See, e.g., Lindley and Smith (1972) for the linear model.
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Some common question in Bayesian statistics (IV)

In a compact space X, consider a sequence of partitions
Πm := {Am,1, . . . ,Am,km+1}, for m ∈ N, so that Πm+1 is a
refinement of Πm and B(X) = σ

(⋃
m≥1 Πm

)
. Put

εm := max1≤i≤km+1 diam(Am,i) and assume that εm ↓ 0.

For any p ∈M (= set of all p.m.’s on (X,B(X))), define
pεm (·) :=

∑km+1
i=1 p(Am,i)δam,i with am,i ∈ Am,i . Then, given

ξ̃
(n)

:= (ξ̃1, . . . , ξ̃n) exchangeable r.v.’s, define ξ̃j,m := am,i if
ξ̃j ∈ Am,i for j,m ∈ N and i = 1, . . . ,km + 1, and put

ξ
(n)
m := (ξ1,m, . . . ,ξn,m).

Question 4: How close is P[p̃εm ∈ · | ξ
(n)
m ] to the original

posterior?

See, e.g., Regazzini and Sazonov (2000), and Arjas (1996).
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Some common question in Bayesian statistics (V)

Let {ξ̃n}n≥1 on (Ω,A ,P) be a sequence of exchangeable r.v.’s,
and put πn(·,(ξ̃1, . . . , ξ̃n)) the posterior distribution based on a
sample of n observations.

Question 5 : given another sequence {η̃n}n≥1 on (Ω,A ,P), i.i.d.
with common distribution m(·,θ0), is it true that
πn(·,(η̃1, . . . , η̃n))⇒ δθ0 , P-a.s., as n goes to infinity?
(Bayesian consistency)

See, e.g., Diaconis and Freedman (1986), Barron, Schervish and
Wasserman (1999), Ghosal, Ghosh and van der Vaart (2000).
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Our main problem

The previous problems can be traced back to a common “purely
mathematical” question:
Find sufficient conditions on {m(·,θ)}θ∈Θ and π for the existence
of a specific version π∗(·,x) of the posterior for which

d[Θ] (π
∗(·,x1),π∗(·,x2))≤ CαdX(x1,x2)α (3)

holds for all x1,x2 ∈ X, with suitable α ∈ (0,1] and Cα ≥ 0.

Condition (3) amounts to proving that π(·,x) admits a
Hölder-continuous versions, as a function from (X,dX) into
([Θ],d[Θ]).

The choice of d[Θ] plays a crucial role in the problem.
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Weak metrics

d(P)
[Θ](µ1,µ2) := inf{ε > 0 | µ1(B)≤ µ2(Bε) + ε, ∀ B ∈B(Θ)}

d(FM)
[Θ] (µ1,µ2) := sup

h:Θ→R
‖h‖BL≤1

∣∣∣∫
Θ

h(θ)µ1(dθ)−
∫

Θ
h(θ)µ2(dθ)

∣∣∣
d(W ,β)

[Θ] (µ1,µ2) := inf
ν∈F (µ1,µ2)

(∫
Θ2

[dΘ(θ1,θ2)]β
ν(dθ1dθ2)

)1/β

Notation: Bε := {θ ∈ Θ| dΘ(θ,θ0) < ε for some θ0 ∈ B};
‖h‖BL := ‖h‖∞ +‖h‖L, ‖h‖∞ := sup

θ∈Θ |h(θ)| and
‖h‖L := supθ1 6=θ2

[|h(θ1)−h(θ2)|/dΘ(θ1,θ2)]; F (µ1,µ2) stands
for the Fréchet class with fixed marginals µ1 and µ2.
Warning: d(W ,β)

[Θ] is defined for β≥ 1, only when∫
Θ[dΘ(θ,θ0)]βµ(dθ) < +∞ for some θ0 ∈Θ, for i = 1,2.
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Strong “metrics”

d(TV)
[Θ] (µ1,µ2) := sup

B∈Θ
|µ1(B)−µ2(B)|= 1

2

∫
Θ
|f1(θ)− f2(θ)|λ(dθ)

d(H)
[Θ] (µ1,µ2) :=

(∫
Θ

[
√

f1(θ)−
√

f2(θ)]2
λ(dθ)

)1/2

d(KL)
[Θ] (µ1,µ2) :=

∫
Θ

log

(
f1(θ)

f2(θ)

)
f1(θ)λ(dθ)

provided that µi � λ, with fi := dµi
dλ

, i = 1,2.

Strong metrics are (in general) stronger than weak ones.
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Two simple example with positive answer

A parametric example: X = Θ = R; m(·,θ) = N [θ,s2](·);

π(·) = N [µ,σ2](·); π(· | x) = N [ σ2x+s2µ
σ2+s2 , σ2s2

σ2+s2 ](·). Then,

d(TV)
[Θ] (π(· | x1),π(· | x2)) = C(µ,σ2,s2)|x1− x2| .

A nonparametric example: X = Xn
1 with X1 any metric space;

Θ = M, the set of all p.m.’s on (X1,B(X1));
m(A1×·· ·×An,θ) =

∏n
i=1 p(Ai); π(·) = D[α](·);

π(· | (x1, . . . ,xn)) = D[α +
∑n

i=1 δxi ](·). Then,

d(W ,β)
P (π(· | x),π(· | y))≤ C d(W ,β)

M

(
1
n

n∑
i=1

δxi ,
1
n

n∑
i=1

δyi

)
.
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An example of the complexity of the problem

A vast class of nonparametric priors can be characterized as
normalized random measure with independent increments, i.e.
p̃ = µ̃/µ̃(X), where µ̃ is a completely random measure (c.r.m).

A c.r.m. without fixed jumps is characterized by the
Lévy-Khintchine representation

E
[
e−

∫
X f (x)µ̃(dx)

]
= exp

{
−
∫ +∞

0

∫
X

[1−e−sf (x)]ν(ds,dx)

}
∫ +∞

0 (1∧ s)ν(ds,A) < +∞. Typically, ν(ds,dx) = ρx (ds)α(dx).

The posterior is given by normalizing

µ̃ | (ξ̃1, . . . , ξ̃n), Ũn =(d) µ̃Ũn
+
∑k

i=1 J̃(Ũn)
i δ

ξ̃∗i
. See Regazzini, Lijoi

and Prünster (2003), James, Lijoi and Prünster (2005, 2009).
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The dominated case

The nonparametric case

Why a general theorem?

There are, in general, recurrent difficulties in checking the validity
of (3):

a) apart from the Bayes theorem, there is no general formula yielding
the posterior explicitly

b) the posterior is a non-linear function of model, prior and data
c) even when the posterior is known, the evaluation of the distance

d[Θ] is often impracticable.

Thus, it is not convenient to evaluate the posterior explicitly and
verify the Hölder-continuity directly. It is preferable to find
sufficient conditions on the prior or, better, to some
finite-dimensional objects which characterize the prior.
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THE DOMINATED CASE
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The dominated case

The nonparametric case

Bayes theorem

Basic assumption of dominated model: m(·,θ)� λ for all θ ∈Θ,
for a suitable σ-finite measure λ on (X,B(X)).

Theorem (Bayes)
If (θ,x) 7→ f (x | θ) := m(dx ,θ)

λ(dx) is B(Θ)⊗B(X)/B(R), then there

exists a set A0 ∈B(X), with P◦ x̃−1(A0) = 1, such that, for all x ∈ A0,
one has ρ(x) :=

∫
Θ f (x | θ)π(dθ) > 0 and

π(B,x) =

∫
B f (x | θ)π(dθ)

ρ(x)
(∀ B ∈B(Θ)) . (4)

If B(X) is countable generated (e.g., by the separability of X),
the above measurability of (θ,x) 7→ f (x | θ) follows.

EMANUELE DOLERA Università di Modena e Reggio Emilia Hölder-continuous posterior distributions



Introduction
The dominated case

The nonparametric case

Bayes theorem

Basic assumption of dominated model: m(·,θ)� λ for all θ ∈Θ,
for a suitable σ-finite measure λ on (X,B(X)).

Theorem (Bayes)
If (θ,x) 7→ f (x | θ) := m(dx ,θ)

λ(dx) is B(Θ)⊗B(X)/B(R), then there

exists a set A0 ∈B(X), with P◦ x̃−1(A0) = 1, such that, for all x ∈ A0,
one has ρ(x) :=

∫
Θ f (x | θ)π(dθ) > 0 and

π(B,x) =

∫
B f (x | θ)π(dθ)

ρ(x)
(∀ B ∈B(Θ)) . (4)

If B(X) is countable generated (e.g., by the separability of X),
the above measurability of (θ,x) 7→ f (x | θ) follows.

EMANUELE DOLERA Università di Modena e Reggio Emilia Hölder-continuous posterior distributions



Introduction
The dominated case

The nonparametric case

Bayes theorem

Basic assumption of dominated model: m(·,θ)� λ for all θ ∈Θ,
for a suitable σ-finite measure λ on (X,B(X)).

Theorem (Bayes)
If (θ,x) 7→ f (x | θ) := m(dx ,θ)

λ(dx) is B(Θ)⊗B(X)/B(R), then there

exists a set A0 ∈B(X), with P◦ x̃−1(A0) = 1, such that, for all x ∈ A0,
one has ρ(x) :=

∫
Θ f (x | θ)π(dθ) > 0 and

π(B,x) =

∫
B f (x | θ)π(dθ)

ρ(x)
(∀ B ∈B(Θ)) . (4)

If B(X) is countable generated (e.g., by the separability of X),
the above measurability of (θ,x) 7→ f (x | θ) follows.

EMANUELE DOLERA Università di Modena e Reggio Emilia Hölder-continuous posterior distributions



Introduction
The dominated case

The nonparametric case

An elementary case: Θ is a finite set

Theorem
If Θ = {θ1, . . . ,θk} and π({θi}) > 0 for all i = 1, . . . ,k, then (3), with

d[Θ] = d(TV)
[Θ] , is equivalent to requiring that x 7→ f (x | θi )

f (x | θj )
are

Hölder-continuous of exponent α ∈ (0,1] for all i, j = 1, . . . ,k.

A strong point is the absence of extra hypotheses on (X,dX).

Another merit of this simple setting is to highlight the role of the
regularity of f (x | θ) w.r.t. the x-variable.
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The dominated case

The nonparametric case

Functional analysis approach

Theorem
If X = U, U⊆ Rd is an open subset with Lipschitz boundary, and∫

Θ

∥∥∥ f (x | θ)

ρ(x)

∥∥∥
W1,p

x (U)
π(dθ) < +∞ (5)

holds for some p > d, then (3) is in force with d[Θ] = d(TV)
[Θ] .

A strong point is the absence of extra hypotheses on (Θ,dΘ).

The proof exploits the fact that x 7→ h(θ)π(dθ,x) is in W1,p(U)
uniformly w.r.t. h ∈ L∞(Θ) with ‖h‖∞ ≤ 1. The conclusion follows
from the Morrey embedding theorem for W1,p(U) with p > d .
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The nonparametric case

Functional analysis approach

If the evaluation of the norm in (6) is difficult, we provide a simpler
condition, at the expense of further assumptions on X and ρ.

Theorem
Suppose that X = U, where U⊆ Rd is a bounded open subset with
Lipschitz boundary. If ρ ∈W1,p(U), ρ(x)≥ R > 0 a.e. in U and∫

Θ
‖f (x | θ)‖W1,p

x (U) π(dθ) < +∞ (6)

hold for some p > d, then (6) follows with the same p.
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The nonparametric case

Geometric approach: Amari-Rao calculus

This approach exploits the fact that a dominated statistical model
with densities {g(· | τ)}τ∈T can be viewed as a Riemannian
manifold with Riemannian metric given by the Fisher information
matrix. Here, this theory can be applied to the (unusual!) model{

f (x | θ)
ρ(x)

}
x∈X

, with X some d-dimensional set, which is required

to have finite Fisher information, i.e.

Ii,j(x)

:=

∫
Θ

[
∂

∂xi
log

(
f (x | θ)

ρ(x)

)]
·
[

∂

∂xj
log

(
f (x | θ)

ρ(x)

)]
f (x | θ)

ρ(x)
q(dθ)

< +∞

for all i, j = 1, . . . ,d .
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The nonparametric case

Geometric approach: Amari-Rao calculus

Another important element is the Amari formula, which links the
geodesic distance induced by this Riemannian structure to the
Hellinger distance: d(H)

[Θ] (f1, f2) = ϕ(d(Geo)
[Θ] (f1, f2)) for a suitable

Lipschitz continuous ϕ.

Theorem
If X⊆ Rd and Ii,j(x) is uniformly bounded, then (3) is in force with

d[Θ] = d(H)
[Θ] .
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The nonparametric case

Geometric approach: Otto calculus

This approach is based on the Otto-Villani theory of the
Wasserstein space ([Θ]2,d

(W ,2)
[Θ] ), where

[Θ]2 :=

{
µ ∈ [Θ] |

∫
Θ

[dΘ(θ,θ0)]2µ(dθ) < +∞

}
.

This space can be (formally) viewed as an infinite-dimensional
Riemannian manifold, provided that Θ has itself a structure of
smooth and complete Riemannian manifold.

A key element of the theory is the Benamou-Brenier formula:

d(W ,2)
[Θ] (µ0,µ1) = inf

{∫ 1

0
‖vt‖µt dt

}
(7)

where the inf is taken on the solutions of ∂µt
∂t + ∇• (vtµt) = 0 with

µ0 = µ0 and µ1 = µ1.
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The nonparametric case

Geometric approach: Otto calculus

In (7), ‖ · ‖µt stands for the Riemannian L2-norm on Tµt ([Θ]2)

and the integral yields the length of {µt}t∈[0,1]. Hence, d(W ,2)
[Θ] can

be viewed as a geodesic distance.

Assume that X is a smooth, complete Riemannian manifold and
let α : [0,1]→ X be the geodesic connecting x1 with x2.

If q coincides with vol and
∫

Θ[dΘ(θ,θ0)]2f (x | θ)q(dθ) < +∞ for

all x ∈ X, then γ(t) := f (α(t) | θ)
ρ(α(t)) q(dθ) is a curve in [Θ]2

connecting π(· | x1) with π(· | x2). Therefore, from (7),

d(W ,2)
[Θ] (π(· | x1),π(· | x2))≤ length[γ]≤

∫ 1

0
‖vt‖γ(t)dt

where vt = ∇θu(t,θ) solves ∂γ(t)
∂t + ∇• (γ(t)∇θu(t,θ)) = 0 for all

t ∈ [0,1], with u(t,θ) = 0 on θ ∈ ∂Θ.
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The nonparametric case

Geometric approach: Otto calculus

We get, in the end, the (singular) elliptic problem: find
u = u(t,θ) ∈ H1

θ
(Θ,π(dθ | x)) such that

ρ(α(t))α
′
(t)∇x f (α(t) | θ)− f (α(t) | θ)α

′
(t)∇xρ(α(t))

ρ(α(t))

= −∇θ • (f (α(t) | θ)∇θu(t,θ)) (8)

in Θ, with u(t,θ) = 0 on ∂Θ.

Theorem
Let Θ be a smooth, complete and compact Riemannian manifold with
positive Ricci curvature, and let π coincide with the volume form.
Suppose that f (x | θ)≥ f0 > 0 for all x ∈ X and θinX, and that

f (x | θ) ∈ H1
x (X). Then, (3) is in force with d[Θ] = d(W ,2)

[Θ] and with dX
the geodesic distance on X.
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THE NONPARAMETRIC CASE
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The dominated case

The nonparametric case

The nonparametric setting consists in choosing Θ = M, the
space of all the p.m.’s on (X,B(X)) and m(A,θ) = p(A), with the
usual change of notation θ↔ p. The distance dM is chosen
among the weak metrics.

A central point in Bayesian Nonparametrics is the
characterization of π through simpler objects, typically of
finite-dimensional type. Here, we deem convenient to introduce
the laws of the observations {µn}n≥1, referred to an auxiliary
exchangeable sequence {ξ̃n}n≥1, to define π through

µn(A1×·· ·×An) =

∫
M

[
n∏

i=1

p(Ai)

]
π(dp) (9)

The general philosophy will be to find sufficient conditions on the
sequence {µn}n≥1 to obtain (3).
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∫
M

[
n∏

i=1

p(Ai)

]
π(dp) (9)

The general philosophy will be to find sufficient conditions on the
sequence {µn}n≥1 to obtain (3).
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The nonparametric case

Even if it may seem unusual to define π through the sequence
{µn}n≥1, it is almost always simpler to obtain this sequence from
the actual definition of π than to evaluate directly the posterior.

Noteworthy examples of nonparametric (class of) priors are:
a) normalized random measures with independent increments
b) neutral-to-the-right
c) priors for cumulative hazards or hazard rates
d) exchangeable partition probability functions
e) Poisson-Kingman models and Gibbs-type priors
f) species sampling models

g) mixture models
h) Polya trees
i) hierarchical models.
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The nonparametric case

A structure lemma

We state the following lemma in an abstract setting. Then, we
shall use it with X⊆ Rd or X a d-dimensional Riemannian
manifold with positive curvature, with reference measure λ = L d

or λ = vol, respectively.

Lemma (Assumptions)
Consider the sequence {µn}n≥1 satisfying the symmetry and the
compatibility assumptions. Suppose dµ1 = ρ1dλ for some probability
density function ρ1 on (X,B(X),λ) and

µ2(A1×A2) = u
∫

A1×A2

ρ2(x1,x2)λ
(2)(dx1dx2)+(1−u)

∫
A1∩A2

ρ1(x)λ(dx)

(10)
holds for all A1,A2 ∈B(X), some u ∈ [0,1] and some symmetric
probability density function ρ2 on (X2,B(X)2,λ(2)).
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The nonparametric case

A structure lemma

Lemma (Thesis)
Then,

µn(A1×·· ·×An)

=
n∑

k=1

∑
(I1,...,Ik )∈(∗)n,k

un(I1, . . . , Ik )

∫
AI1×···×AIk

ρk (x1, . . . ,xk )λ
(k)(dx1 . . .dxk )

for every n ≥ 3, A1, . . . ,An ∈B(X), some constants
{un(I1, . . . , Ik )}n≥1,(I1,...,Ik )∈(∗)n,k

, and some symmetric densities ρk on

(Xk ,B(X)k ,λ(k)), with AIj := ∩i∈Ij Ai . Moreover, {ρk}k≥1 generates a
new set {νn}n≥1 of p.m.’s, by dνn := ρndλ(n), which are symmetric
and compatible. Finally, {un(I1, . . . , Ik )}n≥1,(I1,...,Ik )∈(∗)n,k

are EPPF’s in
the sense of Kingman-Pitman.
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The nonparametric case

Main results

Theorem
Consider {µn}n≥1 as in the structure Lemma, and suppose that

ρk (x1, . . . ,xk ) =

∫
T

[
k∏

i=1

g(xi | τ)

]
q(dτ) . (11)

If X = U, U⊆ Rd is an open subset with Lipschitz boundary, and the
posterior distribution q(· | x) relative to the dominated model meets

sup
x0∈U

sup
h:T→R
‖h‖BL≤1

∥∥∥∫
T

h(τ)q(dτ | x)
∥∥∥

W1,p
x (U)

< +∞ (12)

for some p > d, then (3) holds with dM = d(FM)
M and dP = d(FM)

P .
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The nonparametric case

For the check of the hypotheses in the previous theorem, one can
go on step by step. The hypotheses coming from the structure
lemma can be checked by a direct inspection of the µn’s. The
hypothesis on the ρk ’s can be managed by using a theorem by
Berti, Pratelli and Rigo (2004): a necessary and sufficient
condition is that the sequence of predictive densities f̃n is P-a.s.
uniformly integrable on compact subsets of X. A simpler, but
stronger, condition is supn E

[∫
K f̃ p

n dλ
]
< +∞ for some p > 1.

Finally, the check of (12) can be carried on with the methods
developed in the previous section, after noting that
Lipschitz-continuity (w.r.t. to the Fortet-Mourier metric on [T])
entails (12).

To illustrate the power of the method, one can see that the check
of our conditions is almost immediate for priors of NRMII and
Gibss type.

EMANUELE DOLERA Università di Modena e Reggio Emilia Hölder-continuous posterior distributions



Introduction
The dominated case

The nonparametric case

For the check of the hypotheses in the previous theorem, one can
go on step by step. The hypotheses coming from the structure
lemma can be checked by a direct inspection of the µn’s. The
hypothesis on the ρk ’s can be managed by using a theorem by
Berti, Pratelli and Rigo (2004): a necessary and sufficient
condition is that the sequence of predictive densities f̃n is P-a.s.
uniformly integrable on compact subsets of X. A simpler, but
stronger, condition is supn E

[∫
K f̃ p

n dλ
]
< +∞ for some p > 1.

Finally, the check of (12) can be carried on with the methods
developed in the previous section, after noting that
Lipschitz-continuity (w.r.t. to the Fortet-Mourier metric on [T])
entails (12).

To illustrate the power of the method, one can see that the check
of our conditions is almost immediate for priors of NRMII and
Gibss type.

EMANUELE DOLERA Università di Modena e Reggio Emilia Hölder-continuous posterior distributions



Introduction
The dominated case

The nonparametric case

Main results

If the check of (12) is difficult, we provide a simpler condition, at
the expense of further assumptions on X, µ1 and µ2.

Theorem
Consider {µn}n≥1 as in the structure Lemma. Suppose that X = U,
where U⊆ Rd is a bounded open subset with Lipschitz boundary. If
ρ1 ∈W1,p(U) for some p > d, ρ1(x)≥ R > 0 a.e. in U and the
restriction of µ2 to some open neighborhood I(δ) of the diagonal is a.c.
w.r.t. λ(2) with local density ρ2

∣∣ I(δ)
∈ Hm(I(δ)) for some sufficiently

large m, then (3) holds with dM = d(FM)
M and dP = d(FM)

P .
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