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Random probabilities and Exchangeability

X (∞) = (Xn)n≥1 sequence of X–valued observables defined on (Ω,F ,P)

PX space of probability measures on (X,X )

Assumption. X (∞) is exchangeable: for any n ≥ 1 and permutation π of (1, . . . , n)

(X1, . . . ,Xn)
d
= (Xπ(1), . . . ,Xπ(n))

de Finetti’s representation theorem. The sequence X (∞) is exchangeable if and
only if

P
[
X (∞) ∈ A

]
=

∫
PX

p∞(A) Q(dp) ∀A ∈ X∞

where p∞ is the infinite product measure p × p × · · · on (X∞,X∞)

Random Probability measure: Random element with values in PX



Conditional Indipendence and Bayesian inference

Conditional independence: given a random probability measure p̃ with distribution Q

Pr [X1 ∈ A1, . . . ,Xn ∈ An | p̃] =
n∏

i=1

p̃(Ai ) ∀Ai ∈ X

Q acts as a prior for Bayesian inference: the de Finetti measure of the sequence X (∞)

A model for Bayesian Inference:

For any n ≥ 1

Xi | p̃
iid∼ p̃ (i = 1, . . . , n)

p̃ ∼ Q

If Q is degenerate on a subset of PX indexed by a finite–dimensional parameter, then
the inferential problem is said parametric.

Example:

Xi | (µ, σ2)
iid∼ N (µ, σ2) (i = 1, . . . , n)

(µ, σ2) ∼ Q

In this case Q is a probability distribution for (µ, σ2) on R× R+
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If Q does not degenerate on a subset of PX depending on a finite–dimensional
parameter, then Q defines a nonparametric prior distribution for Bayesian inference

Possible definition of a nonparametric prior Q: probability distribution of

p̃ = g(µ̃)

where µ̃ is a completely random measure (CRM)



Completely random measure

• MX space of boundedly finite measures on (X,X )

µ ∈ MX =⇒ µ(A) <∞ for any A ∈ X bounded

• MX Borel σ–algebra on MX

• µ̃ measurable function from (Ω,F ,P) to (MX ,MX ) such that for any

A1, . . . ,An ∈ X with Ai ∩ Aj = ∅

for any i 6= j , the random variables

µ̃(A1), . . . , µ̃(An)

are mutually independent.

Then µ̃ is a completely random measure on (X,X ).

See Kingman (1967), Kingman (1993) or Daley & Vere-Jones (2003)



If µ̃ is a CRM on X, then

µ̃ = µ̃c +

q∑
i=1

Ji δxi

where

• q ∈ {0, 1, . . .} ∪ {∞}

• the xi ’s are the fixed points of discontinuity of µ̃

• the Ji ’s are independent non–negative random variables

• µ̃c is a CRM with no fixed discontinuities

• the Ji ’s and µ̃c are independent



µ̃c is a CRM
• with no fixed jumps

• characterized by a Lévy intensity ν

ν measure on R+ × X such that

(i) integrability condition ∫
X×R+

min{s, 1} ν(dx , ds) <∞

(ii) Laplace functional transform

E
[

e−µ̃c (f )
]

= exp
{
−
∫
R+×X

[1− e−sf (x)] ν(dx , ds)

}
where f : X→ R is a measurable function such that P[µ̃c(|f |) <∞] = 1

In what follows q = 0 and µ̃ = µ̃c



CRMs and nonparametric priors

Gamma CRM
• α finite measure on (X,X )

• ν(dx , ds) = α(dx)e−ss−1 ds

• µ̃(A) ∼ Gamma(1, α(A))

and G = µ̃/µ̃(X) is a Dirichlet process with baseline measure α (Ferguson, AoS 1973)

σ–stable CRM
• α finite measure on (X,X )

• ν(dx , ds) = α(dx)σs−1−σ ds/Γ(1− σ) where σ ∈ (0, 1)

and G = µ̃/µ̃(X) is a normalized σ–stable prior (Kingman, JRSSB 1975)



Two parameters PD process

• parameters σ ∈ (0, 1) and θ > −σ

• Pσ probability distribution (p.d.) of the σ–stable CRM

• P
(σ,θ)

p.d. absolutely continuous with respect to Pσ and such that

P
(σ,θ)

(dµ)

Pσ (dµ)
=

Γ(θ + 1)

Γ(θ/σ + 1)
µ(X)−θ

• µ̃
(σ,θ)

random measure with p.d. P
(σ,θ)

(not a CRM)

The random probability measure

G =
µ̃

(σ,θ)

µ̃
(σ,θ)

(X)

is a two parameter Poisson–Dirichlet process PD(σ, θ) (Pitman, PTRF 1995)

normalized σ–stable = PD(σ, 0)

Dirichlet = PD(0, θ)



Alternative (stick–breaking) construction of the PD(α, θ), i.e.

p̃ =
∑
j≥1

Wj δϕj

• the random variables ϕj are i.i.d. with common p.d. η and η({x}) = 0 for any
x ∈ X

• the Wj ’s are independent from the ϕj ’s

• the weights Wj are determined via a stick–breaking construction, i.e. given a
sequence (Vn)n≥1 of independent random variables with
Vn ∼Beta(1− α, θ + nα)

W1 = V1 Wj = Vj

j−1∏
i=1

(1− Vi ) ∀j ≥ 2

Why CRMs for defining p̃? Representation of its Laplace functional transform which
allows to determine

• moments of any functional p̃(f )

• the exchangeable partition probability function (EPPF)

Π
(n)
k (n1, . . . , nk ) =

Pr[n data grouped in k clusters with frequencies n1, . . . , nk ]

• characterization of the posterior distribution of p̃, given X1, . . . ,Xn



Dirichlet process mixture models

A DP mixture (DPM) models(Loh(1988), Hjort (2010)):

• incorporate Dirichlet process priors for parameters in Bayesian hierarchical
models of this type: for any n ≥ 1 and i = 1, . . . , n

Yi | θi
ind∼ K(·|θi )

θi | p̃
iid∼ p̃

p̃ ∼ Q

where K is a suitable density kernel.

• The model above defines a random density:

f (y) =

∫
K(y |θ)p̃(dθ) =

∑
k≥1

WkK(y |ϕk ), (1)

• posterior computation, Escobar (1994), Escobar and West (1995).



Vector of random densities

Groups of observations and a vector of random densities
• Consider a set of observations divided in r sub–samples (or groups):

Yij i = 1, . . . r , j = 1, . . . , ni .

Above Yij ∈ Y ⊂ Rd is the j-th observation within sub–sample i .

• Typically, the observations of the block i have the same (conditional) density fi
and are (conditionally) independent.

• In non–parametric Bayesian analysis one needs to specify a prior distribution for
the vector of densities (f1, f2, . . . , fr ).

• Asses a prior for (f1, f2, . . . , fr ) and borrow information across blocks.

• Let Ki be suitable density kernels, then

fi (y) :=

∫
Ki (y |θ)p̃i (dθ) i = 1, . . . , r , (2)

where (p̃1, . . . , p̃r ) is a vector of dependent random probability measures.



Bidimensional CRMs
Goal: define vectors of random probabilities (p̃1, p̃2) by means of transformations of
vectors of dependent CRMs (µ̃1, µ̃2)

(µ̃1, µ̃2) is completely random if

A ∩ B = ∅ =⇒ (µ̃1(A), µ̃2(A)) ⊥ (µ̃1(B), µ̃2(B))

If (µ̃1, µ̃2) does not have fixed discontinuities, then

E
[

e−λ1µ̃1(A)−λ2µ̃2(A)
]

=

exp

{
−
∫

A×(R+)2

[
1− e−λ1s1−λ2s2

]
ν(dx , ds1, ds2)

}
for any A in X

Homogeneous case:

ν(dx , ds1, ds2) = α(dx) ν(s1, s2) ds1 ds2

Normalization:

(p̃1, p̃2) =

(
µ̃1

µ̃1(X)
,

µ̃2

µ̃2(X)

)



Given two CRMs µ̃1 and µ̃2 how can one define (µ̃1, µ̃2) such that it is completely
random?

Answer: by working on the Lévy’s intensities...

Given two marginal intensities ν1 and ν2, how to determine ν such that∫ ∞
0

ν(s1, s2)ds2 = ν1(s1)

∫ ∞
0

ν(s1, s2)ds1 = ν2(s2)

for any s1, s2 > 0.

A function C : [0,∞]2 → [0,∞] such that

(a) C(s1, 0) = C(0, s2) = 0 for any positive s1 and s2

(b) for all s1 < t1 and s2 < t2, C(s1, s2) + C(t1, t2)− C(s1, t2)− C(t1, s2) ≥ 0

(c) C has uniform margins, i.e. C(s1,∞) = s1 and C(∞, s2) = s2

is a positive Lévy copula.

See Tankov (2003), Cont & Tankov (CRC, 2004, Financial Modeling with jump
processes), Kallsen & Tankov (JMVA, 2006), Epifani and Lijoi (Statistica Sinica, 2010).



Examples

Independence copula. For any (s1, s2) ∈ [0,∞]2, let

C⊥(s1, s2) = s11s2=∞ + s21s1=∞.

Complete dependence copula. Let X = R+ and, for any (s1, s2) ∈ [0,∞]2, set

C‖(s1, s2) = min{s1, s2}.

Clayton copula. For any λ > 0

Cλ(s1, s2) =
{

s−λ1 + s−λ2

}− 1
λ

and λ regulates the degree of dependence between µ̃1 and µ̃2

lim
λ→0

Cλ = C⊥ (independence)

lim
λ→∞

Cλ = C‖ (complete dependence)



How determine ν

Marginal tail integrals for ν1 and ν2:

t 7→ Ui (t) =

∫ ∞
t

νi (s) ds i = 1, 2

Under suitable conditions

ν(s1, s2) =
∂2

∂v1∂v2
C(v1, v2)

∣∣∣∣
v1=U1(s1),v2=U2(s2)

ν1(s1) ν2(s2)

See Tankov (2003) and Cont & Tankov (2004).



Vectors of Stable Processes with Clayton copula

Stable marginals
ν1(s) = ν2(s) =

σ

Γ(1− σ)
s−1−σ 1R+ (s)

with σ in (0, 1) and

ν(s1, s2;λ) =
(1 + λ)σ2

Γ(1− σ)

(s1s2)σλ−1{
sσλ1 + sσλ2

}1/λ+2
.

In particular if λ = 1
σ

ν(s1, s2) =
σ + 1

Γ(1− σ)

σ

(s1 + s2)σ+2

This Levy intensity has been used in Leisen and Lijoi (2011) and Zhu and Leisen
(2015) to construct a vector of Poisson-Dirichlet processes.



A Vector of Gamma Processes

Gamma marginals
ν1(s) = ν2(s) = s−1e−s 1R+ (s)

and

ν(s1, s2) =
1∑

i=0

1
(s1 + s2)i+1

e−(s1+s2)

The Levy Copula behind this process is:

C(y1, y2) = Γ(0, Γ−1(0, y1) + Γ−1(0, y2)) (3)

where Γ(a, x) =
∫∞

x sa−1 e−s ds is the incomplete gamma function.



From Levy Copulas to Compound Random Measures

If we look at the bivariate stable process defined above from another perspective then

ν(s1, s2) = σ+1
Γ(1−σ)

σ
(s1+s2)σ+2

= σ+1
Γ(1−σ)

∫ +∞
0

z−σ−3

Γ(σ+2)
e−(s1+s2)/zdz

In particular,

ν(s1, s2) =

∫ ∞
0

z−2

∏2
i=1 f

( si
z

)
︷ ︸︸ ︷
e−

s1+s2
z

ν∗(z)︷ ︸︸ ︷
z−σ−1

Γ(σ)Γ(1− σ)
dz

where f (x) = e−x , x > 0 is the exponential distribution (which we will call score
distribution) and ν∗(z) = z−σ−1

Γ(σ)Γ(1−σ)
is a Levy intensity (which we will call directing

Levy measure).

Note that,

h(s1, s2|z) = z−2
2∏

i=1

f
(si

z

)
s1, s2 > 0

is a probability density on R+ × R+



Compound Random Measures

A Compound random measure (CoRM) is a vector of CRMs defined by a score
distribution h and a directing Lévy process ν∗ such that

ρd (ds1, . . . , dsd ) =

∫
h(s1, . . . , sd |z) ds1 · · · dsd ν

?(dz)

where h(·|z) is the probability mass function or probability density function of the score
distribution with parameters z and ν? is the Lévy intensity of the directing Lévy process
which satisfies the condition∫ ∫

min(1, ‖ s ‖)h(s1, . . . , sd |z) ds ν?(dz) <∞

where ‖ s ‖ is the Euclidean norm of the vector s = (s1, . . . , sd ).

Remark: To ensure the existence of the vectors introduced above, the following
condition must be satisfied for each j = 1, . . . , d :

νj ((0,+∞)) =

∫ +∞

0

∫
hj (s|z)ν?(dz)ds = +∞

where hj (s|z) =
∫

h(s1, . . . , sj−1, s, dsj+1, . . . , sd |z)ds1 · · · dsj−1dsj+1 · · · dsd . If this
condition does not hold true, then µ̃j (X) = 0 with positive probability and the
normalization does not make sense, see Regazzini, Lijoi and Pruenster (2003).



Compound Random Measures

In Griffin and Leisen (2014), we focus on the sub-class of CoRMs with a continuous
score distribution which has independent dimensions and a single scale parameter so
that

h(s1, . . . , sd |z) = z−d
d∏

j=1

f (sj/z)

where f is a univariate distribution. This implies that each marginal process has the
same Lévy intensity of the form

νj (ds) = ν(ds) =

∫
z−1f (s|z) ds ν?(dz).

In particular, if

f (x) =
1

Γ(φ)
xφ−1 exp{−x}

is the Gamma(φ, 1) distribution we obtain the following ν∗:



Compound Random Measures

ν∗(z) Support Marginal Process
z−1(1− z)φ−1 0 < z < 1 Gamma

z−σ−1 Γ(φ)
Γ(σ)Γ(1−σ)

z > 0 Stable

σ
Γ(1−σ)

z−σ−1(1− a z)σ+φ−1 0 < z < 1/a Gen. Gamma

The results are surprising:
• A gamma marginal process arises when the directing Lévy process is a beta

process

• A stable marginal process arises when the directing Lévy process is also a stable
process

• Generalized gamma marginal processes lead to a directing Lévy process which
is a generalization of the beta process (with a power of z which is less than 1)
and re-scaled to the interval (0, 1/a).



Compound Random Measures

An intuitive way to introduce the CoRMs is the following: consider the following
dependent random probability measures:

p̃1 =
∑
i≥1

π1,iδXi · · · p̃d =
∑
i≥1

πd,iδXi ,

where

πj,i =
mj,i Ji∑
l mj,l Jl

. (4)

• The dependence among the p̃j is due to the sharing of jumps (Ji )i≥1, as
highlighted in equation (4)

• The mj,i ’s are the perturbation coefficients that identify specific features of the j-th
random measure and they are independent and identically distributed (with score
distribution hj ) across the random measures.



Compound Random Measures
This suggests a slice sampling scheme to address posterior inference as in:

J. E. Griffin and S. G. Walker. "Posterior Simulation of Normalized Random Measure
Mixtures", Journal of Computational and Graphical Statistics, 20, 241-259.

The posterior distribution can be expressed in a suitable form for MCMC by introducing
latent variables v1, . . . , vd , sj,i and uj,i for i = 1, . . . , nj and j = 1, . . . , d , and
integrating over certain jumps. Integrating over these latent variables leads to the
correct marginal posterior distribution. A suitable form of posterior distribution for our
MCMC method is

d∏
j=1

v
nj−1
j

 nj∏
i=1

m†j,sj,i
1
(

uj,i < Jsj,i

)
k
(

yj,i |θsj,i

) exp

−
d∑

j=1

vj

K∑
k=1

m†j,k J†k


× E

exp

−
d∑

j=1

vj

∞∑
k=1

m?
j,k J?k




where L = minj=1,...,d ;i=1,...,ng

{
uj,i
}

. The jumps are divided into two disjoint groups

A† = {(J†k ,m
†
1,k , . . . ,m

†
d,k )|J†k > L} and A? = {(J?k ,m

?
1,k , . . . ,m

?
d,k )|J?k < L}. The set

A† has a finite number of elements which is denoted K and A? has an infinite number
of elements.
The full conditional distributions and a general discussion of methods for updating
parameters are given in Griffin and Leisen (2014).
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