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SCAMBIABILITÀ , TEOREMI LIMITE, E SUCCESSIONI C.I.D.

Patrizia ha dato contributi importanti sui fondamenti della probabilità ,
nell’impostazione soggettiva e predittiva; sulla scambiabilità , e su teoremi
limite per leggi scambiabili e per successioni con dipendenza stocastica.

Questo lavoro è basato sui risultati in
P. Berti, L. Pratelli, P. Rigo (2004). Limit theorems for a class of identically
distributed random variables. Annals of Probability, 32, 2029–2052.

e su diversi loro lavori successivi.
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CONTENTS

Exchangeability is important in many areas of probability & related fields
(KINGMAN (1978); ALDOUS (1985; 2010) and has a fundamental role in
Bayesian Statistics.

(Xn) exchangeable⇒ (Xn) is stationary.
Stationarity is a key assumption.

But, in many problems, stationarity is restrictive.

BERTI, PRATELLI, RIGO (2004) give a notion of conditionally identically
distributed sequences (c.i.d.) that, roughly speaking, corresponds to
exchangeability without the assumption of stationarity.

→We give a parallel notion of partially c.i.d. sequences, that corresponds
to partial exchangeability under the assumption of stationarity.
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OUTLINE

• motivations

• removing stationarity assumption:
– c.i.d. and partially c.i.d. sequences.
– weaker assumptions.

• properties and limit theorems

• examples.
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EXCHANGEABILITY

The sequence (Xn) is exchangeable if

(X1, . . . ,Xn)
d
= (Xπ(1), . . . ,Xπ(n)),

for any n ≥ 1 and any finite permutation π of (1, . . . , n).

Order in which data are recorded is irrelevant.

By the representation theorem for exchangeable sequences:

P(X1 ∈ A1, . . . ,Xn ∈ An) =

∫ n∏
i=1

P(Ai) dP(P),

where P is the weak limit of the sequence of the empirical, and predictive,
distributions.
Thus, Xi | P

i.i.d∼ P, and P has a distribution induced by P. The random
measure P is the directing measure
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PARTIAL EXCHANGEABILITY (DE FINETTI)

Definition. The sequence (Xn,Yn) is partially exchangeable (in the sense of
de Finetti) if

(X1, . . . ,Xn,Y1, . . . ,Ym)
d
= (Xσ(1), . . . ,Xσ(n),Yτ(1), . . . ,Yτ(m)),

for any n,m ≥ 1 and any permutations σ of (1, . . . , n) and τ of (1, . . . ,m).

Order inside groups is irrelevant, but observations cannot be permuted across
groups.

By the representation theorem for partially exchangeable sequences,

P(X1 ∈ A1, . . . ,Xn ∈ An, Y1 ∈ B1, . . . , Ym ∈ Bm) =

∫ n∏
i=1

Px(Ai)
m∏

j=1

Py(Bj)dP(Px,Py),

where (Px,Py) is the weak limit of the sequence of the empirical
distributions (F̂n,x, F̂n, y).
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MOTIVATING EXAMPLE: EVOLUTIONARY PHENOMENA

Two color Polya urn. (spread of contagion):

evolutionary phenomena, described by the generative rule:

X1 ∼ Bernoulli(θ0), θ0 =
α1

α

Xn+1 | X1:n ∼ Bernoulli(θn), θn =
α1 +

∑n
i=1 Xi

α+ n
, n ≥ 1.
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(Xn) is exchangeable.

By the representation theorem, although (Xn) describes an evolutionary
phenomena, it is probabilistically equivalent to static sampling:
• pick p ∼ Beta(α1, α− α1);
• then sample i.i.d. from the urn with composition p.



introduction Motivating examples c.i.d. sequences partially c.i.d. sequences examples

TWO PROPERTIES
– The urn composition (θn), that is also the predictive probability of white
ball, is a martingale

E(θn+1 | X1, . . . ,Xn) = θn

– The predictive distribution is a symmetric function of X1, . . . ,Xn.

• How does the contagion spread? asymptotic urn composition?
The martingale property gives

θn → θ; θ random,

and one can show that θ ∼ Beta(α1, α− α1).

• How about the relative frequency X̄n?

X̄n → θ, and CLT: X̄n ≈
∫

N(θ,
θ(1− θ)

n
) dP(θ).

Convergence of the predictive probabilities implies (Aldous, 1985) that (Xn)
is asymptotically exchangeable.
Moreover, (Xn) is stationary. Thus, it is exchangeable.
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RANDOMLY REINFORCED URNS (RRU)

What if the reinforcement is random?

θn = P(Xn+1 = 1 | X1:n,W1:n) =
α1 +

∑n
i=1 WiXi

α+
∑n

i=1 Wi

In general, the process (Xn) is no longer stationary→ no longer
exchangeable.
Can we still establish the asymptotic behavior of the urn composition
(predictive probability)?

Athreya (1969) and Athreya, Ney (1972); Pemantle (1989); Berti, Pratelli,
Rigo (2004; 2011)
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EXAMPLE 2: BAYESIAN STATISTICS

Subjective probability. Exchangeability is subjective, order does not matter.
(Pn) predictive rule: learning from experience.

What if the order of past observations is relevant?

• Can we still say that Pn(·) ≈ F̂n(·), for large n?
• → Bayesian consistency: d(Pn, F̂n)

(DIACONIS+FREEDMAN (1993), BERTI+RIGO (1997),..)
• → Computations for large n? Can we approximate Pn by an estimate,

here F̂n, and how about the approximation error?
• CLT for

√
n(Pn(A)− F̂n(A));

• uniform limits: limit law of
√

n(Pn(·)− F̂n(·))

The predictive distribution for dependent random probability measures is
analytically complicated: can we find an approximation, for partially
exchangeable sequences? would it hold, even if not stationary?
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REMOVING THE STATIONARITY ASSUMPTION

Theorem (Kallenberg, 1978). A stationary sequence that satisfies

(X1, . . . ,Xn,Xn+1)
d
= (X1, . . . ,Xn,Xn+k)

for any n and k ≥ 1, is exchangeable.

The above condition implies

Xn+1 | X1, . . . .Xn
d
= Xn+k | X1, . . . ,Xn

future observations are conditionally identically distributed (c.i.d.).

Thus,
c.i.d. + stationarity = exchangeability.
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CONDITIONALLY IDENTICALLY DISTRIBUTED (C.I.D.) SEQUENCES

BERTI, PRATELLI, RIGO (Ann. Probab. 2004) give a general notion of c.i.d.
sequences with respect to a filtration G = (Gn). Let Xn ∈ X , a Polish space.

Definition. The sequence (Xn) is G-c.i.d. if

P(Xn+k ∈ · | Gn) = P(Xn+1 ∈ · | Gn),

for every n ≥ 0 and k ≥ 1.

If G = σ(X1, . . . ,Xn) is the natural filtration, we say that (Xn) is c.i.d..
If (Xn) is G-c.i.d., it is also c.i.d..

Equivalently, (Xn) is G-c.i.d. if the predictive measure P(Xn+1 ∈ · | Gn) is a
G-martingale:

(Zn,f ≡ E(f (Xn+1) | Gn), n ≥ 0) is a G-martingale, for every integr. meas. f .
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LIMIT THEOREMS FOR C.I.D. SEQUENCES: PREDICTIVE DIST.

Let (Xn) be a G-c.i.d. sequence, and Zn,f = E(f (Xn+1 | Gn), f measurable, with
E|f (Xn)| <∞.
For f (X) = X, Zn,f = E(Xn+1 | Gn), point prediction.
For f (X) = IA(X), Zn,f = P(Xn+1 ∈ A | Gn), predictive probability of A.

• By definition of c.i.d., (Zn,f ) is a G-martingale. Therefore,

Zn,f → Zf

and Zn,f = E(Zf | Gn).

• BERTI, PRATELLI, RIGO (2004) show that Zn,f → Zf stably (Renyi (1963), Aldous
(1985)).
Thus, there exists a measure P such that Zf = EP(f (X)); in other words, a.s.-P, the
sequence of predictive distributions Pn converges weakly to a random measure P.

• Convergence of the predictive distributions implies (Aldous, 1985) that the sequence (Xn)
is asymptotically exchangeable:

(Xn+1,Xn+2, . . .)
d
≈ (S1, S2, . . .) for large n

where (S1, S2, . . .) is an exchangeable sequence with directing measure P.

It follows easily that, if (Xn) is stationary and asymptotically exchangeable, then it is
exchangeable.
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CENTRAL LIMIT THEOREMS

Theorem. If (Xn) is G-c.i.d., the sequence of empirical distributions converges to the same limit
P ∑n

i=1 δXi

n
⇒ P, a.s.− P.

Berti, Pratelli, Rigo (2004) also provide central limit theorems for

√
n
(∑n

i=1 f (Xi)

n
− Ln

)
,

for different choices of the random centering Ln. In particular: Ln = EP(f (X)) and
Ln = E(f (X) | Gn). For f (X) = IA(X), Ln = P(A) and Ln = P(Xn+1 ∈ A | Gn).

Theorem. Let (Xn) be a G-c.i.d. sequence. Then, under conditions,
√

n [
∑n

i=1 δXi (A)
n − P(Xn+1 ∈ A | Gn)] converges stably to N(0,P(A)(1− P(A)).

This implies∑n
i=1 δXi (A)

n
− P(Xn+1 ∈ A | Gn) ≈

∫
N(0,

P(A)(1− P(A))

n
)dP(P), for n large.

Roughly speaking, the required conditions control the convergence rates of the predictive
distributions (see Berti et al., 2011).
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Remark. In some cases, weaker assumptions are sufficient for the asymptotic
results and CLTs.
In particular, if Xi ∈ {0, 1}, central limit theorems can be obtained under the
weaker assumption that θn = P(Xn+1 = 1 | Gn) is a uniformly integrable
quasi-martingale (which holds for c.i.d. sequences). See Aletti, May, Secchi
(2009); Berti, Crimaldi, Pratelli, Rigo (2011).

This is of interest for applications in randomly reinforced urn processes and
clinical trials.

The previous CLTs refer to a fixed function f . Stronger results regard

√
n(

∑n
i=1 f (Xi)

n
− Ln)

as a process, and are provided by Berti, Pratelli, Rigo (2004).
The c.i.d. condition is a basic assumption for uniform limits theorems for
predictive inference.
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PARTIAL EXCHANGEABILITY AND PARTIAL C.I.D.

Theorem (Kallenberg, 1978). (Xn) is c.i.d. and stationary iff (Xn)
exchangeable.

For multiple experiments (m evolutionary processes; or, sampling from m
populations,...):
interest for a notion of partially c.i.d. sequences ( (Xn,Yn) ) such that

Theorem. (Xn,Yn) is partially c.i.d. and stationary iff (Xn,Yn) is
partially exchangeable.
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PARTIALLY C.I.D. SEQUENCES

Definition. A sequence ((Xn,Yn), n ≥ 1) is partially G-c.i.d. if, for
every n ≥ 0, k ≥ 1:

P(Xn+k ∈ · | Gn,Yn+1) = P(Xn+1 ∈ · | Gn,Yn+1)

P(Yn+k ∈ · | Gn,Xn+1) = P(Yn+1 ∈ · | Gn,Xn+1)

That is, (Xn) is c.i.d. with respect to the filtration (Gn ∨ Yn+1), and (Yn) is
c.i.d. with respect to the filtration (Gn ∨ Xn+1).

If Gn = σ(X1, . . . ,Xn,Y1, . . . ,Yn), we simply say that ( (Xn,Yn) ) is partially
c.i.d..

Clearly, a simple sufficient condition for two G-c.i.d. sequences (Xn) and (Yn) to be partially
G-c.i.d. is that

(Xn+1,Xn+2) ⊥⊥ Yn+1 | Gn

(Yn+1, Yn+2) ⊥⊥ Xn+1 | Gn
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LIMIT THEOREMS: PREDICTIVE DISTRIBUTIONS

Marginal limit theorems follow from the marginal c.i.d. property.
• Both P(Xn+1 ∈ · | Gn) and P(Xn+1 ∈ · | X1, . . . ,Xn) converge weakly to a random

measure Px, a.s., and (Xn) is asymptotically exchangeable.
• Both P(Yn+1 ∈ · | Gn) and P(Yn+1 ∈ · | Y1, . . . , Yn) converge weakly to a random

measure Py, a.s., and (Yn) is asymptotically exchangeable.

BUT we need the joint distribution, and need to prove asymptotic conditional independence of
(Xn) and (Yn).

Theorem. If ((Xn, Yn)) is G-c.i.d.,

E(f (Xn+1)g(Ym+1) | Gn)
stably→ EPx (f (X)) EPy (g(Y)),

for all f , g continuous and bounded.
This implies that there exist a representing measure P such that

E(f (Xn+1)g(Ym+1) | Gn)→ EP(f (X)g(Y))

and such P is equal to Px Py.

• Thus, the sequence of joint predictive distribution : Pn = P((Xn+1, Yn+1) ∈ · | Gn)
converges weakly to P = (Px × Py), P-a.s.

• It follows that (Xn, Yn)) is asymptotically exchangeable, with directing measure
P = Px × Py. Therefore, ( (Xn, Ym) ) is asymptotically partially exchangeable, with
directing measures Px and Py.
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LIMIT THEOREMS: EMPIRICAL DISTRIBUTIONS

Again, convergence of the marginal empirical distributions follow from the c.i.d. property.
But we also have convergence for the joint empirical distribution:

Theorem. If ((Xn, Yn)) is partially G-c.i.d.

1
n

n∑
i=1

δ(Xi,Yi )⇒ Px × Py, a.s.− P.

A central limit theorem. Let

Cn,x =
√

n [

∑n
i=1 f (Xi)

n
− E(f (Xn+1 | Gn) ]

Cn,y =
√

n [

∑n
i=1 g(Yi)

n
− E(g(Xn+1 | Gn) ]

If ((Xn, Yn)) is partially G-c.i.d., under assumptions,

(Cn,x,Cn,y)→
∫

N(0,Σ)dµ(Σ),

where µ is the probability law of the random covariance matrix Σ =

[
U T
T V

]
.
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A CENTRAL LIMIT THEOREM

For real measurable functions f and g such that, for all n, E|f (Xn)|+ E|g(Yn)| <∞, let

Mn = f (Xn)− nE [f (Xn+1) | Gn] + (n− 1)E [f (Xn) | Gn−1] ,

Ln = g(Yn)− nE [g(Yn+1) | Gn] + (n− 1)E [g(Yn) | Gn−1] .

Theorem. Suppose (Xn, Yn)n are partially G-c.i.d.. If

Ef (X1)2 + Eg(Y1)2 + sup
n

EC2
n,x + sup

n
EC2

n,y <∞ and

1
n

n∑
i=1

M2
i → U,

1
n

n∑
i=1

L2
i → V,

1
n

n∑
i=1

MiLi → T P-a.s.,

then (Cn,x,Cn,y)→ N (0,Σ) stably, where Σ is the random covariance matrix

Σ =

[
U T
T V

]
.

Remark. This result is for fixed f , g. We are working on uniform limits theorems.
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EXAMPLE 1: RANDOMLY REINFORCED URNS (RRU)

Two color urn; sampling with random reinforcement. Initial composition α1/α white balls. For
n ≥ 1

θn = P(Xn+1 = 1 | X1:n,W1:n) =
α1 +

∑n
i=1 WiXi

α+
∑n

i=1 Wi

for random weights W1,W2, . . ..
• weight is associated to individuals, (independently on the color taken by Xn), or to time:

Wn ⊥⊥ Xn | X1, . . . ,Xn−1,W1, . . . ,Wn−1.

Then the process (Xn) is G-c.i.d., with Gn = σ(X1:n,W1:n)
(PEMANTLE (1989); ATHREYA (1969) AND ATHREYA, NEY (1972); BERTI,
PRATELLI, RIGO (2004; 2011)).

• (random) weights are associated to colors, and possibly depend on an observable variable:
Wn = w(Xn, Yn). Then the process is quasi- G-c.i.d.: the sequence (θn) is a
quasi-martingale. Yet, for binary Xn, this is sufficient to prove asymptotic properties.
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RRU FOR ADAPTIVE CLINICAL TRIALS

Two treatments, A and B (or K treatments, e.g. doses). Y response to treatment
(success–insuccess; or discrete, or continuous). Let P(Yn = 1 | Xn = 1) = αA and
P(Yn = 1 | Xn = 0) = αB.

At step n, pick a ball. If Xn = 1 (white), assign patient n to treatment A; if Xn = 0, treatment B.
Observe the response Yn: if Yn = 1, reinforce with one ball of the same color; otherwise, no
reinforcement.

Thus, Wn = w(Xn, Yn), and Wn ∼ Bernoulli(αA) if Xn = 1, while Wn ∼ Bernoulli(αB) if
Xn = 0.

• If αA = αB, Wn is independent on Xn and the process is G-c.i.d. This case is of interest as
a null hypothesis.

• If αA 6= αB, the process (Xn) is no longer c.i.d. The sequence (θn = P(Xn+1 = 1 | Gn))
is a quasi-martingale.

In particular, if αA > αB (say), θn = P(Xn+1 = 1 | X1:n,W1:n)→ 1: the probability that
the next patient is given the best treatment converges to one.
→ The best treatment (color) tends to dominate.
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EXAMPLE 1: INTERACTING URNS

Consider two (but can be a countable system of) randomly reinforced urns.

P(Xn+1 = 1 | X1:n,W1:n) =
α1 +

∑n
i=1 W i Xi

α+
∑n

i=1 W i

P(Yn+1 = 1 | Y1:n,W′1:n) =
α′1 +

∑n
i=1 W′i Yi

α+
∑n

i=1 W′i

Let Gn = σ(X1:n, Y1:n,W1:n,W′1:n). If

Xn+1 ⊥⊥ Wn+1, Y1:n+1,W′1:n+1 | X1:n,W1:n

Yn+1 ⊥⊥ W′n+1,X1:n+1,W1:n+1 | Y1:n,W′1:n

then the process ((Xn, Yn)) is partially G-c.i.d. It is also partially σ(X1:n, Y1:n)-c.i.d..

Examples:
• Wn = W′n
• Wn = wn(Y1:n) and W′n = w′n(X1:n), with Xn+1 ⊥⊥ Yn+1 | X1:n, Y1:n;

• Wn = wn(Z1:n) and W′n = w′n(Z1:n), with Zn+1 ⊥⊥ Xn+1, Yn+1 | X1:n, Y1:n;

• Wn = wn(Y1,n, Z1:n) and W′n = w′n(X1:n, Z1:n), with Z1:n+1 ⊥⊥ Xn+1, Yn+1 | X1:n, Y1:n

Some results are given by PAGANONI, SECCHI (2004).
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A CENTRAL LIMIT THEOREM FOR INTERACTING URNS

Let (Xn, Yn) be partially G-c.i.d. RRUs, and suppose the weights Wi are i.i.d., with
E
(
W2

1

)
<∞.

Tedious calculations give that, P-a.s.,

1
n

n∑
i=1

M2
i → δθx(1− θx);

1
n

n∑
i=1

L2
i → δθx(1− θx);

1
n

n∑
i=1

MiLi → δ(η − θxθy),

where θx = lim
∑

i=1
n Xi, θy = lim

∑
i=1
n Yi, η = lim

∑n
i=1 XiYi

n , and δ =
Var(W1)

E(W1)
2 .

By the central limit theorem for partially G-cid sequences:

√
n

(
1
n

n∑
i=1

Xi − E[Xn+1|Gn],
1
n

n∑
i=1

Yi − E[Yn+1|Gn]

)
stably→ N

(
0,
[
δθx(1− θx) δ(η − θxθy)
δ(η − θxθy) δθy(1− θy)

])
.
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EXAMPLE 2: RANDOMLY REINFORCED PROCESSES

Generalized species sampling sequences, or Ottawa sequences have been proposed by
BASSETTI, CRIMALDI, LEISEN (2010) as a generalization of species sampling models.

A natural extension is as follows.

P(Xn+1 ∈ · | X1:n, Y1:n,Gn) =
αxGn(·) +

∑n
i=1 WiδXi (·)

αx +
∑n

i=1 Wi

P(Yn+1 ∈ · | X1:n, Y1:n,Gn) =
αyGn(·) +

∑n
i=1 W′i δYi (·)

αy +
∑n

i=1 W′i

Remark. Even with Wn = W′n = 1, the sequence (Xn, Yn) would not be partially exchangable,
unless αx = αy. This case reduces to (Xn, Yn) being exchangeable, with a Dirichlet process
directing measure.
Yet, for appropriate Gn, if

Xn+1 ⊥⊥ Wn+1, Y1:n+1,W′1:n+1 | X1:n,W1:n,Gn

Yn+1 ⊥⊥ W′n+1,X1:n+1,W1:n+1 | Y1:n,W′1:n,Gn

then (Xn, Yn) is partially c.i.d. with respect to the filtration Gn = σ(X1:n, Y1:n,W1:n,W′1:n,Gn).
Thus it is also partially c.i.d. with respect to a smaller filtration.

The sequences (Xn) and (Yn) can be regarded as dependent generalized species sampling
models. If G0 is diffuse, the two population have distinct species, but the reinforcement in one
population may depend on samples from the other species; or, both reinforcements may depend
on common (latent or observable) variables Zn.
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EXAMPLES

Randomly reinforced bivariate DP.
Species sampling sequences are characterized by the predictive rule, where new species are
sampled from a diffuse G0.

Consider independent weights (Wn) and (W′n). We can set Gn = G0, a known distribution,
having a discrete component and a diffuse component, preserving the partially c.i.d. property.

In this case, the two random probability measures have common atoms (generated by the
discrete component of G0) and distinct atoms (generated by the diffuse component of G0).

For Wn = W′n = 1, and G0 an appropriate discrete distribution, the process reduces to the
bivariate Dirichlet process by Muliere, Walker (2003). Extension could lead to weighted
versions of the the dependent DP by Caron, Davy, Doucet (2007).

Weighted Hierarchical DP
Dependent randomly reinforced hierarchical Dirichlet processes (TEH, JORDAN, BEAL, BLEI
(2006)) can be obtained by setting

Gn =
α′′ν(·) +

∑n
i=1 W′′i δZi (·)

α′′ +
∑n

i=1 W′′i

with (Zn) a randomly reinforced process with Zn ⊥⊥ X1:n, Y1:n | Z1:n,W′′1:n. Here, the two
populations share all atoms.
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DISCUSSION AND SOME OPEN PROBLEMS

Problems of of interest in many areas.

Recent applications include a weighted Indian Buffet process (Berti,
Crimaldi, Pratelli, Rigo, (Ann. Prob., 2015),

and weighted preferential attachment rules (Caldarelli et al., 2013), where
edges associated to weights with higher expected value tend to dominate.

* Given the predictive rule, finding the explicit distribution of the random
directing measure is difficult. The random directing measure is different for
c.i.d. and quasi-c.i.d. sequences.

* Somehow opposite, one may want to determine a predictive scheme
(weights) that converges to a target (non-random?) f0 (importance sampling
algorithm?)

* How are limit theorems for c.i.d., and partial c.i.d., connected with
Bernstein von-Mises results, and consistency in sup-norm ? (e.g. Castillo+
Nickl, Ann. Statist., 2013 and 2014).

More work to be done in case of multiple interacting systems...
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