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The Indian buffet model

The Indian Buffet Model (IBM) is related to the modelling of the feature
structure.

Let E be an unbounded collection of possible features that an entity
can exhibit.

Such an entity is assumed to have a finite number of features only.

Different entities can share some features.

The maximum number of features is not specified a priori.

The culinary metaphor is the following: the entities are the customers
which sequentially enter a buffet with an unbounded collection of
dishes (available in infinity quantities) and the features exhibited by
each entity are the dishes tasted by each customer.

Irene Crimaldi (IMT Lucca) Indian buffet model with random weights 2 / 31



The standard Indian buffet model
(Griffiths-Ghahramani 2006, Thibaux-Jordan 2007, Teh-Gorur 2009)

Given α > 0, 0 ≤ β < 1 and c > −β, the dynamics is the following:
Customer 1 tries Poi(α) dishes
For each t ≥ 1, set St =collection of dishes experimented by the
first t customers. Then:

Customer t + 1 selects a subset S∗
t of St . Each x ∈ St is included

or not into S∗
t independently of the other elements of St . The

inclusion probability is
m(t , x)− β

c + t
where m(t , x) =number of previous customers who tried dish x .
In addition to S∗

t , customer t + 1 also tries Poi(λt ) new dishes,
where λt = α Γ(c+1)Γ(c+β+t)

Γ(c+β)Γ(c+1+t) .
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The Indian buffet model: main effect of each parameter

α is the mass parameter that controls the total number of new
dishes tried by a customer
c is the concentration parameter that tunes the number of
customers which try each dish
β is the discount parameter (or stability exponent) that regulates
the asymptotic behaviour of the random variable
Lt =overall number of different dishes experimented by the first t
customers
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The Indian buffet model with random weights
(Berti-Crimaldi-Pratelli-Rigo 2015)

We introduced a generalized IBM where the different relevance of
the entities (customers) is taken into account by random weights:

For each x ∈ St , the inclusion probability becomes∑t
i=1 RiMi{x} − β
c +

∑t
i=1 Ri

where Mi{x} =indicator of the event {customer i selects dish x}
and Ri is the weight attached to customer i

λt is replaced by Λt = α
Γ(c+1)Γ(c+β+

∑t
i=1 Ri )

Γ(c+β)Γ(c+1+
∑t

i=1 Ri )

We assume Rt independent of the previous weights and the dishes
tasted by the previous customers and customer t .
Remark: The exact formulation of the model can be given using
random measures.
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The Indian buffet model with random weights: some applications

The “weighted” IBM generally applies in order to model evolutionary
phenomena in which we need to distinguish the entities
(customers) according to some associated random factor
(weight), that does not affect their features (dishes) but it is relevant
for the features of the future entities. For example:

- Biological framework: A new born exhibits some features in common
with the existing units with a probability depending on the latter’s
weights (reproductive power, ability of adapting to new environmental
conditions or to compete for finite resources, and so on). The new born
also presents some new features that, in turn, will be transmitted to
future generations with a probability depending on his/her weight.
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The Indian buffet model with random weights: some applications

- Evolution of a language: A neologism is often directly attributable to a
specific “entity” (person or journal, period, event and so on) and its
diffusion depends on the relevance of such an entity. For instance,
suppose we are given a sample of journals of the same type
(customers) during several years. Each journal uses words (dishes),
some of which have been previously used while some others are new.
A word appearing for the first time in a journal has a probability of
being reused which depends on the importance of the journal at issue.
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The Indian buffet model with random weights: some applications

- Dynamics of a complex network: Some networks present a
competitive aspect and not all nodes are equally successful in
acquiring links. Suppose the network evolves in time, a node
(customer) is added at every time, and some links are created with
some of the existing nodes. The different ability of competing for links
can be modeled by a weight (fitness parameter) attached to each
node. Each node could be described by a set of features (dishes) and
the probability of a link could be modeled by an increasing function of
the number of the common features of the involved pair of nodes.
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The Indian buffet model with random weights: asymptotic results

Set Lt = card(St ) =overall number of different dishes tried by the first t
customers
Set L = supt Lt =overall number of dishes tried

If β < 0, then L < +∞ a.s.

If β ∈ [0,1) and Rt = 1
t
∑t

i=1 Ri
a.s.−→ r for some constant r , then

Lt

at (β)
a.s.−→ λ

where at (β) = ln(t) if β = 0 , at (β) = tβ if β ∈ (0,1),

λ = α c
r if β = 0 , λ = α Γ(c+1)

Γ(c+β)
1

β r1−β if β ∈ (0,1)

Thus β̂t = ln(Lt )/ ln(t) is a strongly consistent estimator of β
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The Indian buffet model with random weights: asymptotic results

If β ∈ [0,1) and

Rt
a.s.−→ r and limt

∑t
j=1 jβ−1 E

[∣∣R j − r
∣∣]√

at (β)
= 0

for some constant r , then√
at (β)

{ Lt

at (β)
− λ
}

stably−→ N
(
0, λ

)
Remark: Since the Rt are independent, above conditions hold when
β ∈ [0,1) and

supt E[R2
t ] < +∞ and limt

√
tβ log t

(
E[Rt ]− r

)
= 0

Irene Crimaldi (IMT Lucca) Indian buffet model with random weights 10 / 31



The Indian buffet model with random weights: asymptotic results

Ki =number of dishes experimented by customer i

K t = 1
t
∑t

i=1 Ki = mean number of dishes tried by each of the first t
customers

Remark: If the parameters of the model and/or the weights Ri are
unknown, the conditional expectation

E
[
Kt+1 | Ft

]
=

∑t
i=1 RiKi − βLt

c +
∑t

i=1 Ri
+ Λt

(where Ft is the natural σ-field associated to the model at time t) can
not be evaluated. Then, K t could be used as an empirical predictor
of Kt+1

Irene Crimaldi (IMT Lucca) Indian buffet model with random weights 11 / 31



The Indian buffet model with random weights: asymptotic results

If β < 1/2 and

supt Rt ≤ b, limt E[Rt ] = r , limt E[R2
t ] = q,

for some constants b, r , q, then

E
[
Kt+1 | Ft

] a.s.−→ Z , K t
a.s.−→ Z and

1
t

t∑
i=1

K 2
i

a.s.−→ Q

where Z and Q are real random variables s.t. Z 2 < Q a.s.
Moreover,
√

t
{

K t − Z
} stably−→ N

(
0, σ2), √t

{
K t − E

[
Kt+1 | Ft

]} stably−→ N
(
0, τ2)

where σ2 =
2q − r2

r2 (Q − Z 2), τ2 =
q − r2

r2 (Q − Z 2).

Remark: If Rt = 1 for all t , the previous results hold for β < 1 (and not
only for β < 1/2).
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The Indian buffet model with random weights: inference

The convergence rate of
{

K t − E
[
Kt+1 | Ft

]}
is t−1/2 when q > r2 and

such a rate is even higher if q = r2 (e.g. standard IBM). Hence, K t
seems to be a good empirical predictor of Kt+1 for large t .
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The Indian buffet model with random weights: inference

Define

σ̂2
t =

{(2/t)
∑t

i=1 R2
i

R
2
t

− 1
}{1

t

t∑
i=1

K 2
i − K

2
t

}
Then

I{σ̂t>0}

√
t
{

K t − Z
}

σ̂t

stably−→ N (0, 1)

Thus, K t ± ua√
t
σ̂t , with N (0,1)(ua, +∞) = a/2, provides an asymptotic

confidence interval for Z
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Formulation of the model:
Poisson random measures

E separable metric space endowed with its Borel σ-field B(E).
SetM = {ν : ν is a finite positive measure on B(E)}
A random measure (r.m.) is a map M : Ω→M s.t.
M(B) : ω 7→ M(ω)(B) is measurable for each B ∈ B(E).
A completely r.m. is a r.m. M such that M(B1), . . . ,M(Bk ) are
independent random variables whenever B1, . . . ,Bk ∈ B(E) are
pairwise disjoint.
Let ν ∈M. A Poisson r.m. with intensity ν is a completely r.m. M such
that M(B) ∼ Poi

(
ν(B)

)
for all B ∈ B(E).
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Formulation of the model:
Bernoulli random measures

Each ν ∈M can be uniquely written as ν = νc + νd , where νc is
diffuse and νd =

∑
j γj δxj for some γj ≥ 0 and xj ∈ E .

M is a Bernoulli r.m. with hazard measure ν ∈M (we write
M ∼ BeP(ν)) if

M = M1 + M2 with M1 and M2 independent r.m.’s;
M1 is a Poisson r.m. with intensity νc ;
M2 =

∑
j Vj δxj where the Vj are independent indicators satisfying

P(Vj = 1) = γj .
Properties:
- M is a completely r.m.
- M ∈ F a.s. where F = {νB =

∑
x∈B δx : B finite}⊂M
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The Indian buffet model with random weights:
formulation of the model

Let (Mt )t≥1 be a sequence of r.m. and (Rt )t≥1 a sequence of real r.v.
s.t. the probability distribution of ([Mt ,Rt ])t≥1 is identified by the
parameters m, α, β and c as follows:

m is a diffuse probability measure on B(E);
α, β, c are real numbers such that α > 0, β < 1 and c > −β;
Rt independent of (M1, . . . ,Mt ,R1, . . . ,Rt−1) and
Rt ≥ u > max(β,0), for some constant u and each t ≥ 1;
Mt+1 | Ft ∼ BeP(νt ) for all t ≥ 0, where
F0 = {∅,Ω}, Ft = σ(M1, . . . ,Mt ,R1, . . . ,Rt ),

ν0 = αm, νt =
∑

x∈St

∑t
i=1 Ri Mi{x}−β
c+

∑t
i=1 Ri

δx + Λtm,

St = {x ∈ E : Mi{x} = 1 for some i = 1, . . . , t}.
Remark: m allows to draw, at each t ≥ 1, an i.i.d. sample of new
dishes.
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The Indian buffet model with random weights: a remark

A r.m. can be seen as a random variable with values in (M,Σ), where
Σ is the σ-field onM generated by the maps µ 7→ µ(B) for all
B ∈ B(E).
Because of the weights, unlike the standard IBM, (Mt ) can fail to be
exchangeable.
This can create some technical drawbacks. However, the
exchangeability assumption is often untenable in applications. In such
cases, the weighted IBM is a more realistic alternative to the standard
IBM.
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The Indian buffet model with random weights: a property

(Mt ) is conditionally identically distributed (c.i.d.) with respect to a
suitable filtration if

Λt+1 = Λt

(
1− Rt+1 − β

c +
∑t+1

i=1 Ri

)
a.s. for all t ≥ 0.

In particular, (Mt ) is c.i.d. if β = 0 or if Rt = 1 for all t ≥ 1.
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A general central limit theorem

For t ≥ 1, Xt : (Ω,A,P) 7−→ (R,B(R)) such that supt≥1 E[X 2
t ] < +∞ ,

F = (Ft )t≥0 increasing filtration,

Zt = E[Xt+1 | Ft ]

Suppose
limt t3 E

{(
E[Zt+1 | Ft ]− Zt

)2}
= 0 . (1)

Then

Zt
a.s.−→ Z and X t =

∑t
i=1 Xi

t
a.s.−→ Z

Note: condition (1) obviously holds when (Zt )t is a F-martingale (e.g.
exchangeable seq. with natural filtration or, more generally,
F-conditionally identically distributed seq.).
There are also cases in which condition (1) holds but (Zt )t is not a
martingale.
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A general central limit theorem
(Berti-Crimaldi-Pratelli-Rigo 2011)

Assume (Xt ) adapted to F , (X 2
t )t uniformly integrable, condition (1)

and

(a) limt
1√
t

E{max1≤i≤t i |Zi−1 − Zi | } = 0

(b) 1
t
∑t

i=1{Xi − Zi−1 + i(Zi−1 − Zi)}2
P−→ U

(c) limt
√

t E[ supi≥t |Zi−1 − Zi | ] = 0

(d) t
∑

i≥t (Zi−1 − Zi)
2 P−→ V

Then

[Ct ,Dt ]=
[√

t(X t − Zt ),
√

t(Zt − Z )
] stably−→ N (0,U)⊗N (0,V )

In particular,

Wt =
√

t(X t − Z )
stably−→ N (0,U + V )
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Other contexts

Multicolor Randomly Reinforced Urn Models
(without or with dominant colors)

Poisson-Dirichlet model/Chinese restaurant model
(which belongs to the class of species sampling sequences)

These models are suitable in order to describe evolutionary
phenomena, such as the evolution of populations, or of languages or
of complex networks.

They are preferential attachment models.
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Preferential Attachment Models

The Preferential Attachment Models are stochastic models in which,
along the time-steps, different individuals or objects or categories
(colors) receive some quantity, called “weight” (number of balls), in
such a way that the higher the total weight they already have until a
certain time-step, the greater the probability of receiving an additional
weight at the next time-step (i.e. a “self-reinforcing” property).

The preferential attachment is a key feature governing the dynamics of
many biological, economic and social systems.
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Preferential Attachment principle

The preferential attachment principle has been studied by many
authors and it can be found in the scientific literature in different forms:
- Urn models: Pólya urn (G. Pólya, Ann. Inst. H. Poincaré 1931) and
related generalizations
- Rich get richer rule (H. A. Simon, Biometrika 1955)
- Matthew effect (R. K. Merton, Science 1968)
- Cumulative advantage (D. J. Price, J. Amer. Soc. Inform. Sci. 1976)
- Preferential attachment (Barabási and Albert, Science 1999)
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Appendix

Random probability measures

(Ω,A,P) probability space, E separable metric space

Def. A random probability measure, or kernel, on E is a family
K = {K (ω, ·) : ω ∈ Ω} of probability measures on B(E) such that, for
each bounded Borel function f on E , the map

ω 7→ Kf (ω) =

∫
f (x) K (ω, dx)

is A-measurable.

For H ∈ A with P(H) > 0, we define a probability measure on B(E) by

PHK (B)=E
[
K (ω,B) |H

]
=

1
P(H)

∫
H

K (ω,B) P(dω) (2)
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Appendix

Stable convergence (Rényi 1963)

Yt : (Ω,A,P) 7−→ (E ,B(E)) , K kernel on E

Def. (Yt )t converges stably to K if

Yt
d−→ PHK under PH = P(· |H)

for all H ∈ A with P(H) > 0.
In other words,

limt E [f (Yt ) |H] = E [Kf |H]

for all f ∈ Cb(E) and H ∈ A with P(H) > 0

It is intermediate between convergence in law and convergence in
probability.

See: Aldous-Eagleson (Ann. Probab., 1978), Jacod-Memin
(Sem. de Probab., 1981), Fegin (Stoch. Proc. Appl., 1985),
Peccati-Taqqu (Elect. J. Probab., 2006) and Crimaldi-Letta-Pratelli
(Sem. de Probab., 2007), Peccati-Taqqu (J. Theor. Probab., 2008)
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Appendix

Conditional identity in distribution
(Berti-Pratelli-Rigo 2004)

For t ≥ 1, Xt r.v. on (Ω,A,P), F = (Ft )t≥0 increasing filtration

Def. (Xt )t≥1 is conditionally identically distributed with respect to F if
(Xt ) is adapted to F and for each t

Xt+n
d
= Xt+1 under P(· |H) (3)

for each n ≥ 1 and each H ∈ Ft with P(H) > 0 .

It is equivalent to require that

Zt = E[f (Xt+1) | Ft ] for t ≥ 0

is a F-martingale for each measurable real function f s.t.
E[ |f (X1)| ] < +∞
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Appendix

Quasi-martingale

Def. A sequence of integrable real random variables (Zt )t≥0 is a
quasi-martingale with respect to an increasing filtration F = (Ft )t≥0 if
(Xt ) is adapted to F and∑

t≥0

E
[
|E[Zt+1|Ft ]− Zt |

]
< +∞ (4)
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Appendix

Complements regarding the general central limit theorem:
useful lemma

F = (Ft )t≥0 increasing filtration
For t ≥ 1, Xt : (Ω,A,P) 7−→ (R,B(R)) with σ(Xt )⊂Ft for each t ,

X t =
1
t

t∑
i=1

Xi and Zt = E
[
Xt+1 | Ft

]
.

Lemma
If
∑

t t−2E [X 2
t ] < +∞ and Zt

a.s.−→ Z , for some real random variable Z ,
then

X t
a.s.−→ Z and t

∑
i≥t

Xi

i2
a.s.−→ Z .
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Appendix

Complements regarding the general central limit theorem:
sufficient conditions

(Xt ) adapted to F and (X 2
t )t≥1 uniformly integrable

limt t3 E
{(

E[Zt+1 | Ft ]− Zt
)2}

= 0

E
[
supt≥1

√
t |Zt−1 − Zt |

]
< +∞

1
t
∑t

i=1
{

Xi − Zi−1 + i(Zi−1 − Zi)
}2 P−→ U

t
∑

i≥t (Zi−1 − Zi)
2 a.s.−→ V
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