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ABSTRACT. Prior choice for Bayesian model comparison can be problematic for several reasons. In
particular, for the comparison of two nested models, it was recently pointed out that typical prior choices
may produce an unsatisfactory learning behavior of the Bayes factor. More in detail, if the sub-model
is not true the accumulation of evidence is exponentially fast in favor of the encompassing model,
whereas it is only sub-linear in favor of the sub-model under the assumption that the latter is true. To
alleviate this imbalance, it was suggested that the prior under the encompassing model be modified
so that it vanishes over the sub-space corresponding to the sub-model, thus obtaining a Non Local
Alternative Prior (NLAP). In this work, we develop NLAPs for the comparison of Gaussian directed
acyclic graphical models, and contrast their performance with that of traditional priors.

1 INTRODUCTION

Graphical models are a powerful tool for studying the structure of dependencies between
three or more variables. For instance, in a simple application discussed by Wermuth (1993),
the Directed Acyclic Graph (DAG) on the left of Figure 1 can be used to express, for patients
with hypertension, the research hypothesis that systolic blood pressure depends on age only
through the effect of age on weight, whereas the DAG on the right of Figure 1 can be used to
express the alternative hypothesis that age also has a direct effect on systolic blood pressure.
Wermuth (1993) makes a distinction between substantive research hypotheses and statistical
association models, but for the goals of this work we can safely drop it, and identify models
with hypotheses. We shall compare the two models in Figure 1 within a Bayesian framework,
using in particular the Bayes Factor (BF). With even prior odds (in lack of specific prior
knowledge) for the two models, the BF can be turned into the posterior probability of the
simpler model, which represents an easily interpretable measure of evidence.

Bayesian model comparison is still an active area of research, especially with regard to
prior choice; see Pericchi (2005) for a review. In this work, focussing on the above described
application, we deal with prior choice for Gaussian DAG models, which we briefly introduce
in the next section. For a general presentation of graphical model theory, terminology and
notation the Reader is referred to Cowell et al. (1999).
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Figure 1. DAGs for the null (research) and alternative hypotheses in the simple application on patients
with hypertension discussed by Wermuth (1993).

Variable Y1 (Age) Y2 (Weight) Y3 (Systolic blood pressure)
Y1 (Age) 1.000 0.369 −0.007
Y2 (Weight) 0.390 1.000 0.348
Y3 (Systolic blood pressure) 0.139 0.371 1.000
Mean 32.74 0.42 128.31
Standard deviation 11.67 0.04 13.47

Table 1. Summary statistics for n = 98 patients with hypertension, as reported by Wermuth (1993):
marginal correlations (lower half), partial correlations (upper half), means and standard deviations (age
in years, weight relative to height, systolic blood pressure in millimeters of mercury).

2 GAUSSIAN DAG MODELS

A directed graph D = (V,E) consists of a finite set of vertices V = {1, . . . ,q} together with
a set of edges E ⊆ V ×V such that ( j,k) ∈ E implies (k, j) /∈ E. A cycle in D is a sequence
of vertices j0, j1, . . . , jm such that ( j�−1, j�) ∈ E for all � = 1, . . . ,m and j0 = jm. A directed
graph containing no cycles is called a DAG. Two DAGs are depicted in Figure 1, with circles
representing vertices and arrows representing edges.

Given a DAG D, the Gaussian DAG model defined by D is the family of q-variate normal
distributions MD such that their density function factorizes as

f (y1, . . . ,yq|α,β,γ) =
q

∏
j=1

f (y j|ypa( j);α j,β j,γ j), (1)

where α= (α j)
q
j=1, β= (β j)

q
j=1, γ= (γ j)

q
j=1, pa( j) = {k ∈V : (k, j) ∈ E} are the parents of j

(in D), ypa( j) = [yk]′k∈pa( j) is a (column) vector of length #pa( j), and f (y j|ypa( j);α j,β j,γ j) is

a univariate normal density with mean α j +β′jypa( j) and variance γ−1
j .

If an i.i.d. sample Y = [[Yi, j]
q
j=1]

n
i=1 of size n is available (an n× q matrix) the following

expression for the likelihood under MD is obtained from (1) by algebraic manipulation:

L(α,β,γ|Y ) =
q

∏
j=1

( γ j

2π

) n
2

e
− nγ j

2

[
Cj, j+β′jCpa( j),pa( j)β j−2C′

pa( j), jβ j+
(
Ȳj−α j−Ȳ ′

pa( j)β j

)2
]
, (2)



where Ȳj = 1
n ∑

n
i=1Yi, j is the sample mean of the j-th variable, C is the sample covariance

matrix, that is, Cj,k = 1
n ∑

n
i=1(Yi, j −Ȳj)(Yi,k −Ȳk), and CJ,K denotes the submatrix of C indexed

by j ∈ J and k ∈ K, for any two subsets J and K of V .
In the following two sections we discuss prior choices for the likelihood (2), in view of

model comparison.

3 CONJUGATE ANALYSIS

Since (α j,β j,γ j), j = 1, . . .q, in (2) are variation independent, a convenient (and widespread)
prior choice is to let them be stochastically independent; this assumption is called global
parameter independence by Cowell et al. (1999) and Geiger and Heckerman (2002). With
this choice, the marginal likelihood of MD given Y can be written as

L(MD |Y ) =
q

∏
j=1

f (Yj|Ypa( j)), (3)

where f (Yj|Ypa( j)) =
R R R

f (Yj|Ypa( j);α j,β j,γ j)p(α j,β j,γ j)dα jdβ jdγ j, if p(α j,β j,γ j) is the
prior density of (α j,β j,γ j), Yj denotes the data for variable j, and Ypa( j) the data for variables
in pa( j). It is easy to see that (α j,β j,γ j), j = 1, . . .q, are also independent a posteriori.

Given two DAG models MD0 and MD1 , the Bayes Factor (BF) of MD1 against MD0 is

BF10(Y ) =
L(MD1

|Y )
L(MD0

|Y )
(4)

and from (4), assuming even prior odds for the two models, the posterior probability of M D0

is obtained as P(MD0
|Y ) = 1/(1+BF10(Y )).

With reference to Gaussian DAG models, a conjugate prior is available (and often used)
for (α j,β j,γ j). Let η j = [α j β′j]′ and p j = #pa( j)+1, then take

η j|γ j ∼ Np j

(
e j,γ

−1
j E−1

j

)
, γ j ∼ G

(n0

2
,
s j

2

)
, (5)

where Np(µ,Σ) denotes a p-variate normal distribution with mean vector µ and covariance
matrix Σ, G(α,β) a gamma distribution with mean αβ−1, e j is a prior mean vector, E j a
positive definite prior precision matrix, n0 has the meaning of a prior sample size, and s j

the meaning of a prior sum of squares. Because of conjugacy, letting Ỹpa( j) = [1n Ypa( j)],
where 1n is the vector with n ones, the posterior of (η j,γ j) is as in (5) with the following
updated hyperparameters: E �

j = Ỹ ′
pa( j)Ỹpa( j) + Ej, e�

j = E�−1
j (Ỹ ′

pa( j)Yj + Eje j), n�
0 = n0 + n,

and s�
j = s j +(Yj − Ỹpa( j)e j)′(In − Ỹpa( j)E

�−1
j Ỹ ′

pa( j))(Yj − Ỹpa( j)e j), where In denotes the n×n
identity matrix. Moreover, the local marginal likelihood for vertex j can be written as

f (Yj|Ypa( j)) =
Γ(n�

0/2)|Ej| 1
2 s

n0
2
j

π
n
2 Γ(n0/2)|E�

j |
1
2 s

�
n�
0
2

j

, (6)



where Γ denotes the gamma function and |A| the determinant of a matrix A. Equation (6)
is equation (9.44) of O’Hagan (1994) rewritten in our notation, and the expression we use
for s�

j can be otained from (9.47) of O’Hagan (1994) using (17) of Henderson and Searle
(1981). This expression for s�

j shows that the distribution of Yj given Ypa( j) is an n-variate
Student t distribution with n0 degrees of freedom, location vector Ỹpa( j)e j, and scale matrix

n−1
0 s j(In − Ỹpa( j)E

�−1
j Ỹ ′

pa( j))
−1; cf. Fernandez et al. (2001). It also shows that (6) depends on

data only through Ỹ ′
pa( j)Ỹpa( j), Ỹ ′

pa( j)Yj and Y ′
jYj, that is, only through n, Ȳfa( j) and Cfa( j),fa( j),

where fa( j) = { j}∪pa( j) is the family of j (in D).

4 MOMENT PRIORS

Suppose we want to compare the two Gaussian DAG models defined in Figure 1. Let D 0 be
the DAG on the left, and D1 the DAG on the right. Typically, from a Bayesian perspective,
we shall select a conjugate prior for each of the two models, using (5) and global parameter
independence, then we shall find BF10(Y ) by means of equations (3), (4) and (6).

A general discussion of consistent prior choice for DAG models with the same vertex set
is given by Geiger and Heckerman (2001). Here it will be enough to remark that M D0

can
be obtained from MD1 by imposing β31 = 0, so that the two models are nested: the prior for
MD0

can thus be derived from the prior for MD1
by conditioning or marginalization (given γ

to preserve tractability). Whatever the specific choice, the prior p 1 under MD1
will be a Local

Alternative Prior (LAP):

∃ε > 0 : ∀ζ > 0 : ∃(α,β,γ) ∈ I0(ζ) : p1(α,β,γ) ≥ ε, (7)

where I0(ζ) = {(α,β,γ) : |β31| < ζ}. In words, the prior density will be bounded away from
zero in any neighborhood of the nested model, no matter how small it may be.

Johnson and Rossell (2008) recently criticized LAPs on two grounds. On a conceptual
ground, prior distributions should convey some notion of separation between models, if they
are to be used for model comparison. On a pragmatic ground, LAPs lead to an imbalance
in the learning behavior of the BF: if the sampling distribution belongs to the encompassing
model only, BF10(Y ) will be an infinite in probability of order eKn, as n→∞, for some K > 0,
so that MD1 will be chosen exponentially fast; on the other hand, if the sampling distribution
also belongs to the nested model, BF10(Y ) will be an infinitesimal in probability of order
n−L/2, as n → ∞, where L > 0 is the difference in dimension between the two models, so that
MD0

will be chosen polynomially fast. In our example, as well as in all other cases where
L = 1, the learning behavior will be sub-linear, when the nested model should be chosen, and
this will make hard for the research hypothesis to be confirmed.

To alleviate the above described imbalance, Johnson and Rossell (2008) suggested that
the prior under the encompassing model be a Non Local Alternative Prior (NLAP):

∀ε > 0 : ∃ζ > 0 : ∀(α,β,γ) ∈ I0(ζ) : p1(α,β,γ) < ε. (8)

In concrete, suppose a conventional LAP pL
1(α,β,γ) is given. Define a positive continuous

function g(β,h) that is zero whenever β31 = 0, where h is an additional hyperparameter. Then



K(h)−1g(β,h)pL
1(α,β,γ) defines a NLAP, where K(h) is the normalizing constant of the new

density, provided it exists. The choice g(β,h) = β2h
31, with h a strictly positive integer, gives

rise to a family of moment priors, whose rate of learning becomes n−h−L/2 if MD0 is true.
Johnson and Rossell (2008) also introduced inverse moment priors, achieving an exponential
rate of learning when the nested model is true, but we do not consider them here, because they
do not provide us with a general-purpose method for prior modification. Notice that moment
priors obtained from conjugate priors are still conjugate priors, and that a convenient choice
of g preserves parameter independence.

If we start from the conjugate prior defined by (5) and global parameter independence,
provided 2h < n0, we obtain a valid moment prior with normalizing costant

K(h) =
h

∑
�=0

(2h)! ·b(2h−2�)
31 · v�

31 · s�
j

2� · (2h−2�)! · �! ·∏�
m=1(n0 −2m)

, (9)

where b31 = e32 is the prior mean of β31, and v31 = (E−1
3 )2,2 the prior variance of γ1/2

3 β31,
given γ3; equation (9) can be obtained by computing normal and inverse gamma moments.
Then, since pL

1(α j,β j,γ j) f L
1 (Yj|Ypa( j);α j,β j,γ j) = pL

1(α j,β j,γ j|Yj,Ypa( j)) f L
1 (Yj|Ypa( j)) due to

global parameter independence (cf. Cowell et al. (1999, p. 195)), we obtain the following
expression for the moment prior local marginal likelihood:

f M
1 (Yj|Ypa( j)) =

K�(h)
K(h)

f L
1 (Yj|Ypa( j)), (10)

where K�(h) is as in (9) with updated hyperparameters (and f L
1 (Yj|Ypa( j)) is as in (6)).

In the next section, using simulated data, we contrast the conjugate and moment priors in
terms of evidence for the true model, as sample size grows.

5 SIMULATION STUDY

In a hypothesis-driven data analysis spirit, suppose we observe the data in Table 1 and these
prompt us to compare the two models in Figure 1. We will use the data in Table 1 for prior
elicitation, and collect additional data until we come to a conclusion, which we do when
the posterior probability of MD0

raises above, or drops below, a decision threshold. Here,
data collection will be simulated by generating 100 samples of increasing size from three
independent standard normal variables ε1, ε2, and ε3, and letting

y1 = 30+10ε1, y2 = 0.4+0.001y1 +0.04ε2, y3 = 80+β•13y1 +100y2 +10ε3, (11)

where β•13 = 0, in case MD0
is true, and β•13 =−0.1, in case MD0

is false (each sample is used
twice). We analyze the simulated data with conjugate priors, letting e j = η̂ j, Ej = X̃ ′

pa( j)X̃pa( j),

s j = X ′
jXj −X ′

jX̃pa( j)η̂ j , and n0 = 98, where η̂ j = (X̃ ′
pa( j)X̃pa( j))

−1X̃ ′
pa( j)Xj and X denotes the

prior data in Table 1. Then, keeping the prior under M D0 fixed, we turn the prior under MD1

into the corresponding moment prior, with h = 1, and repeat the analyses.
Figure 2 shows our findings. The moment prior learns that MD0

is true much faster than
the conjugate prior, whose evidence is not yet overwhelming even with huge sample sizes.
However, the performance of the moment prior is inferior to that of the conjugate prior when
MD0 is false, but this only happens for moderate sample sizes.
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Figure 2. Learning behavior on simulated data of the conjugate and moment priors: P(MD0
|Y ) is plotted

for both priors, as a function of n, under two sampling conditions. Lines interpolate simulation averages,
and shaded regions represent 95% (± two standard errors) confidence bands. The dashed horizontal
lines mark possible decision thresholds at 0.05, 0.50 and 0.95.
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