
Log-Mean Linear Parameterizations for Smooth
Independence Models

Monia Lupparelli, Luca La Rocca and Alberto Roverato

Key words: marginal independence, smooth model, sparse table

1 Introduction

In categorical data analysis the choice of suitable parameterizations is a relevant
aspect for several reasons: (i) the parameter space is often involved, (ii) its dimen-
sion rapidly increases with the number of variables, (iii) tables are sparse for high
dimensional data, (iv) models specified by non-linear constraints on joint probabil-
ities can result in non-smooth models. There is, in particular, an interest in parame-
terizations defining smooth and interpretable models by means of linear constraints
on the parameter space. These considerations motivate the increasing attention for
novel parameterizations; see [5], [1] and [9].

We focus on the log-mean linear (LML) parameterization recently introduced
by [9] for the binary case and then generalized by [8], which is suitable for mod-
els of marginal independence, also known as bi-directed graph or covariance graph
models; see [3] and [4]. These models investigate the marginal independence struc-
tures of the variables and are very useful in high dimensional data analysis, where
working in low-dimension sub-spaces is highly desirable.
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Fig. 1 Independence models for Coppen data: (a) a bi-directed graph giving Y1 ⊥⊥{Y3,Y4} and
{Y1,Y2}⊥⊥Y4, under the connected set Markov property, with χ2

(5) = 8.6 (p-value = 0.13, BIC =

−20.85); (b) an undirected graph giving Y1 ⊥⊥{Y3,Y4}|Y2 and {Y1,Y2}⊥⊥Y4|Y3, under the global
Markov property, with χ2

(8) = 13.9 (p-value = 0.09, BIC =−33.26).

We show, through an example, how linear constraints on the LML parameteriza-
tion allow us to specify, at the same time, marginal independencies and partial con-
ditional independencies, thus obtaining a class of smooth parsimonious bi-directed
models defined in a lower dimensional space where the constraints have a clear in-
terpretation; see [2] on a similar topic. In addition, through simulations, we show
that a convenient choice of variable coding focusses LML models on partial tables
with relatively large counts, which results in increased efficiency.

2 Smooth Parsimonious LML Models for Bi-Directed Graphs

We consider a vector YV = (Yv)v∈V of discrete random variables taking values iV ∈
IV , where IV = ×v∈V {0,1, . . . ,dv}, according to a Multinomial distribution with
strictly positive probability parameter πV = (π iV )iV∈IV , where π iV = P(YV = iV )
and ∑iV∈IV π iV = 1; πV belongs to the |IV |−1 dimensional simplex ΠV . For every
D ⊆V , YD takes values iD ∈ ID with ID defined accordingly. The mean parameter
is the vector µV = (µ jD , jD ∈ JD)D⊆V ,µV ∈ µ(ΠV ), where µ jD = P(YD = jD),
µ j /0 = 1, and JD =×v∈D {1, . . . ,dv}. The LML parameter proposed by [9] and [8]
is the vector γV = (γ jD , jD ∈JD)D⊆V defined by the smooth mapping ΠV → γ(ΠV )

γ jD = ∑
E⊆D

(−1)|D\E| log(µ jE ); (1)

for every D ⊆V we define γD = (γ jD) jD∈JD , which is a subvector of γV .
Let B = (V,E) be a bi-directed graph defined by a finite set V of nodes and a

symmetric set of edges E ⊆V ×V drawn as bi-directed. Under the pairwise Markov
property, for the vector YV , a missing edge between a pair of nodes (u,v) /∈ E corre-
sponds to the marginal independence Yu⊥⊥Yv. The set of all independencies encoded
by B can be derived using the connected set Markov property: given any discon-
nected set D ⊆V of nodes in B, the vectors associated to its connected components
YC1 , . . . ,YCr are mutually independent; see Fig. 1(a) for an illustration and [4] for
technical details. Given a graph B, the probability distribution of YV satisfies the
connected set Markov property iff the vector γD = 0 for every disconnected set D of
B; see [8, Thr. 4.1]. Parameterizations for these models have also been studied by
[4] and [6] using respectively the mean and multivariate logistic (MLT) parameter.
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We consider the Coppen data set including four binary variables concerning
symptoms of 362 psychiatric patients: Y1 ≡ stability (0 = extroverted, 1 = intro-
verted); Y2 ≡ validity (0 = energetic, 1 = psychasthenic); Y3 ≡ acute depression (0
= yes, 1 = no); Y4 ≡ solidity (0 = hysteric, 1 = rigid). These data were analysed by
[10], finding the conditional independence model in Fig. 1(b). More recently, [6]
and [9] obtained the model in Fig. 1(a) using marginal independence models. Both
models achieve a good fit, but they encode different independencies that can be
combined only adding further independence relationships; however this operation
requires some care because it may lead to non-smooth models; see [1, Ex. 7].

LML models represent a tool which allows us to partially combine the indepen-
dencies under the two graph models into a single smooth model. In details, we can
define an LML model under two sets of linear constraints:

γ{1,3} = γ{1,4} = γ{2,4} = γ{1,3,4} = γ{1,2,4} = 0; (2)
γ{1,3}+ γ{1,2,3} = 0, γ{2,4}+ γ{2,3,4} = 0, γ{1,3,4}+ γ{1,2,3,4} = 0. (3)

Constraints in (2) define the bi-directed graph model, while constraints in (3) de-
fine the independencies Y1 ⊥⊥{Y3,Y4}|{Y2 = 1} and Y4 ⊥⊥{Y1,Y2}|{Y3 = 1} both
implied by the undirected graph; for proofs and details about partial conditional in-
dependencies see [7, Thr. 6, Cor. 8]. In this way, we achieve a smooth parsimonious
bi-directed graph model with χ2

(8) = 11.45 (p-value = 0.18, BIC =−35.68) where
all constraints have a clear interpretation in term of independencies.

Partial conditional independencies which can be tested using LML models are
of the form {YC = 1C} and thus depend on the coding of the variables. We propose
to adopt the criterion of maximal count coding, so that hypotheses are tested in
partial tables with many observations: given a set of binary variables, we will code
them so that the cell with the largest count corresponds to all variables taking level
1. We deem this approach should improve the efficiency of inference, especially
for large and sparse tables. This feature is illustrated by the following simulation
study, which compares the performance of the LML and MLT parameterizations
in achieving parsimonious models; the latter parameterization is denoted by η and
attains parsimoniousness by setting to zero higher order interactions.

3 A Simulation Study

Consider four binary variables indexed by V = {A,B,C,D}. We compare the per-
formance in testing the hypothesis ηV = 0 using the MLT parameter with the per-
formance in testing the hypothesis YC ⊥⊥YD{YA = 1,YB = 1} using the LML param-
eter with maximal count coding. Both hypotheses are implied by the independence
YC ⊥⊥YD|{YA,YB}. We generated a sequence of probability vectors πk, k = 1, . . . ,40,
satisfying the constraint YC ⊥⊥YD|{YA,YB}. For each πk, we sampled 5000 multino-
mial vectors nw, w = 1, . . . ,5000, of size N. For each random sample nw, we tested
the two above hypotheses at α = 0.05 nominal significance level, using the χ2

(1) dis-
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Fig. 2 (a) Box-plots of the estimated significance levels. (b) Box-plot of the difference in power.

tribution. For each πk, we estimated the finite sample significance level α̂η
k and α̂γ

k
of the two tests through the proportion of rejected models in the 5000 random sam-
ples, thus obtaining two distributions of estimates. The procedure was repeated for
N = 50, 100, 400, 1600. Fig. 2(a) compares for every N the two box-plots of the es-
timated significance levels. The plot shows a lower variability in the estimates and
a faster convergence to the nominal value (0.05) for the test on the LML parameter.

We also compared the two tests in terms of power. We replicated our simula-
tions using a sequence of 40 unconstrained probability vectors πk. For every k, we
estimated the type II error of the two tests, β̂ η

k and β̂ γ
k , through the proportion of

accepted models in the 5000 random samples. Fig. 2(b) reports, for every N, the
box-plot of the differences in power δ̂k = β̂ η

k − β̂ γ
k , k = 1, . . . ,40. The plot shows a

clear gain in power for the test based on the LML parameter.
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