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Introduction

The Poisson family constitutes a bench-

mark model for count data, which can

be interpreted in terms of rare events.

We give a Bayesian procedure to test

the adequacy of this model, against a

recently revived alternative model.

The CMP family

The Conway-Maxwell-Poisson family is a

two-parameter model defined by

Pr(Y = y | λ, ν)

Pr(Y = y − 1 | λ, ν)
=
λ

yν
,

y = 1, 2, . . . (λ > 0, ν > 0); it bridges

(Shmueli et al., 2005) three well-known

sampling models:

- geometric (ν ↓ 0, λ < 1);

- Poisson (ν = 1);

- Bernoulli (ν ↑ ∞).

Both overdispersion (ν < 1) and under-

dispersion (ν > 1) can be modelled.

Conjugate analysis

The CMP likelihood, having observed

the counts y1, . . . , yn, can be written as

L(λ, ν|s1, s2) =
λs1e−νs2

Z(λ, ν)n
,

where s1 =
∑n
i=1 yi, s2 =

∑n
i=1 log(yi!),

and

Z(λ, ν) =
∞∑
j=0

λj

(j!)ν
.

Hence, the CMP model constitutes an

exponential family and is amenable to

conjugate analysis (Kadane et al., 2006).

Bayes factor

We obtain a BF against Poissonness as

BFH,H0
(s1, s2) =

mH(s1, s2)

mH0
(s1)

,

where mH (mH0
) is the marginal likeli-

hood under the CMP (Poisson) model;

notice that H0 is nested in H.

Prior choice

Under H we let a, b and c in

pH(λ, ν)∝ λae−νb

Z(λ, ν)c

be the sufficient statistics and sample

size of a training sample x1, . . . , xc.

For a fair comparison of H against H0

we centre pH(λ, ν) on H0 by using a

“perfectly Poissonian” training sample:

#{k : xk = x} 'mλ̂
x

x!
e−λ̂,

x = 0, 1, 2, . . . , where m is a tentative

value for c and λ̂ = s1
n (data mean).

Under H0 we let pH0
(λ) = pH(λ|ν=1),

and get a gamma density with shape a

and rate c (conjugate analysis).

Computation

While mH0
(s1) is available in closed

form, non-trivial numerical evaluation of

k(a, b, c)−1 =
∫ ∞
0

∫ ∞
0

λae−νb

Z(λ, ν)c
dλdν

is needed to compute mH(s1, s2) =

k(a, b, c) / k(a + s1, b + s2, c + n).

An example

Letting Pr(H0) = 1
2, we study the sensi-

tivity of Pr(H0|s1, s2) to c, as a fraction

of n, for the chromosome interchange

data reported by Kadane et al. (2006):

n = 2566, s1 = 303, s2 = 10.4.

c/n Pr(H0|s1, s2) c/n Pr(H0|s1, s2)

0.03 0.74 0.61 0.57

0.23 0.64 0.81 0.59

0.42 0.59 1.00 0.57

Future plans

We plan to carry out a more struc-

tured objective Bayesian analysis using

intrinsic prior methodology; see Pericchi

(2005) for a review, and Consonni and

La Rocca (2007) for an application.
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