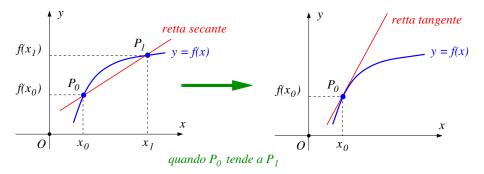
Retta tangente



Consideriamo una funzione continua f. Siano $P_0 = (x_0, f(x_0))$ e $P_1 = (x_1, f(x_1))$ due punti appartenenti al grafico della funzione.

Al tendere di x_1 a x_0 , il punto P_1 si avvicina al punto P_0 e la retta secante tende ad assumere una posizione limite, che prende il nome di retta tangente al grafico nel punto P_0 .

Retta tangente

L'equazione della retta secante per i due punti P_0 , P_1 è data da

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0) + f(x_0).$$

Il coefficiente angolare

$$\frac{f(x_1)-f(x_0)}{x_1-x_0}$$

si chiama rapporto incrementale della funzione f nei punti x_0 e x_1 .

Se esiste finito, il limite del rapporto incrementale

$$\lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$

rappresenta il coefficiente angolare della retta tangente di equazione:

$$y = f'(x_0)(x - x_0) + f(x_0).$$

Il valore $f'(x_0)$ è per definizione la **derivata prima** di f in x_0 .

Definizione di derivata

Se esiste finito il limite del rapporto incrementale:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h},$$

la funzione f si dice derivabile in x_0 .

(Nel lucido precedente $h = x_1 - x_0$ e $x_1 = x_0 + h$).

Il valore del limite è per definizione la derivata di f nel punto x_0 .

La derivata si indica con le seguenti notazioni:

$$f'(x_0)$$
 $\frac{df}{dx}(x_0)$ $Df(x_0)$

Calcolo di derivate - Esempi

Esempio 1: f(x) = c funzione costante

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Calcolo di derivate - Esempi

Esempio 1: f(x) = c funzione costante

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Esempio 2: f(x) = mx + q

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{m(x+h) + q - mx - q}{h} = \lim_{h \to 0} \frac{mh}{h} = m$$

Calcolo di derivate - Esempi

Esempio 1: f(x) = c funzione costante

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Esempio 2: f(x) = mx + q

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{m(x+h) + q - mx - q}{h} = \lim_{h \to 0} \frac{mh}{h} = m$$

Esempio 3: $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{h^2 + 2xh}{h} = 2x$$

Calcolo di derivate – Esempi

Esempio 1: f(x) = c funzione costante

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = 0$$

Esempio 2: f(x) = mx + q

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{m(x+h) + q - mx - q}{h} = \lim_{h \to 0} \frac{mh}{h} = m$$

Esempio 3: $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{h^2 + 2xh}{h} = 2x$$

Esempio 4: $f(x) = e^x$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = \lim_{h \to 0} e^x \frac{e^h - 1}{h} = e^x$$

Derivata come velocità istantanea

Un oggetto si muove lungo un percorso rettilineo. La sua posizione è una funzione del tempo: s = s(t).

Velocità media nell'intervallo $[t_0, t_0 + h]$:

$$v_{\text{media}} = \frac{s(t_0 + h) - s(t_0)}{h}$$

Velocità istantanea al tempo t_0 :

$$v_{\text{istantanea}} = \lim_{h \to 0} \frac{s(t_0 + h) - s(t_0)}{h}$$

Più h è vicino a 0, più piccolo è l'intervallo di tempo considerato e più precisa è l'informazione sull'andamento della velocità.

Derivata come velocità istantanea

Un oggetto si muove lungo un percorso rettilineo. La sua posizione è una funzione del tempo: s = s(t).

Velocità media nell'intervallo $[t_0, t_0 + h]$:

$$v_{\text{media}} = \frac{s(t_0 + h) - s(t_0)}{h}$$

Velocità istantanea al tempo t_0 :

$$v_{\text{istantanea}} = \lim_{h \to 0} \frac{s(t_0 + h) - s(t_0)}{h}$$

Più h è vicino a 0, più piccolo è l'intervallo di tempo considerato e più precisa è l'informazione sull'andamento della velocità.

Esempio. Sia $s(t) = s_0 + v \cdot t$ (moto rettilineo uniforme). Allora si ha:

$$v(t) = \lim_{h \to 0} \frac{s(t+h) - s(t)}{h} = \lim_{h \to 0} \frac{v \cdot h}{h} = v$$

Derivata come tasso di accrescimento

Nel processo di crescita di un organismo il peso corporeo è una funzione del tempo: P=P(t).

$$P(t_0)$$
 peso all'istante t_0 $P(t_0+h)$ peso all'istante t_0+h $P(t_0+h)-P(t_0)$ variazione di peso nell'intervallo $[t_0,t_0+h]$

Tasso medio di accrescimento: è la variazione (media) nell'unità di tempo, cioè il rapporto

$$\frac{P(t_0+h)-P(t_0)}{h}$$

Tasso di accrescimento all'istante t_0 : il limite

$$\lim_{h\to 0}\frac{P(t_0+h)-P(t_0)}{h}=P'(t_0)\,,$$

se esiste, fornisce il tasso di accrescimento in t_0 .

Operazioni con le derivate

Siano f, g due funzioni derivabili e $\alpha \in \mathbb{R}$.

- Prodotto per una costante: $(\alpha f)'(x) = \alpha f'(x)$
- Somma: (f+g)'(x) = f'(x) + g'(x)
- Prodotto: $(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$
- Quoziente: $\left(\frac{f}{g}\right)'(x) = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{(g(x))^2}$

Calcolo di alcune derivate

- $f(x) = x^3 = x \cdot x^2$, $f'(x) = 1 \cdot x^2 + x \cdot 2x = 3x^2$ Iterando il procedimento: $f(x) = x^n \text{ con } n \in \mathbb{N}$, $f'(x) = n x^{n-1}$
- $f(x) = 5x^3 3x^2 + 10x 7$, $f'(x) = 15x^2 6x + 10$
- $f(x) = x^2 + e^x$, $f'(x) = 2x + e^x$
- $f(x) = \frac{1}{x}$, $f'(x) = \frac{0 \cdot x 1}{x^2} = -\frac{1}{x^2}$ Iterando il procedimento: $f(x) = \frac{1}{x^n}$, $f'(x) = -\frac{n}{x^{n+1}}$
- $f(x) = \frac{x^5 + 2}{e^x}$, $f'(x) = \frac{5x^4e^x (x^5 + 2)e^x}{e^{2x}}$

Derivata della funzione composta

Se g è una funzione derivabile in x e f è una funzione derivabile in g(x), allora

$$(f \circ g)'(x) = \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Derivata della funzione composta

Se g è una funzione derivabile in x e f è una funzione derivabile in g(x), allora

$$(f \circ g)'(x) = \frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$$

Esempi:

1.
$$h(x) = \frac{1}{x^4 + 5x^3 + 1}$$
, $h'(x) = -\frac{1}{(x^4 + 5x^3 + 1)^2} (4x^3 + 15x^2)$

2.
$$h(x) = (8x^3 - 6x^2)^{10}$$
, $h'(x) = 10(8x^3 - 6x^2)^9(24x^2 - 12x)$

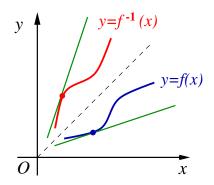
3.
$$h(x) = e^{x^3+2x}$$
, $h'(x) = (3x^2+2)e^{x^3+2x}$

Derivata della funzione inversa

Consideriamo una funzione f invertibile e derivabile con $f'(y) \neq 0$ (cioè, senza punti a tangente orizzontale).

La funzione inversa f^{-1} risulta derivabile e vale:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$



I grafici di f ed f^{-1} sono simmetrici rispetto a y = x.

Le rette tangenti hanno coefficienti angolari, uno il reciproco dell'altro.

Derivata della funzione inversa – Esempi

Esempio 1.
$$f^{-1}(x) = \sqrt{x}$$
, $f(y) = y^2$
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{[2y]_{y=-\sqrt{x}}} = \frac{1}{2\sqrt{x}}$$

Esempio 2.
$$f^{-1}(x) = \ln x$$
, $f(y) = e^y$
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{\left[e^y\right]_{y=\ln x}} = \frac{1}{x}$$

Derivate

Funzione $f(x)$	Derivata $f'(x)$	Ambito di validità
costante	0	
x^{α}	$\alpha x^{\alpha-1}$	$lpha \in \mathbb{R}$ (se $lpha$ non è intero, vale per $x > 0$)
e ^x	e^{x}	
a ^x	$a^{\times} \cdot \ln a$	a > 0
ln x	$\frac{1}{x}$	$\begin{vmatrix} a > 0 \\ x > 0 \end{vmatrix}$
log _a x	$\frac{1}{x} \cdot \log_a e$	a > 0, x > 0
sin x	cos x	
cos x	- sin <i>x</i>	
tan x	$\frac{1}{\cos^2 x}$	$x eq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}$

- **1.** Date le funzioni $f(x) = x^2$ e g(x) = 2x 1,
- (a) dire quanto vale $f \circ g$, qual è il suo insieme di definizione e quanto vale la sua derivata;
- (b) dire quanto vale $g \circ f$, qual è il suo insieme di definizione e quanto vale la sua derivata.

- **1.** Date le funzioni $f(x) = x^2$ e g(x) = 2x 1,
- (a) dire quanto vale $f \circ g$, qual è il suo insieme di definizione e quanto vale la sua derivata;
- (b) dire quanto vale $g \circ f$, qual è il suo insieme di definizione e quanto vale la sua derivata.
- **2.** Date le funzioni f(x) = 2x 5 e $g(x) = \ln(x + 2)$,
- (a) dire quanto vale $f \circ g$, qual è il suo insieme di definizione e quanto vale la sua derivata;
- (b) dire quanto vale $g \circ f$, qual è il suo insieme di definizione e quanto vale la sua derivata.

Derivabilità e continuità

Derivabilità ⇒ Continuità:

se f è derivabile in x_0 , allora f è continua in x_0 .

Infatti, per l'ipotesi di derivabilità
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Consideriamo l'uguaglianza:

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$$
 per $x \neq x_0$.

Passando al limite, si ricava la continuità in x_0 :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0) \cdot 0 = f(x_0).$$

Derivabilità e continuità

Derivabilità ⇒ Continuità:

se f è derivabile in x_0 , allora f è continua in x_0 .

Infatti, per l'ipotesi di derivabilità
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Consideriamo l'uguaglianza:

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} \cdot (x - x_0)$$
 per $x \neq x_0$.

Passando al limite, si ricava la continuità in x_0 :

$$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0) \cdot 0 = f(x_0).$$

Continuità ⇒ Derivabilità:

1.
$$f(x) = |x|$$
 (punto angoloso) 2. $g(x) = \sqrt[3]{x^2}$ (punto cuspidale)

Queste funzioni sono continue, ma non sono derivabili in x = 0.

1. Scrivere l'equazione della retta tangente al grafico della funzione

$$f(x) = \ln(2x + 1)$$

nel punto x = 2.

2. Calcolare il coefficiente angolare *m* della retta tangente al grafico della funzione

$$g(x) = \frac{\ln(x+1)}{2x^2+3}$$

nel punto x = 0.

3. Data la funzione

$$f(x) = \begin{cases} e^x & \text{se } x \ge 0\\ x^2 + 1 & \text{se } x < 0 \end{cases}$$

studiarne continuità e derivabilità.

4. Determinare i valori dei parametri $\alpha, \beta \in \mathbb{R}$ in modo tale che la funzione

$$f(x) = \begin{cases} x^2 + \alpha x + 2\beta - 1 & \text{per } x \ge 0\\ (\beta + 1)e^x & \text{per } x < 0 \end{cases}$$

sia continua e derivabile in x = 0.

Criterio di monotonia:

se f è una funzione derivabile in (a, b), si ha:

$$f'(x) \ge 0 \quad \forall x \in (a,b) \quad \Longleftrightarrow \quad f \text{ è debolmente crescente in } (a,b)$$

$$f'(x) \le 0 \quad \forall x \in (a,b) \iff f \text{ è debolmente decrescente in } (a,b)$$

Criterio di monotonia:

se f è una funzione derivabile in (a, b), si ha:

$$f'(x) \ge 0 \quad \forall x \in (a,b) \quad \Longleftrightarrow \quad f \text{ è debolmente crescente in } (a,b)$$

$$f'(x) \le 0 \quad \forall x \in (a,b) \quad \Longleftrightarrow \quad f \text{ è debolmente decrescente in } (a,b)$$

Nota: per quanto riguarda la monotonia stretta si può dimostrare che:

$$f'(x) > 0 \quad \forall x \in (a, b) \implies f$$
 è strettamente crescente in (a, b)

$$f'(x) < 0 \quad \forall x \in (a,b) \implies f$$
 è strettamente decrescente in (a,b)

MA non valgono le implicazioni inverse!! Basta considerare la funzione $f(x) = x^3$: è strettamente crescente in \mathbb{R} , ma f'(0) = 0.

Esempi. Determinare gli intervalli in cui le seguenti funzioni risultano crescenti e quelli in cui risultano decrescenti:

• $f(x) = x^2$ Si ha che: $f'(x) = 2x \ge 0 \iff x \ge 0$. Quindi, f è decrescente in $(-\infty, 0)$ ed è crescente in $(0, +\infty)$.

• $g(x)=(x^2-3)e^x$ Si ha che: $g'(x)=(x^2+2x-3)e^x\geq 0\iff x\leq -3$ oppure $x\geq 1$. Quindi, g è decrescente in (-3,1) ed è crescente in $(-\infty,-3)$ e in $(1,+\infty)$.

Attenzione: quando si applica il criterio di monotonia, bisogna sempre tenere presente il campo di esistenza della funzione in considerazione.

Esempio. Studiare la monotonia della funzione $f(x) = \frac{1}{x}$.

$$f'(x) = -\frac{1}{x^2} < 0.$$

È sbagliato dire che f è strettamente decrescente in \mathbb{R} perché f non è definita in tutto \mathbb{R} (infatti, è definita solo per $x \neq 0$).

È sbagliato anche dire che f è strettamente decrescente in $(-\infty,0) \cup (0,+\infty)$. Infatti, il criterio di monotonia vale solo sugli intervalli.

Ciò che si può dire è che f è strettamente decrescente nell'intervallo $(-\infty,0)$ ed è strettamente decrescente nell'intervallo $(0,+\infty)$.

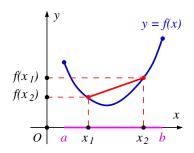
Studiare la monotonia delle seguenti funzioni:

•
$$f(x) = \frac{x^2 + 2}{x^2 - 1}$$

•
$$g(x) = \ln(x^2 - 2x)$$

$$h(x) = e^{-\frac{x^2}{2}}$$

Funzioni concave e convesse



Una funzione f è convessa in (a, b) se

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

per ogni $x_1, x_2 \in (a, b)$ e per ogni $\lambda \in [0, 1]$. Cioè, presi comunque due punti sul grafico di f, il segmento che li congiunge sta *sopra* il grafico. Una funzione f è concava in (a, b) se

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2)$$

per ogni $x_1, x_2 \in (a, b)$ e per ogni $\lambda \in [0, 1]$. Cioè, presi comunque due punti sul grafico di f, il segmento che li congiunge sta *sotto* il grafico.

Criterio di convessità

Criterio di convessità. Se f è una funzione derivabile due volte in (a, b), si ha:

$$f''(x) \ge 0 \quad \forall x \in (a,b) \iff f \text{ convessa in } (a,b)$$

$$f''(x) \le 0 \quad \forall x \in (a,b) \quad \Longleftrightarrow \quad f \text{ concava in } (a,b)$$

Criterio di convessità

Criterio di convessità. Se f è una funzione derivabile due volte in (a, b), si ha:

$$f''(x) \ge 0 \quad \forall x \in (a, b) \iff f \text{ convessa in } (a, b)$$

 $f''(x) \le 0 \quad \forall x \in (a, b) \iff f \text{ concava in } (a, b)$

Esempi. Determinare la convessità delle seguenti funzioni:

- $f(x) = x^2$
 - Si ha che: $f''(x) = 2 \ge 0$ per ogni $x \in \mathbb{R}$. Quindi, f è convessa in \mathbb{R} .
- $g(x) = e^{-x^2}$

Si ha che:
$$g''(x) = 2e^{-x^2}(2x^2 - 1) \ge 0 \iff x \le -\frac{1}{\sqrt{2}}$$
 oppure $x \ge \frac{1}{\sqrt{2}}$.

Quindi, g è concava in $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ ed è convessa in $\left(-\infty, -\frac{1}{\sqrt{2}}\right)$ e in $\left(\frac{1}{\sqrt{2}}, +\infty\right)$.

Punti di massimo e minimo relativo

Punti di massimo e minimo relativo. Sia $f: A \to \mathbb{R}$ e sia $x_0 \in A$. x_0 si dice *punto di massimo relativo* se esiste $\delta > 0$ tale che

$$f(x) \le f(x_0)$$
 per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

 x_0 si dice *punto di minimo relativo* se esiste $\delta > 0$ tale che

$$f(x) \ge f(x_0)$$
 per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

Teorema dei punti critici (Fermat). Sia f una funzione definita su un intervallo [a,b] e sia x_0 un punto di massimo o di minimo relativo. Se $x_0 \in (a,b)$ e se f è derivabile in x_0 , allora $f'(x_0) = 0$.

Nota: i punti in cui si annulla la derivata prima (tra cui vanno ricercati gli eventuali punti di massimo o di minimo relativi interni), si dicono *stazionari* o *critici*.

Punti di massimo e minimo relativo

Punti di massimo e minimo relativo. Sia $f: A \to \mathbb{R}$ e sia $x_0 \in A$. x_0 si dice *punto di massimo relativo* se esiste $\delta > 0$ tale che

$$f(x) \le f(x_0)$$
 per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

 x_0 si dice *punto di minimo relativo* se esiste $\delta > 0$ tale che

$$f(x) \ge f(x_0)$$
 per ogni $x \in (x_0 - \delta, x_0 + \delta)$.

Teorema dei punti critici (Fermat). Sia f una funzione definita su un intervallo [a,b] e sia x_0 un punto di massimo o di minimo relativo. Se $x_0 \in (a,b)$ e se f è derivabile in x_0 , allora $f'(x_0) = 0$.

Nota: i punti in cui si annulla la derivata prima (tra cui vanno ricercati gli eventuali punti di massimo o di minimo relativi interni), si dicono *stazionari* o *critici*.

Criterio della derivata seconda. Sia f una funzione derivabile due volte nell'intervallo (a, b) e sia x_0 un *punto critico*.

- Se $f''(x_0) > 0$, allora x_0 è un punto di minimo relativo.
- Se $f''(x_0) < 0$, allora x_0 è un punto di massimo relativo.

Studiare le seguenti funzioni:

(a)
$$f(x) = 2x^3 - 6x + 1$$

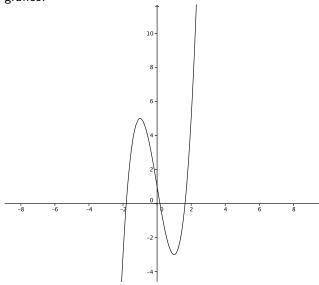
(b)
$$f(x) = \ln(x^2 + 1)$$

determinandone campo di esistenza, comportamento agli estremi, monotonia, eventuali punti di massimo e minimo, convessità, e tracciarne un grafico qualitativo.

Soluzione (a): $f(x) = 2x^3 - 6x + 1$

- ullet campo di esistenza: ${\mathbb R}$
- comportamento agli estremi del dominio: $\lim_{x\to -\infty} f(x) = -\infty$ $\lim_{x\to +\infty} f(x) = +\infty$
- monotonia: $f'(x) = 6x^2 6$ f è strettamente crescente in $(-\infty, -1)$ e in $(1, +\infty)$ f è strettamente decrescente in (-1, 1)x = -1 e x = 1 sono punti critici di f
- eventuali punti di massimo e minimo: x = -1 è un punto di massimo relativo, in cui f vale f(-1) = 5 x = 1 è un punto di minimo relativo, in cui f vale f(1) = -3
- convessità: f''(x) = 12x f è convessa in $(0, +\infty)$; f è concava in $(-\infty, 0)$; x = 0 è un punto di flesso di f

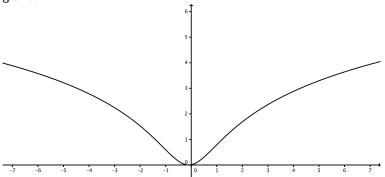
• grafico:



Soluzione (b):
$$f(x) = \ln(x^2 + 1)$$

- ullet campo di esistenza: ${\mathbb R}$
- comportamento agli estremi del dominio: $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = +\infty$
- monotonia: $f'(x) = \frac{2x}{x^2 + 1}$ f è strettamente crescente in $(0, +\infty)$ f è strettamente decrescente in $(-\infty, 0)$ f è un punto critico di f
- eventuali punti di massimo e minimo: x = 0 è un punto di minimo assoluto, in cui f vale f(0) = 0
- convessità: $f''(x) = \frac{2(1-x^2)}{(x^2+1)^2}$ f è convessa in (-1,1), f è concava in $(-\infty,-1)$ e in $(1,+\infty)$ x=-1 e x=1 sono punti di flesso

• grafico:



Massimi e minimi assoluti di una funzione su [a, b]

Problema: determinare massimo e minimo assoluti di una funzione assegnata f su un intervallo dato [a, b].

- 1. Stabilire se la funzione è continua. Se lo è, essa ha certamente massimo e minimo assoluti in [a, b] (per il Teorema di Weierstrass).
- 2. Stabilire se la funzione è derivabile e trovare gli eventuali punti in cui non è derivabile.
- **3.** I candidati punti di massimo di una funzione continua in un intervallo chiuso e limitato [a, b] sono i seguenti:
 - gli estremi dell'intervallo: a, b;
 - gli eventuali punti z ∈ (a, b) in cui la funzione non è derivabile; indichiamo con A questo insieme;
 - gli eventuali punti $\bar{x} \in (a, b)$ in cui la funzione è derivabile e $f'(\bar{x}) = 0$; indichiamo con B tale insieme.

Massimi e minimi assoluti di una funzione su [a, b]

4. Il valore massimo (assoluto) è il massimo tra questi valori:

$$f(a)$$
, $f(b)$, $f(z)$ per $z \in A$, $f(\bar{x})$ per $\bar{x} \in B$

- 5. I punti di massimo sono i valori di x tali che f(x) è uguale al valore massimo.
- **6.** Il valore massimo è unico. I punti di massimo non sono necessariamente unici.

Analogamente per i punti di minimo e il valore minimo.

Esercizio 1. Determinare massimo e minimo assoluti della funzione

$$f(x) = x^3 - 6x^2 + 9x - 1$$

nell'intervallo [0, 2].

Esercizio 1. Determinare massimo e minimo assoluti della funzione

$$f(x) = x^3 - 6x^2 + 9x - 1$$

nell'intervallo [0, 2].

Esercizio 2. Determinare massimo e minimo assoluti della funzione

$$f(x) = \frac{2-2x}{x^2+3}$$

nell'intervallo [-3, 0].

Esercizio 3. Si consideri la funzione

$$f(x) = \begin{cases} e^{2+k-x} & \text{se } -1 \le x \le 1, \\ x^2 + 2 & \text{se } 1 < x \le 3. \end{cases}$$

- Determinare per quale valore di k la funzione f è continua nel punto x = 1.
- Per tale valore di k la funzione f è derivabile nel punto x = 1?
- Per il valore di k per cui la funzione è continua, trovare i punti di massimo e minimo assoluti di f sul suo dominio di definizione, specificandone l'ascissa e l'ordinata.

Soluzione dell'Esercizio 3:

- $k = 1 + \ln 3$
- Per $k = 1 + \ln 3$ la funzione f non è derivabile nel punto x = 1.
- I candidati punti di massimo e minimo assoluti di f in [-1,3] sono gli estremi x=-1, x=3 e il punto di non derivabilità x=1 (non ci sono punti critici di f in (-1,3)). Poiché $f(-1)=3e^2$, f(3)=11, f(1)=3, concludiamo che il massimo assoluto di f in [-1,3] vale $3e^2$ ed è assunto in x=-1, mentre il minimo assoluto di f in [-1,3] vale f ed è assunto in f in altre parole, c'è un solo punto di massimo assoluto di coordinate f in f e un solo punto di minimo assoluto di coordinate f e un solo punto di minimo assoluto di

Regola di de l'Hôpital

Teorema di de l'Hôpital. Siano f, g due funzioni derivabili nell'intervallo aperto (a, b), escluso al più il punto x_0 , tali che

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$$

e $g'(x) \neq 0$ per x vicino a x_0 . Se esiste il limite $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, allora esiste anche il limite

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Osservazione: il teorema continua a valere, con le dovute modifiche, anche per $x\to\pm\infty$ e per le forme indeterminate $\frac{\pm\infty}{\pm\infty}$

Regola di de l'Hôpital – Esempi

(1)
$$\lim_{x \to 0} \frac{e^x - 1}{\ln(x + 1)} = \lim_{x \to 0} (x + 1)e^x = 1$$

(2)
$$\lim_{x \to +\infty} \frac{\ln x}{x^5} = \lim_{x \to +\infty} \frac{1}{5x^5} = 0$$

(3)
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

Osservazione: la regola di de l'Hôpital non sempre è risolutiva. Ad esempio:

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{e^x + e^{-x}}{e^x - e^{-x}} = \lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \dots$$

In questo caso basta osservare che

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = \lim_{x \to +\infty} \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \lim_{x \to +\infty} \frac{1 - e^{-2x}}{1 + e^{-2x}} = 1.$$

- **Esercizio 1.** Date le funzioni $f(x) = |x^2 3x + 2|$ e g(x) = 2x 1,
- (a) determinare il campo di esistenza di $f \circ g$ e scriverne l'espressione;
- (b) determinare il campo di esistenza di $g \circ f$ e scriverne l'espressione;
- (c) disegnare un grafico qualitativo di f, di g, di $f \circ g$ e di $g \circ f$.

- Esercizio 1. Date le funzioni $f(x) = |x^2 3x + 2|$ e g(x) = 2x 1,
- (a) determinare il campo di esistenza di $f \circ g$ e scriverne l'espressione;
- (b) determinare il campo di esistenza di $g \circ f$ e scriverne l'espressione;
- (c) disegnare un grafico qualitativo di f, di g, di $f \circ g$ e di $g \circ f$.
- **Esercizio 2.** Calcolare la derivata della funzione $f(x) = \ln |x|$ per $x \neq 0$.

Esercizio 3. Le lattine in alluminio per le bibite sono dei cilindri con volume V fissato a priori. Determinare l'altezza h e il raggio di base r della lattina che permette di ottenere il volume richiesto usando meno alluminio possibile.

Per una lattina della capienza di 0.33 litri, calcolare l'altezza e il raggio di base ottimali in centrimetri, con arrotondamento alla seconda cifra decimale.

$$1 \text{ litro} = 1 \text{ dm}^3 = 10^3 \text{ cm}^3$$

Esercizio 3. Le lattine in alluminio per le bibite sono dei cilindri con volume V fissato a priori. Determinare l'altezza h e il raggio di base r della lattina che permette di ottenere il volume richiesto usando meno alluminio possibile.

Per una lattina della capienza di 0.33 litri, calcolare l'altezza e il raggio di base ottimali in centrimetri, con arrotondamento alla seconda cifra decimale.

$$1 \text{ litro} = 1 \text{ dm}^3 = 10^3 \text{ cm}^3$$

Soluzione: $r = 3.75 \,\text{cm}, h = 7.5 \,\text{cm}$

Esercizio 4. Studiare la seguente funzione

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$$

Nota: questa funzione è detta curva gaussiana (o curva normale) standardizzata e ha un ruolo importante (che vedremo) in Statistica.

Esercizio 5. Studiare la seguente funzione

$$f(x) = \frac{4}{1 + e^{-x}} + 2.$$

Nota: le funzioni della forma

$$f(x) = \frac{a}{1 + e^{-k(x - x_0)}} + b$$

con a > 0, k > 0, $x_0 \in \mathbb{R}$ e $b \in \mathbb{R}$, sono dette funzioni logistiche e sono utili per descrivere fenomeni di saturazione.