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Supervised Learning vs. Unsupervised Learning

Definition 1 (Supervised Learning)
Supervised Learning is the task of learning (inferring) a function
f that maps input vectors to their corresponding target vectors, by
using a dataset containing a given set of pairs of (input, output)
samples. Examples:

Regression: the output vectors take one or more
continuous values.

Classification: the output vectors take one value of a
finite number of discrete categories. Special case: binary
classification.
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Supervised Learning vs. Unsupervised Learning

Definition 2 (Unsupervised Learning)
Unsupervised Learning is the task of learning (inferring) a
function f that maps input vectors to their corresponding target
vectors, but without any a priori knowledge about the correct
mapping. Examples:

Clustering: The goal of clustering is to group or partition
the input vectors (if possible) into k groups or clusters, with
the vectors in each group close to each other. In this case, the
input vectors represents usually features of objects.

Density Estimation: The goal is to project the data from
a high dimensional space down to two or three dimensions,
usually for the purpose of visualization.
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Unsupervised Learning: Clustering
Suppose we have n vectors: x1, . . . , xn, where each x i ∈ Rd .

The goal of clustering is to group or partition the vectors (if
possible) into k groups or clusters (with k << n), with the vectors
in each group close to each other.

Example 3 (Clustering n = 300 points in R2, into k = 3 clusters)
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Specifying the Cluster Assignments

To specify a clustering or assignment of the n vectors, we used the
labels 1, . . . , k and a vector c of n elements, with the convention
that ci = j means that the i-th vector belong to the j-th cluster.

Example 4 (Cluster Assignment)
Suppose we have n = 5 vectors and k = 3 groups. If we are given
the assignment vector c = [3, 1, 1, 1, 2], this means that we have
the following 3 groups:

G1 = {2, 3, 4}, G2 = {5}, G3 = {1}

More compactly, we can write the grouping

Gj = {i | ci = j}.
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A cluster objective

How can we evaluate a given choice of clustering?

Example 5 (Clustering n = 300 points in R2, into k = 3 clusters)
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Group Representatives

How can we evaluate a given choice of clustering?

Within each cluster we select a

group representative n-vector denoted by: z1, . . . , zk

The representative can be any vector of Rd .

DESIDERATA: each representative is as close as possible to the
vector in its associated group. We want to keep as small as
possible the quantities:

||x i − zci ||
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A Cluster Objective

Using the clustering representative, we can write a single function
that measure the quality of a given clustering c with given
representative z i :

L(c, z) = 1
n

n∑
i=1
||x i − zci ||

2

which is the mean square distance from the vectors to their
associated representatives. NOTE: other objective functions could
be used.

OPTIMAL CLUSTERING: a choice of group assignment c1, . . . , cn
and group representatives z1, . . . , zk that minimize the objective
L(c, z).
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Optimal clustering with fixed representatives

In general, exact clustering is NP-Hard, already for k = 2.

(... and hence, no hope for efficient scalable exact algorithms!)

However, given the representatives z1, . . . , zk , we can find the
assignment vector c that achieve the smallest possible value of
L(x, c, z).

The choice of ci only affects the term

1
n ||x i − zci ||

2

and, hence, we can select

ci = j∗ = argminj=1,...,k ||x i − z j || (1)
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Optimal clustering with fixed assignments
If we fix the assignment of points to the clusters, then it is possible
to find the representatives that minimize the objective L(c, z). If
we re-arrange the objective using the groups we obtain:

L(z) = 1
n

k∑
j=1

∑
i∈Gj

||x i − z j ||2

Note that we want to find the representative z j that minimized the
j-th term. Thus we should choose the vector z j ∈ Rd that
minimize the mean square distance to the vectors in groups j , that
is, the average (or mean, or centroid):

zj = 1
|Gj |

∑
i∈Gj

x i (2)
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Main Idea

Since we know:
1 How to compute z1, . . . , zk given c:

zj = 1
|Gj |

∑
i∈Gj

x i

2 How to compute c given z1, . . . , zk :

ci = j∗ = argminj=1,...,k ||x i − z j ||

We start with any assignment of points to k clusters, and then we
iterate until convergence.

QUESTION 1: How can we select an initial assignment vector c?

QUESTION 2: When can we stop?

QUESTION 3: How to choose k?
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The Lloyd Algorithm, aka k-means algorithm

Algorithm 1: k-means algorithm

Data: X = x1, . . . , xn input vectors
Data: k number of clusters
Result: c clustering assignment
Result: z1, . . . , zk clustering representatives

1 c ← RandomAssignment(X , k);
2 for i ← 1 to maxiter do
3 c0 ← c;
4 z1, . . . , zk ← BestRepresentatives(X , c);
5 c ← BestAssignment(X , z1, . . . , zk);
6 if c0 = c then
7 break;

8 return c, (z1, . . . , zk)
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Loss Function Landascape (micro-example)
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Julia: Editor + Shell
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Motivating Julia: Summing Numbers

Multple Dispatch: Run the right code at the right time!

Multiple Dispatch is the selection of a function implementation
based on the types of each argument of the function.

Example 6 (Summing Numbers)
In Julia, we have several different types for representing numbers:
Int8, Int16, Int32, Int64, Float8, Float16, Float32, Float64, ...
With a high level programming language, with dynamic types, we can simply
write:

julia> plus(x, y) = x + y

and then run:

julia> plus(1, 1), plus(1.0, 1.0), plus(1, 1.0)

However, at assembly level, different operations are performed!



Introduction Clustering Julia k-means in Julia

Motivating Julia: Summing Numbers

Multple Dispatch: Run the right code at the right time!

Multiple Dispatch is the selection of a function implementation
based on the types of each argument of the function.

Example 6 (Summing Numbers)
In Julia, we have several different types for representing numbers:
Int8, Int16, Int32, Int64, Float8, Float16, Float32, Float64, ...
With a high level programming language, with dynamic types, we can simply
write:

julia> plus(x, y) = x + y

and then run:

julia> plus(1, 1), plus(1.0, 1.0), plus(1, 1.0)

However, at assembly level, different operations are performed!



Introduction Clustering Julia k-means in Julia

Motivating Julia: Summing Numbers

Multple Dispatch: Run the right code at the right time!

Multiple Dispatch is the selection of a function implementation
based on the types of each argument of the function.

Example 6 (Summing Numbers)
In Julia, we have several different types for representing numbers:
Int8, Int16, Int32, Int64, Float8, Float16, Float32, Float64, ...
With a high level programming language, with dynamic types, we can simply
write:

julia> plus(x, y) = x + y

and then run:

julia> plus(1, 1), plus(1.0, 1.0), plus(1, 1.0)

However, at assembly level, different operations are performed!



Introduction Clustering Julia k-means in Julia

Motivating Julia: Summing Numbers

Example 7 (Summing Numbers (con’t))
We can simulate what happens at assembly level with the following code:

julia> add(x::Int64, y::Int64) = x + y

julia> vaddsd(x::Float64, y::Float64) = x + y

julia> vcvtsi2sd(x::Int64) = float(x)

Using these functions, we can define:

julia> plus(x::Int64, y::Int64) = add(x, y)

julia> plus(x::Float64, y::Float64) = vaddsd(x, y)

julia> plus(x::Int64, y::Float64) = vaddsd(vcvtsi2sd(x), y)

julia> plus(x::Float64, y::Int64) = plus(y, x)

VADDSD: Vector ADD Scalar Double-precision,
VCVTSI2SD: Vector Convert Doubleword (Scalar) Integer to Scalar Double
Precision Floating-Point value
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Julia Just-in-time compilation 1/4

julia> @code_native plus(1,1)
.text

; @ summing.jl:9 within ‘plus’
pushq %rbp
movq %rsp, %rbp

; @ summing.jl:4 within ‘add’
; @ int.jl:53 within ‘+’

leaq (%rcx,%rdx), %rax
;

popq %rbp
retq
nopw (%rax,%rax)

;
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Julia Just-in-time compilation 2/4

julia> @code_native plus(1.0,1.0)
.text

; @ summing.jl:10 within ‘plus’
pushq %rbp
movq %rsp, %rbp

; @ summing.jl:5 within ‘vaddsd’
; @ float.jl:395 within ‘+’

vaddsd %xmm1, %xmm0, %xmm0
;

popq %rbp
retq
nopw (%rax,%rax)

;
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Julia Just-in-time compilation 3/4

julia> @code_native plus(1.0,1)
.text

; @ summing.jl:12 within ‘plus’
pushq %rbp
movq %rsp, %rbp

; @ summing.jl:12 within ‘plus’ @ summing.jl:11
; @ summing.jl:6 within ‘vcvtsi2sd’
; @ float.jl:271 within ‘float’
; @ float.jl:256 within ‘Type’ @ float.jl:60

vcvtsi2sdq %rdx, %xmm1, %xmm1
;
; @ summing.jl:12 within ‘plus’ @ float.jl:395

vaddsd %xmm0, %xmm1, %xmm0
; @ summing.jl:12 within ‘plus’

popq %rbp
retq
nop

;
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Julia Just-in-time compilation 4/4

julia> @code_native g(10)
.text

; @ summing.jl:20 within ‘g’
pushq %rbp
movq %rsp, %rbp

; @ summing.jl:21 within ‘g’
; @ summing.jl:17 within ‘f’
; @ int.jl:54 within ‘*’

imulq $9765625, %rcx, %rax # imm = 0x9502F9
;
; @ int.jl:52 within ‘f’

addq $-2441406, %rax # imm = 0xFFDABF42
;
; @ summing.jl:23 within ‘g’

popq %rbp
retq
nopw %cs:(%rax,%rax)
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Motivating Julia: Unrolling loops

Example 8 (Unrolling loops)
Consider what happens if we make a fixed number of iterations on an integer
arguments:

# 10 iterations of F8k) ? 5*k - 1 on integers
f(x) = 5*x - 1

function g(k)
for i = 1:10

k = f(k)
end
return k

end
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Julia Just-in-time compilation 4/4

julia> @code_native g(10)
pushq %rbp
movq %rsp, %rbp
imulq $9765625, %rcx, %rax # imm = 0x9502F9
addq $-2441406, %rax # imm = 0xFFDABF42
popq %rbp
retq
nopw %cs:(%rax,%rax)

Because the compiler knows that integer addition and multiplication are
associative and that multiplication distributes over addition, it can optimize the
entire loop down to just a multiply and an add.

Indeed, if f (k) = 5k − 1, it is true that the tenfold iterate

f (10)(k) = −2441406 + 9765625k

.
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Exercise 1: k-means in R2

using Plots, Random, Distributions, LinearAlgebra

function MakeData(N, K)
M = N/K
Ls = Array{Float64,1}[]
for k = 1:K

for i = 1:M
push!(Ls, [k,k]+0.5*randn(2) )

end
end
return Ls

end
function RandomAssign(X, k)

unif = DiscreteUniform(1, k)
return [rand(unif) for x in X]

end
k = 3
X = MakeData(300, k)
C = RandomAssign(X, k)
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Exercise 1: k-means in R2

Partition(X,C)=[[X[i] for i=1:length(X) if C[i] == j]
for j=1:maximum(C)]

function PlotSingleCluster(X, C, n)
clusters = Partition(X, C)
CL = [:red, :blue, :green]
plot(legend=false, grid=false, size=(500,500),

xlims=(0,5), ylims=(0,5))
for j = 1:maximum(C)

scatter!([c[1] for c in clusters[j]],
[c[2] for c in clusters[j]], c=CL[j])

end
p = plot!(legend=false, grid=false, size=(500,500),

xlims=(0,5), ylims=(0,5))
#png(p, "single$(n)")

end
k = 3
X = MakeData(300, k)
C = RandomAssign(X, k)
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Exercise 1: Useful function

julia> length([4,6,7,8,9,3])
6

julia> sum([4,6,7,8,9,3])
37

julia> maximum([4,6,7,8,9,3])
9

julia> findmin([4,6,7,8,9,3])
(3, 6)

julia> norm([1,1,1,1])
2.0

julia> norm([2,1]-[1,0])
1.4142135623730951
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Exercise 1: Possible results
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Exercise 2: k-means using MNSIT digits
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Exercise 3: using the whole dataset...
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