g~: 9 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.2 * G.3, G.1 * G.2 * G.3 * G.4, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.3, H.2 * H.3, H.1 * H.2, H.1 * H.2 ] signature: [ 2, 4, 8, 8 ] genus: 5 decomp H^0(K_C): [ 0, 1, 1, 0, 0, 2, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.3 * G.4, G.1 * G.4, G.1 * G.2 * G.4 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.3, H.2 * H.3, H.1 * H.3, H.1 ] signature: [ 2, 4, 8, 8 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 3 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.4, G.2 * G.3, G.1 * G.3, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 2, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.3, H.2, H.1 * H.2, H.1 * H.2 * H.3 ] signature: [ 2, 4, 8, 8 ] genus: 5 decomp H^0(K_C): [ 0, 1, 1, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 4 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.3 * G.4, G.1 * G.3 * G.4, G.1 * G.2 * G.3 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.3, H.2 * H.3, H.1 * H.2 * H.3, H.1 * H.2 * H.3 ] signature: [ 2, 4, 8, 8 ] genus: 5 decomp H^0(K_C): [ 0, 2, 1, 1, 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 1 Example # 5 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2 * G.4, G.2 * G.3, G.1 * G.3, G.1 * G.3 * G.4 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.3, H.2, H.1 * H.2, H.1 * H.2 * H.3 ] signature: [ 2, 4, 8, 8 ] genus: 5 decomp H^0(K_C): [ 0, 1, 1, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 6 -- C~ -- G~ Id: SmallGroup <16, 2> G~ name: C4^2 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.2^2 = G.4 generating vector: [ G.2, G.2 * G.3 * G.4, G.1, G.1 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3, H.2^2 = H.3 generating vector: [ H.2, H.2, H.1, H.1 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 2, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 7 -- C~ -- G~ Id: SmallGroup <16, 4> G~ name: C4:C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.1 * G.2, G.1 * G.2 * G.3, G.1 * G.4, G.1 * G.3 * G.4 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 2, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.1 * H.2, H.1 * H.2, H.1 * H.3, H.1 * H.3 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 2, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 8 -- C~ -- G~ Id: SmallGroup <16, 4> G~ name: C4:C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.1 * G.2, G.1 * G.2 * G.3, G.1 * G.4, G.1 * G.3 * G.4 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 2, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 * G.4 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 4> G name: Q8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3, H.2^2 = H.3, H.2^H.1 = H.2 * H.3 generating vector: [ H.1 * H.2, H.1 * H.2 * H.3, H.1 * H.3, H.1 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 9 -- C~ -- G~ Id: SmallGroup <16, 4> G~ name: C4:C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.1 * G.2, G.1, G.1 * G.2 * G.4, G.1 * G.3 * G.4 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 1, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.1 * H.2, H.1, H.1 * H.2 * H.3, H.1 * H.3 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 10 -- C~ -- G~ Id: SmallGroup <16, 4> G~ name: C4:C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.2, G.2 * G.3 * G.4, G.1, G.1 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 1, 0, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 4> G name: Q8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3, H.2^2 = H.3, H.2^H.1 = H.2 * H.3 generating vector: [ H.2, H.2, H.1, H.1 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 11 -- C~ -- G~ Id: SmallGroup <16, 10> G~ name: C2^2*C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4 generating vector: [ G.1 * G.4, G.1 * G.2 * G.3, G.1 * G.2 * G.4, G.1 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.1 * H.3, H.1 * H.2, H.1 * H.2 * H.3, H.1 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 12 -- C~ -- G~ Id: SmallGroup <16, 10> G~ name: C2^2*C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4 generating vector: [ G.1 * G.4, G.1 * G.2 * G.3, G.1 * G.2 * G.4, G.1 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.1 * H.3, H.1 * H.2 * H.3, H.1, H.1 * H.2 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 13 -- C~ -- G~ Id: SmallGroup <16, 10> G~ name: C2^2*C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4 generating vector: [ G.1 * G.4, G.1 * G.2 * G.3, G.1 * G.2 * G.4, G.1 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.2 * G.3 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.1 * H.3, H.1, H.1 * H.2 * H.3, H.1 * H.2 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 14 -- C~ -- G~ Id: SmallGroup <16, 12> G~ name: C2*Q8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.4, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3 * G.4, G.1 * G.2 * G.4, G.1 * G.4, G.1 * G.2 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 2, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 4> G name: Q8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3, H.2^2 = H.3, H.2^H.1 = H.2 * H.3 generating vector: [ H.1 * H.3, H.1 * H.2 * H.3, H.1 * H.3, H.1 * H.2 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 15 -- C~ -- G~ Id: SmallGroup <16, 12> G~ name: C2*Q8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.4, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3 * G.4, G.1 * G.2 * G.4, G.1 * G.4, G.1 * G.2 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 2, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 4> G name: Q8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3, H.2^2 = H.3, H.2^H.1 = H.2 * H.3 generating vector: [ H.1, H.1 * H.2 * H.3, H.1 * H.3, H.1 * H.2 * H.3 ] signature: [ 4, 4, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 16 -- C~ -- G~ Id: SmallGroup <24, 8> G~ name: C3:D4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.1 = G.4^2 generating vector: [ G.1, G.1, G.2 * G.3 * G.4, G.2 * G.3 * G.4^2 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 4> G name: D6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.1, H.1, H.2 * H.3, H.2 * H.3^2 ] signature: [ 2, 2, 6, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 17 -- C~ -- G~ Id: SmallGroup <24, 10> G~ name: C3*D4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4, G.2, G.1 * G.3^2, G.1 * G.3 * G.4 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.2, H.2, H.1 * H.3^2, H.1 * H.3 ] signature: [ 2, 2, 6, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 18 -- C~ -- G~ Id: SmallGroup <24, 10> G~ name: C3*D4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4, G.1, G.2 * G.3, G.1 * G.3^2 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.2, H.1, H.2 * H.3, H.1 * H.3^2 ] signature: [ 2, 2, 6, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 19 -- C~ -- G~ Id: SmallGroup <24, 15> G~ name: C2^2*C6 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G) generating vector: [ G.2, G.2 * G.3, G.1 * G.4^2, G.1 * G.3 * G.4 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.1 * G.2 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.1, H.1 * H.2, H.1 * H.3^2, H.1 * H.2 * H.3 ] signature: [ 2, 2, 6, 6 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 20 -- C~ -- G~ Id: SmallGroup <24, 15> G~ name: C2^2*C6 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G) generating vector: [ G.2, G.2 * G.3, G.1 * G.4^2, G.1 * G.3 * G.4 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.1 * G.2 * G.3 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.1, H.1 * H.2, H.1 * H.2 * H.3^2, H.1 * H.3 ] signature: [ 2, 2, 6, 6 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 21 -- C~ -- G~ Id: SmallGroup <24, 7> G~ name: C2*C3:C4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.2 * G.3, G.4^2, G.1 * G.2 * G.4, G.1 * G.4^2 ] signature: [ 2, 3, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <12, 1> G name: C3:C4 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.2, H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.2, H.3^2, H.1 * H.3, H.1 * H.3^2 ] signature: [ 2, 3, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 2, 0 ] N = dim S^2H^0(K_C)^G = 1 Example # 22 -- C~ -- G~ Id: SmallGroup <24, 3> G~ name: SL(2,3) GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^3 = Id(G), G.2^2 = G.4, G.3^2 = G.4, G.4^2 = Id(G), G.2^G.1 = G.3, G.3^G.1 = G.2 * G.3, G.3^G.2 = G.3 * G.4 generating vector: [ G.1^2, G.1 * G.2 * G.3, G.1, G.1^2 * G.2 * G.3 * G.4 ] signature: [ 3, 3, 3, 3 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 1, 2, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 3> G name: A4 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^3 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.2^H.1 = H.3, H.3^H.1 = H.2 * H.3 generating vector: [ H.1^2, H.1 * H.2 * H.3, H.1, H.1^2 * H.2 * H.3 ] signature: [ 3, 3, 3, 3 ] genus: 5 decomp H^0(K_C): [ 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 23 -- C~ -- G~ Id: SmallGroup <32, 6> G~ name: C2^2.D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.3, G.3 * G.5, G.1 * G.2 * G.3 * G.5, G.1 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3, H.3, H.1 * H.2 * H.3, H.1 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 24 -- C~ -- G~ Id: SmallGroup <32, 6> G~ name: C2^2.D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.3, G.2, G.1 * G.2 * G.3 * G.4, G.1 * G.2 * G.3 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3, H.2, H.1 * H.2 * H.3 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 25 -- C~ -- G~ Id: SmallGroup <32, 6> G~ name: C2^2.D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.3 * G.4, G.2 * G.3, G.1, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.3 * H.4, H.2 * H.3, H.1, H.1 * H.2 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 1, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 26 -- C~ -- G~ Id: SmallGroup <32, 9> G~ name: D4:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.5, G.2 * G.3 * G.4, G.1 * G.3 * G.4, G.1 * G.4 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2, H.2 * H.3 * H.4, H.1 * H.3 * H.4, H.1 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 1, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 27 -- C~ -- G~ Id: SmallGroup <32, 9> G~ name: D4:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.5, G.2 * G.3 * G.4, G.1 * G.3 * G.4, G.1 * G.4 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 8> G name: SD16 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.4 generating vector: [ H.2 * H.4, H.2 * H.3 * H.4, H.1 * H.3 * H.4, H.1 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 28 -- C~ -- G~ Id: SmallGroup <32, 9> G~ name: D4:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.5, G.2 * G.5, G.1 * G.3 * G.4, G.1 * G.3 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2, H.2, H.1 * H.3 * H.4, H.1 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 29 -- C~ -- G~ Id: SmallGroup <32, 11> G~ name: C4wrC2 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.5, G.2 * G.3 * G.5, G.1 * G.2 * G.5, G.1 * G.2 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2, H.2 * H.3, H.1 * H.2, H.1 * H.2 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 30 -- C~ -- G~ Id: SmallGroup <32, 22> G~ name: C2*C2^2:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4 * G.5, G.2 * G.3 * G.5, G.1 * G.2 * G.3, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.5 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^H.1 = H.2 * H.4 generating vector: [ H.2 * H.4, H.2 * H.3, H.1 * H.2 * H.3, H.1 * H.2 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 31 -- C~ -- G~ Id: SmallGroup <32, 22> G~ name: C2*C2^2:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4 * G.5, G.2 * G.3 * G.5, G.1 * G.2 * G.3, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3 * H.4, H.2 * H.4, H.1 * H.2, H.1 * H.2 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 32 -- C~ -- G~ Id: SmallGroup <32, 22> G~ name: C2*C2^2:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4 * G.5, G.2 * G.3 * G.5, G.1 * G.2 * G.3, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3 * H.4, H.2 * H.3 * H.4, H.1 * H.2 * H.3, H.1 * H.2 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 33 -- C~ -- G~ Id: SmallGroup <32, 25> G~ name: C4*D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3, G.2, G.2 * G.3 * G.5, G.1 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 10> G name: C2^2*C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4 generating vector: [ H.1 * H.3, H.2, H.2 * H.3 * H.4, H.1 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 34 -- C~ -- G~ Id: SmallGroup <32, 25> G~ name: C4*D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3, G.2, G.2 * G.3 * G.5, G.1 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 * G.5 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <16, 13> G name: D4:C2 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4, H.2^H.1 = H.2 * H.4 generating vector: [ H.1 * H.3, H.2, H.2 * H.3 * H.4, H.1 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 35 -- C~ -- G~ Id: SmallGroup <32, 25> G~ name: C4*D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3 * G.5, G.2 * G.4 * G.5, G.3, G.1 * G.2 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <16, 10> G name: C2^2*C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4 generating vector: [ H.1 * H.3 * H.4, H.2 * H.4, H.3, H.1 * H.2 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 36 -- C~ -- G~ Id: SmallGroup <32, 28> G~ name: C2^2:D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.2^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.2, G.1 * G.4 * G.5, G.1 * G.3, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.3^H.1 = H.3 * H.4 generating vector: [ H.1 * H.2, H.1 * H.4, H.1 * H.3, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 37 -- C~ -- G~ Id: SmallGroup <32, 30> G~ name: (C2^2*C4):C2 GrpPC : G of order 32 = 2^5 PC-Relations: G.3^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.4, G.2, G.1 * G.3, G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <16, 13> G name: D4:C2 GrpPC : H of order 16 = 2^4 PC-Relations: H.3^2 = H.4, H.2^H.1 = H.2 * H.4 generating vector: [ H.1 * H.4, H.2, H.1 * H.3, H.2 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 38 -- C~ -- G~ Id: SmallGroup <32, 31> G~ name: C4.D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.2^2 = G.5, G.3^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.2 * G.3, G.1 * G.4, G.1 * G.3 * G.4, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 13> G name: D4:C2 GrpPC : H of order 16 = 2^4 PC-Relations: H.3^2 = H.4, H.2^H.1 = H.2 * H.4 generating vector: [ H.1 * H.2 * H.3, H.1 * H.4, H.1 * H.3 * H.4, H.1 * H.2 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 39 -- C~ -- G~ Id: SmallGroup <32, 31> G~ name: C4.D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.2^2 = G.5, G.3^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.2 * G.3, G.1 * G.4, G.1 * G.3 * G.4, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 13> G name: D4:C2 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^2 = H.4, H.3^H.1 = H.3 * H.4 generating vector: [ H.1 * H.2 * H.3, H.1, H.1 * H.3, H.1 * H.2 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 40 -- C~ -- G~ Id: SmallGroup <32, 40> G~ name: C2*SD16 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.5, G.2 * G.3 * G.4, G.1, G.1 * G.3 * G.4 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 8> G name: SD16 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.4 generating vector: [ H.2 * H.4, H.2 * H.3, H.1, H.1 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 41 -- C~ -- G~ Id: SmallGroup <32, 40> G~ name: C2*SD16 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.5, G.2 * G.3 * G.4, G.1, G.1 * G.3 * G.4 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 8> G name: SD16 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.4 generating vector: [ H.2 * H.4, H.2 * H.3 * H.4, H.1, H.1 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 42 -- C~ -- G~ Id: SmallGroup <48, 15> G~ name: C3:D8 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = G.4, G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.3 * G.5^2, G.2 * G.3 * G.4, G.1, G.2 * G.3 * G.4 * G.5^2 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 8> G name: C3:D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.3 * H.4^2, H.2 * H.3, H.1, H.2 * H.3 * H.4^2 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 43 -- C~ -- G~ Id: SmallGroup <48, 38> G~ name: S3*D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.2 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.3 * G.4, G.1 * G.3 * G.4, G.1 * G.2 * G.5^2, G.2 * G.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 14> G name: C2^2*S3 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.3, H.1 * H.3, H.1 * H.2 * H.4^2, H.2 * H.4 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 44 -- C~ -- G~ Id: SmallGroup <48, 43> G~ name: C2*C3:D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.1 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.5^2, G.1 * G.2 * G.4 * G.5, G.2 * G.3, G.3 * G.4 * G.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <24, 8> G name: C3:D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4^2, H.1 * H.3 * H.4, H.2, H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 45 -- C~ -- G~ Id: SmallGroup <48, 43> G~ name: C2*C3:D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.1 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.5^2, G.1 * G.2 * G.4 * G.5, G.2 * G.3, G.3 * G.4 * G.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 * G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <24, 8> G name: C3:D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4^2, H.1 * H.4, H.2 * H.3, H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 46 -- C~ -- G~ Id: SmallGroup <48, 29> G~ name: GL(2,3) GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.2^G.1 = G.2^2, G.3^G.1 = G.4, G.3^G.2 = G.4 * G.5, G.4^G.1 = G.3, G.4^G.2 = G.3 * G.4, G.4^G.3 = G.4 * G.5 generating vector: [ G.1 * G.2 * G.4 * G.5, G.1 * G.2^2 * G.3, G.2 * G.3, G.2 * G.3 * G.4 * G.5 ] signature: [ 2, 2, 3, 3 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 12> G name: S4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2^2, H.3^H.1 = H.4, H.3^H.2 = H.4, H.4^H.1 = H.3, H.4^H.2 = H.3 * H.4 generating vector: [ H.1 * H.2 * H.4, H.1 * H.2^2 * H.3, H.2 * H.3, H.2 * H.3 * H.4 ] signature: [ 2, 2, 3, 3 ] genus: 5 decomp H^0(K_C): [ 0, 0, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 47 -- C~ -- G~ Id: SmallGroup <48, 33> G~ name: SL(2,3):C2 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.5, G.2^3 = Id(G), G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.3^G.2 = G.4, G.4^G.2 = G.3 * G.4, G.4^G.3 = G.4 * G.5 generating vector: [ G.1 * G.3, G.1 * G.3 * G.4, G.2 * G.3, G.2^2 * G.3 * G.5 ] signature: [ 2, 2, 3, 3 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 13> G name: C2*A4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.3^H.2 = H.4, H.4^H.2 = H.3 * H.4 generating vector: [ H.1 * H.3, H.1 * H.3 * H.4, H.2 * H.3, H.2^2 * H.3 ] signature: [ 2, 2, 3, 3 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 48 -- C~ -- G~ Id: SmallGroup <64, 73> G~ name: C2.C4:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6 generating vector: [ G.3 * G.4 * G.6, G.2 * G.5 * G.6, G.1 * G.4 * G.5, G.1 * G.2 * G.3 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.3 * H.4, H.2 * H.5, H.1 * H.4 * H.5, H.1 * H.2 * H.3 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 49 -- C~ -- G~ Id: SmallGroup <64, 73> G~ name: C2.C4:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6 generating vector: [ G.3 * G.4 * G.6, G.2 * G.5 * G.6, G.1 * G.4 * G.5, G.1 * G.2 * G.3 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.5 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.2 = H.3 * H.5 generating vector: [ H.3 * H.4 * H.5, H.2 * H.5, H.1 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 50 -- C~ -- G~ Id: SmallGroup <64, 73> G~ name: C2.C4:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6 generating vector: [ G.3 * G.4 * G.6, G.2 * G.5 * G.6, G.1 * G.4 * G.5, G.1 * G.2 * G.3 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5 generating vector: [ H.3 * H.5, H.2 * H.4 * H.5, H.1 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 51 -- C~ -- G~ Id: SmallGroup <64, 128> G~ name: (C2*D8):C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.4 * G.5, G.1 * G.4 * G.6, G.2 * G.3 * G.6, G.1 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.2 * H.4 * H.5, H.1 * H.4, H.2 * H.3, H.1 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 52 -- C~ -- G~ Id: SmallGroup <64, 134> G~ name: D4:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.2 * G.6, G.2 * G.3, G.1 * G.4 * G.6, G.1 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.2, H.2 * H.3, H.1 * H.4, H.1 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 53 -- C~ -- G~ Id: SmallGroup <64, 138> G~ name: C2wrC2^2 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.3 = G.4 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.3 * G.6, G.2 * G.4 * G.6, G.1 * G.6, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.3, H.2 * H.4, H.1, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 Example # 54 -- C~ -- G~ Id: SmallGroup <64, 140> G~ name: C4:D8 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.5^G.1 = G.5 * G.6, G.5^G.3 = G.5 * G.6 generating vector: [ G.1, G.1 * G.2 * G.6, G.3, G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 28> G name: C2^2:D4 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.1, H.1 * H.2, H.3, H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 55 -- C~ -- G~ Id: SmallGroup <64, 140> G~ name: C4:D8 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.5^G.1 = G.5 * G.6, G.5^G.3 = G.5 * G.6 generating vector: [ G.1, G.1 * G.2 * G.6, G.3, G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 * G.6 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <32, 43> G name: C8:C2^2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.5, H.3^H.1 = H.3 * H.4, H.4^H.1 = H.4 * H.5, H.4^H.3 = H.4 * H.5 generating vector: [ H.1, H.1 * H.2 * H.5, H.3, H.2 * H.3 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 56 -- C~ -- G~ Id: SmallGroup <64, 177> G~ name: C8:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.3^2 = G.5, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.6 generating vector: [ G.1 * G.3, G.1 * G.5, G.1 * G.2 * G.3 * G.4 * G.5, G.1 * G.2 * G.4 * G.5 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 43> G name: C8:C2^2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.4^2 = H.5, H.2^H.1 = H.2 * H.4, H.3^H.2 = H.3 * H.5, H.4^H.1 = H.4 * H.5 generating vector: [ H.1 * H.3, H.1, H.1 * H.2 * H.3 * H.4, H.1 * H.2 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 57 -- C~ -- G~ Id: SmallGroup <64, 177> G~ name: C8:D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.3^2 = G.5, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.6 generating vector: [ G.1 * G.3, G.1 * G.5, G.1 * G.2 * G.3 * G.4 * G.5, G.1 * G.2 * G.4 * G.5 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 * G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 43> G name: C8:C2^2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.3^2 = H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.5, H.4^H.1 = H.4 * H.5 generating vector: [ H.1 * H.3, H.1 * H.5, H.1 * H.2 * H.3 * H.4 * H.5, H.1 * H.2 * H.4 * H.5 ] signature: [ 2, 2, 2, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 58 -- C~ -- G~ Id: SmallGroup <96, 193> G~ name: SL(2,3):C2:C2 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.6, G.3^3 = Id(G), G.4^2 = G.6, G.5^2 = G.6, G.6^2 = Id(G), G.2^G.1 = G.2 * G.6, G.3^G.1 = G.3^2, G.4^G.1 = G.5, G.4^G.3 = G.5 * G.6, G.5^G.1 = G.4, G.5^G.3 = G.4 * G.5, G.5^G.4 = G.5 * G.6 generating vector: [ G.1 * G.3^2 * G.4, G.1 * G.2 * G.3 * G.6, G.2 * G.4, G.3 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 2, 3 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 48> G name: C2*S4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.3^H.1 = H.3^2, H.4^H.1 = H.5, H.4^H.3 = H.5, H.5^H.1 = H.4, H.5^H.3 = H.4 * H.5 generating vector: [ H.1 * H.3^2 * H.4, H.1 * H.2 * H.3, H.2 * H.4, H.3 * H.4 * H.5 ] signature: [ 2, 2, 2, 3 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 58 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <10, 2> G~ name: C10 GrpPC : G of order 10 = 2 * 5 PC-Relations: G.1^2 = Id(G), G.2^5 = Id(G) generating vector: [ G.1 * G.2^3, G.1 * G.2^3, G.1 * G.2^3, G.1 * G.2 ] signature: [ 10, 10, 10, 10 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 1, 0, 0, 2, 2, 0, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.1 branch points: 4 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <5, 1> G name: C5 GrpPC : H of order 5 PC-Relations: H.1^5 = Id(H) generating vector: [ H.1^3, H.1^3, H.1^3, H.1 ] signature: [ 5, 5, 5, 5 ] genus: 4 decomp H^0(K_C): [ 0, 1, 0, 2, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <12, 2> G~ name: C12 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = G.3, G.2^3 = Id(G), G.3^2 = Id(G) generating vector: [ G.2, G.2 * G.3, G.1 * G.2^2, G.1 * G.2^2 ] signature: [ 3, 6, 12, 12 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 1, 0, 2, 1, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.3 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.2, H.2, H.1 * H.2^2, H.1 * H.2^2 ] signature: [ 3, 3, 6, 6 ] genus: 4 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 1 Example # 3 -- C~ -- G~ Id: SmallGroup <12, 2> G~ name: C12 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = G.3, G.2^3 = Id(G), G.3^2 = Id(G) generating vector: [ G.2, G.2^2 * G.3, G.1 * G.2 * G.3, G.1 * G.2^2 * G.3 ] signature: [ 3, 6, 12, 12 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.2, H.2^2, H.1 * H.2, H.1 * H.2^2 ] signature: [ 3, 3, 6, 6 ] genus: 4 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 3 b = 8 Example # 1 -- C~ -- G~ Id: SmallGroup <12, 2> G~ name: C12 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = G.3, G.2^3 = Id(G), G.3^2 = Id(G) generating vector: [ G.1, G.1, G.1 * G.2^2 * G.3, G.1 * G.2 * G.3 ] signature: [ 4, 4, 12, 12 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 1, 1, 0, 2, 1, 0, 0, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 8 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.1, H.1, H.1 * H.2^2, H.1 * H.2 ] signature: [ 2, 2, 6, 6 ] genus: 3 decomp H^0(K_C): [ 0, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 2 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.2 * G.3, G.1 * G.2 * G.3 * G.4, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.4 branch points: 8 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.2, H.2 * H.3, H.1 * H.2 * H.3, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C): [ 0, 1, 1, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 3 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.3 * G.4, G.1 * G.3 * G.4, G.1 * G.2 * G.3 ] signature: [ 2, 4, 8, 8 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.4 branch points: 8 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.3 generating vector: [ H.2, H.3, H.1 * H.3, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C): [ 0, 0, 1, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 4 -- C~ -- G~ Id: SmallGroup <16, 2> G~ name: C4^2 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.2^2 = G.4 generating vector: [ G.2, G.2 * G.3 * G.4, G.1, G.1 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 8 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 2> G name: C2*C4 GrpPC : H of order 8 = 2^3 PC-Relations: H.2^2 = H.3 generating vector: [ H.2, H.2 * H.3, H.1, H.1 ] signature: [ 4, 4, 2, 2 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 5 -- C~ -- G~ Id: SmallGroup <16, 4> G~ name: C4:C4 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.2, G.2 * G.3 * G.4, G.1, G.1 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 1, 0, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <8, 3> G name: D4 GrpPC : H of order 8 = 2^3 PC-Relations: H.2^2 = H.3, H.2^H.1 = H.2 * H.3 generating vector: [ H.2, H.2 * H.3, H.1, H.1 ] signature: [ 4, 4, 2, 2 ] genus: 3 decomp H^0(K_C): [ 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 6 -- C~ -- G~ Id: SmallGroup <24, 5> G~ name: C4*S3 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.1 * G.4^2, G.1 * G.3, G.2 * G.3, G.2 * G.3 * G.4^2 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 4> G name: D6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.1 * H.3^2, H.1, H.2, H.2 * H.3^2 ] signature: [ 2, 2, 2, 6 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 7 -- C~ -- G~ Id: SmallGroup <24, 5> G~ name: C4*S3 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.1 * G.4^2, G.1, G.2 * G.3, G.2 * G.4^2 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 8 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <12, 4> G name: D6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.1 * H.3^2, H.1, H.2, H.2 * H.3^2 ] signature: [ 2, 2, 2, 6 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 8 -- C~ -- G~ Id: SmallGroup <32, 25> G~ name: C4*D4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.1 * G.3 * G.5, G.2 * G.4 * G.5, G.3, G.1 * G.2 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 8 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^H.1 = H.2 * H.4 generating vector: [ H.1 * H.3, H.2 * H.4, H.3, H.1 * H.2 ] signature: [ 2, 2, 2, 4 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 9 -- C~ -- G~ Id: SmallGroup <32, 30> G~ name: (C2^2*C4):C2 GrpPC : G of order 32 = 2^5 PC-Relations: G.3^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.4, G.2, G.1 * G.3, G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.3^H.1 = H.3 * H.4 generating vector: [ H.1, H.2, H.1 * H.3, H.2 * H.3 ] signature: [ 2, 2, 4, 2 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 9 b = 12 Example # 1 -- C~ -- G~ Id: SmallGroup <24, 7> G~ name: C2*C3:C4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.2 * G.3, G.4^2, G.1 * G.2 * G.4, G.1 * G.4^2 ] signature: [ 2, 3, 4, 4 ] genus: 9 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.3 branch points: 12 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <12, 4> G name: D6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.2, H.3^2, H.1 * H.2 * H.3, H.1 * H.3^2 ] signature: [ 2, 3, 2, 2 ] genus: 2 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 1