g~: 8 r: 4 b = 2 Example # 1 -- C~ -- G~ Id: SmallGroup <10, 2> G~ name: C10 GrpPC : G of order 10 = 2 * 5 PC-Relations: G.1^2 = Id(G), G.2^5 = Id(G) generating vector: [ G.2^2, G.2, G.1 * G.2, G.1 * G.2 ] signature: [ 5, 5, 10, 10 ] genus: 8 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 2, 1, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.1 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <5, 1> G name: C5 GrpPC : H of order 5 PC-Relations: H.1^5 = Id(H) generating vector: [ H.1^2, H.1, H.1, H.1 ] signature: [ 5, 5, 5, 5 ] genus: 4 decomp H^0(K_C): [ 0, 0, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <10, 2> G~ name: C10 GrpPC : G of order 10 = 2 * 5 PC-Relations: G.1^2 = Id(G), G.2^5 = Id(G) generating vector: [ G.2^2, G.2^4, G.1 * G.2, G.1 * G.2^3 ] signature: [ 5, 5, 10, 10 ] genus: 8 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 2, 1, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.1 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <5, 1> G name: C5 GrpPC : H of order 5 PC-Relations: H.1^5 = Id(H) generating vector: [ H.1^2, H.1^4, H.1, H.1^3 ] signature: [ 5, 5, 5, 5 ] genus: 4 decomp H^0(K_C): [ 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 3 -- C~ -- G~ Id: SmallGroup <12, 5> G~ name: C2*C6 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G) generating vector: [ G.3, G.1 * G.2 * G.3^2, G.2 * G.3^2, G.1 * G.3 ] signature: [ 3, 6, 6, 6 ] genus: 8 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.2, H.1 * H.2^2, H.2^2, H.1 * H.2 ] signature: [ 3, 6, 3, 6 ] genus: 4 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 4 -- C~ -- G~ Id: SmallGroup <12, 5> G~ name: C2*C6 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G) generating vector: [ G.3, G.1 * G.2 * G.3^2, G.2 * G.3^2, G.1 * G.3 ] signature: [ 3, 6, 6, 6 ] genus: 8 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.1 * G.2 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.2, H.2^2, H.1 * H.2^2, H.1 * H.2 ] signature: [ 3, 3, 6, 6 ] genus: 4 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 5 -- C~ -- G~ Id: SmallGroup <24, 10> G~ name: C3*D4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4, G.1, G.3, G.1 * G.2 * G.3^2 * G.4 ] signature: [ 2, 2, 3, 12 ] genus: 8 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.4 branch points: 2 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.2, H.1, H.3, H.1 * H.2 * H.3^2 ] signature: [ 2, 2, 3, 6 ] genus: 4 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 1 5