g~: 49 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <256, 5299> G~ name: C2.D4^2.C2 GrpPC : G of order 256 = 2^8 PC-Relations: G.2^2 = G.8, G.4^2 = G.6, G.5^2 = G.7 * G.8, G.7^2 = G.8, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.2 = G.5 * G.7, G.5^G.3 = G.5 * G.7, G.6^G.3 = G.6 * G.8, G.7^G.1 = G.7 * G.8, G.7^G.2 = G.7 * G.8, G.7^G.3 = G.7 * G.8 generating vector: [ G.3, G.2 * G.3 * G.6, G.1 * G.5 * G.7, G.1 * G.2 * G.5 * G.6 * G.8 ] signature: [ 2, 2, 2, 8 ] genus: 49 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 11 sigma: G.8 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <128, 351> G name: D4^2.C2 GrpPC : H of order 128 = 2^7 PC-Relations: H.4^2 = H.6, H.5^2 = H.7, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.1 = H.4 * H.6, H.4^H.2 = H.4 * H.6, H.4^H.3 = H.4 * H.7, H.5^H.1 = H.5 * H.7, H.5^H.2 = H.5 * H.7, H.5^H.3 = H.5 * H.7 generating vector: [ H.3, H.2 * H.3 * H.6, H.1 * H.5 * H.7, H.1 * H.2 * H.5 * H.6 ] signature: [ 2, 2, 2, 8 ] genus: 25 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 10 Example # 2 -- C~ -- G~ Id: SmallGroup <256, 6670> G~ name: C2.D4^2.C2 GrpPC : G of order 256 = 2^8 PC-Relations: G.2^2 = G.8, G.4^2 = G.8, G.5^2 = G.8, G.6^2 = G.8, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.8, G.4^G.2 = G.4 * G.8, G.4^G.3 = G.4 * G.6, G.5^G.1 = G.5 * G.8, G.5^G.2 = G.5 * G.6 * G.7 * G.8, G.5^G.3 = G.5 * G.8, G.5^G.4 = G.5 * G.7 * G.8, G.6^G.1 = G.6 * G.7, G.6^G.3 = G.6 * G.8, G.6^G.4 = G.6 * G.8, G.6^G.5 = G.6 * G.8, G.7^G.2 = G.7 * G.8, G.7^G.3 = G.7 * G.8 generating vector: [ G.2 * G.7, G.1 * G.8, G.3 * G.5, G.1 * G.2 * G.3 * G.7 * G.8 ] signature: [ 2, 2, 2, 8 ] genus: 49 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 10 sigma: G.8 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <128, 928> G name: D4^2.C2 GrpPC : H of order 128 = 2^7 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.3 = H.4 * H.6, H.5^H.2 = H.5 * H.6 * H.7, H.5^H.4 = H.5 * H.7, H.6^H.1 = H.6 * H.7 generating vector: [ H.2 * H.7, H.1, H.3 * H.5, H.1 * H.2 * H.3 * H.7 ] signature: [ 2, 2, 2, 8 ] genus: 25 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 9 2