g~: 47 r: 4 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <192, 475> G~ name: D8.D6 GrpPC : G of order 192 = 2^6 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = G.6, G.4^2 = G.5 * G.6, G.5^2 = G.6, G.6^2 = Id(G), G.7^3 = Id(G), G.2^G.1 = G.2 * G.6, G.3^G.1 = G.3 * G.6, G.3^G.2 = G.3 * G.4, G.4^G.2 = G.4 * G.5, G.4^G.3 = G.4 * G.5, G.5^G.2 = G.5 * G.6, G.5^G.3 = G.5 * G.6, G.7^G.1 = G.7^2 generating vector: [ G.2 * G.6, G.1 * G.3 * G.4 * G.5 * G.6 * G.7, G.1 * G.6 * G.7^2, G.2 * G.3 * G.5 * G.7^2 ] signature: [ 2, 2, 2, 48 ] genus: 47 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 10 sigma: G.6 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <96, 117> G name: S3*D8 GrpPC : H of order 96 = 2^5 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^2 = H.5, H.5^2 = Id(H), H.6^3 = Id(H), H.3^H.2 = H.3 * H.4, H.4^H.2 = H.4 * H.5, H.4^H.3 = H.4 * H.5, H.6^H.1 = H.6^2 generating vector: [ H.2, H.1 * H.3 * H.4 * H.5 * H.6, H.1 * H.6^2, H.2 * H.3 * H.5 * H.6^2 ] signature: [ 2, 2, 2, 24 ] genus: 23 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 9 1