g~: 4 r: 4 b = 2 Example # 1 -- C~ -- G~ Id: SmallGroup <6, 2> G~ name: C6 GrpPC : G of order 6 = 2 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G) generating vector: [ G.2, G.2^2, G.1 * G.2, G.1 * G.2^2 ] signature: [ 3, 3, 6, 6 ] genus: 4 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.1 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <3, 1> G name: C3 GrpPC : H of order 3 PC-Relations: H.1^3 = Id(H) generating vector: [ H.1, H.1^2, H.1, H.1^2 ] signature: [ 3, 3, 3, 3 ] genus: 2 decomp H^0(K_C): [ 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <12, 4> G~ name: D6 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.3^G.1 = G.3^2 generating vector: [ G.1 * G.2, G.1, G.3, G.2 * G.3^2 ] signature: [ 2, 2, 3, 6 ] genus: 4 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 branch points: 2 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <6, 1> G name: S3 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.2^H.1 = H.2^2 generating vector: [ H.1, H.1, H.2, H.2^2 ] signature: [ 2, 2, 3, 3 ] genus: 2 decomp H^0(K_C): [ 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 2 b = 6 Example # 1 -- C~ -- G~ Id: SmallGroup <6, 2> G~ name: C6 GrpPC : G of order 6 = 2 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G) generating vector: [ G.1, G.1 * G.2, G.1 * G.2, G.1 * G.2 ] signature: [ 2, 6, 6, 6 ] genus: 4 decomp H^0(K_C~): [ 0, 1, 0, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.1 branch points: 6 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <3, 1> G name: C3 GrpPC : H of order 3 PC-Relations: H.1^3 = Id(H) generating vector: [ Id(H), H.1, H.1, H.1 ] signature: [ 1, 3, 3, 3 ] genus: 1 decomp H^0(K_C): [ 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 0 Example # 2 -- C~ -- G~ Id: SmallGroup <12, 5> G~ name: C2*C6 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G) generating vector: [ G.1, G.2, G.3, G.1 * G.2 * G.3^2 ] signature: [ 2, 2, 3, 6 ] genus: 4 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.2 branch points: 6 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ H.1, Id(H), H.2, H.1 * H.2^2 ] signature: [ 2, 1, 3, 6 ] genus: 1 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 0 Example # 3 -- C~ -- G~ Id: SmallGroup <12, 5> G~ name: C2*C6 GrpPC : G of order 12 = 2^2 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G) generating vector: [ G.1, G.2, G.3, G.1 * G.2 * G.3^2 ] signature: [ 2, 2, 3, 6 ] genus: 4 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.1 branch points: 6 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <6, 2> G name: C6 GrpPC : H of order 6 = 2 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H) generating vector: [ Id(H), H.1, H.2, H.1 * H.2^2 ] signature: [ 1, 2, 3, 6 ] genus: 1 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 0 3 b = 10 Example # 1 -- C~ -- G~ Id: SmallGroup <8, 4> G~ name: Q8 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3, G.2^2 = G.3, G.2^G.1 = G.2 * G.3 generating vector: [ G.3, G.2 * G.3, G.1, G.1 * G.2 ] signature: [ 2, 4, 4, 4 ] genus: 4 decomp H^0(K_C~): [ 0, 0, 0, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.3 branch points: 10 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <4, 2> G name: C2^2 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H) generating vector: [ Id(H), H.2, H.1, H.1 * H.2 ] signature: [ 1, 2, 2, 2 ] genus: 0 decomp H^0(K_C): [ 0, 0, 0, 0 ] N = dim S^2H^0(K_C)^G = 0 1