g~: 39 r: 4 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <160, 137> G~ name: C40.C2^2 GrpPC : G of order 160 = 2^5 * 5 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.6^5 = Id(G), G.2^G.1 = G.2 * G.5, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.4, G.4^G.2 = G.4 * G.5, G.4^G.3 = G.4 * G.5, G.6^G.1 = G.6^4 generating vector: [ G.2 * G.5, G.1 * G.3 * G.5 * G.6, G.1 * G.5 * G.6^4, G.2 * G.3 * G.4 * G.5 * G.6^2 ] signature: [ 2, 2, 2, 40 ] genus: 39 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 9 sigma: G.5 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <80, 39> G name: D4*D5 GrpPC : H of order 80 = 2^4 * 5 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.5^5 = Id(H), H.3^H.2 = H.3 * H.4, H.5^H.1 = H.5^4 generating vector: [ H.2, H.1 * H.3 * H.5, H.1 * H.5^4, H.2 * H.3 * H.4 * H.5^2 ] signature: [ 2, 2, 2, 20 ] genus: 19 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 8 1