g~: 3 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2 * G.3, G.2 * G.3, G.1 * G.3, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 1> G name: C4 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 generating vector: [ H.2, H.2, H.1 * H.2, H.1 ] signature: [ 2, 2, 4, 4 ] genus: 2 decomp H^0(K_C): [ 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <16, 11> G~ name: C2*D4 GrpPC : G of order 16 = 2^4 PC-Relations: G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4, G.3 * G.4, G.1 * G.3, G.1 * G.2 ] signature: [ 2, 2, 2, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.3 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <8, 3> G name: D4 GrpPC : H of order 8 = 2^3 PC-Relations: H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3, H.3, H.1, H.1 * H.2 ] signature: [ 2, 2, 2, 4 ] genus: 2 decomp H^0(K_C): [ 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 2 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <4, 1> G~ name: C4 GrpPC : G of order 4 = 2^2 PC-Relations: G.1^2 = G.2 generating vector: [ G.1, G.1, G.1 * G.2, G.1 * G.2 ] signature: [ 4, 4, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.2 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <2, 1> G name: C2 GrpPC : H of order 2 PC-Relations: H.1^2 = Id(H) generating vector: [ H.1, H.1, H.1, H.1 ] signature: [ 2, 2, 2, 2 ] genus: 1 decomp H^0(K_C): [ 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 2 -- C~ -- G~ Id: SmallGroup <6, 2> G~ name: C6 GrpPC : G of order 6 = 2 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G) generating vector: [ G.1, G.2^2, G.2^2, G.1 * G.2^2 ] signature: [ 2, 3, 3, 6 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.1 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <3, 1> G name: C3 GrpPC : H of order 3 PC-Relations: H.1^3 = Id(H) generating vector: [ Id(H), H.1^2, H.1^2, H.1^2 ] signature: [ 1, 3, 3, 3 ] genus: 1 decomp H^0(K_C): [ 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 0 Example # 3 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2, G.2 * G.3, G.1, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.2 branch points: 4 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 1> G name: C4 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 generating vector: [ Id(H), H.2, H.1, H.1 ] signature: [ 1, 2, 4, 4 ] genus: 1 decomp H^0(K_C): [ 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 0 Example # 4 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2, G.2 * G.3, G.1, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.2 * G.3 branch points: 4 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 1> G name: C4 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 generating vector: [ H.2, Id(H), H.1, H.1 ] signature: [ 2, 1, 4, 4 ] genus: 1 decomp H^0(K_C): [ 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 0 Example # 5 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2 * G.3, G.2 * G.3, G.1 * G.3, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.3 branch points: 4 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 2> G name: C2^2 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H) generating vector: [ H.2, H.2, H.1, H.1 ] signature: [ 2, 2, 2, 2 ] genus: 1 decomp H^0(K_C): [ 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 1 Example # 6 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2, G.3, G.1 * G.2, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.2 branch points: 4 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 1> G name: C4 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = H.2 generating vector: [ Id(H), H.2, H.1, H.1 ] signature: [ 1, 2, 4, 4 ] genus: 1 decomp H^0(K_C): [ 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 0 Example # 7 -- C~ -- G~ Id: SmallGroup <8, 3> G~ name: D4 GrpPC : G of order 8 = 2^3 PC-Relations: G.2^G.1 = G.2 * G.3 generating vector: [ G.2, G.2 * G.3, G.1 * G.2 * G.3, G.1 * G.2 * G.3 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.3 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <4, 2> G name: C2^2 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H) generating vector: [ H.2, H.2, H.1 * H.2, H.1 * H.2 ] signature: [ 2, 2, 2, 2 ] genus: 1 decomp H^0(K_C): [ 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 1 Example # 8 -- C~ -- G~ Id: SmallGroup <16, 11> G~ name: C2*D4 GrpPC : G of order 16 = 2^4 PC-Relations: G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.4, G.3 * G.4, G.1 * G.3, G.1 * G.2 ] signature: [ 2, 2, 2, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 2 sigma: G.4 branch points: 4 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <8, 5> G name: C2^3 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H) generating vector: [ H.2, H.3, H.1 * H.3, H.1 * H.2 ] signature: [ 2, 2, 2, 2 ] genus: 1 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 1 8 b = 8 Example # 1 -- C~ -- G~ Id: SmallGroup <8, 2> G~ name: C2*C4 GrpPC : G of order 8 = 2^3 PC-Relations: G.1^2 = G.3 generating vector: [ G.2, G.3, G.1 * G.2, G.1 ] signature: [ 2, 2, 4, 4 ] genus: 3 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 1 sigma: G.3 branch points: 8 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <4, 2> G name: C2^2 GrpPC : H of order 4 = 2^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H) generating vector: [ H.2, Id(H), H.1 * H.2, H.1 ] signature: [ 2, 1, 2, 2 ] genus: 0 decomp H^0(K_C): [ 0, 0, 0, 0 ] N = dim S^2H^0(K_C)^G = 0 1