g~: 25 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <48, 32> G~ name: C2*SL(2,3) GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.3^G.2 = G.4, G.4^G.2 = G.3 * G.4, G.4^G.3 = G.4 * G.5 generating vector: [ G.1 * G.5, G.1 * G.2^2 * G.4 * G.5, G.1 * G.2^2, G.1 * G.2^2 * G.3 * G.4 * G.5 ] signature: [ 2, 6, 6, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 1, 0, 0, 2, 2, 1, 2, 1, 0, 0, 3, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 8 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 13> G name: C2*A4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.3^H.2 = H.4, H.4^H.2 = H.3 * H.4 generating vector: [ H.1, H.1 * H.2^2 * H.4, H.1 * H.2^2, H.1 * H.2^2 * H.3 * H.4 ] signature: [ 2, 6, 6, 6 ] genus: 13 decomp H^0(K_C): [ 0, 1, 0, 2, 0, 1, 0, 3 ] N = dim S^2H^0(K_C)^G = 7 Example # 2 -- C~ -- G~ Id: SmallGroup <48, 30> G~ name: A4:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.2, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.3^G.1 = G.3^2, G.4^G.1 = G.5, G.4^G.3 = G.5, G.5^G.1 = G.4, G.5^G.3 = G.4 * G.5 generating vector: [ G.1 * G.5, G.1 * G.3^2 * G.4 * G.5, G.1 * G.3^2 * G.5, G.1 * G.4 ] signature: [ 4, 4, 4, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 2, 2, 0, 1, 3, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 9 sigma: G.2 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 12> G name: S4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2^2, H.3^H.1 = H.4, H.3^H.2 = H.4, H.4^H.1 = H.3, H.4^H.2 = H.3 * H.4 generating vector: [ H.1 * H.4, H.1 * H.2^2 * H.3 * H.4, H.1 * H.2^2 * H.4, H.1 * H.3 ] signature: [ 4, 4, 4, 4 ] genus: 13 decomp H^0(K_C): [ 0, 1, 0, 1, 3 ] N = dim S^2H^0(K_C)^G = 8 Example # 3 -- C~ -- G~ Id: SmallGroup <56, 7> G~ name: D14:C2 GrpPC : G of order 56 = 2^3 * 7 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^7 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.1 = G.4^6 generating vector: [ G.1 * G.4^6, G.1 * G.3 * G.4^2, G.2 * G.3 * G.4^6, G.2 * G.4^5 ] signature: [ 2, 2, 14, 14 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 8 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <28, 3> G name: D14 GrpPC : H of order 28 = 2^2 * 7 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^7 = Id(H), H.3^H.1 = H.3^6 generating vector: [ H.1 * H.3^6, H.1 * H.3^2, H.2 * H.3^6, H.2 * H.3^5 ] signature: [ 2, 2, 14, 14 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 7 Example # 4 -- C~ -- G~ Id: SmallGroup <64, 6> G~ name: D4:C8 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.4^2 = G.6, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.5 * G.6, G.2 * G.3 * G.5, G.1 * G.2 * G.4, G.1 * G.2 ] signature: [ 2, 2, 8, 8 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 9> G name: D4:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.4, H.3^2 = H.5, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.5 generating vector: [ H.2 * H.5, H.2 * H.3 * H.5, H.1 * H.2 * H.4, H.1 * H.2 ] signature: [ 2, 2, 8, 8 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 5 -- C~ -- G~ Id: SmallGroup <64, 167> G~ name: C4.SD16 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.5, G.3^2 = G.4, G.4^2 = G.6, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.5^G.1 = G.5 * G.6 generating vector: [ G.1 * G.2 * G.3 * G.5 * G.6, G.1 * G.5 * G.6, G.3 * G.4 * G.5 * G.6, G.2 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 8, 8 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 8 sigma: G.4 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 39> G name: C2*D8 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.3^2 = H.4 * H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.4 * H.5, H.3^H.1 = H.3 * H.4, H.4^H.1 = H.4 * H.5 generating vector: [ H.1 * H.2 * H.3 * H.4 * H.5, H.1 * H.4 * H.5, H.3 * H.5, H.2 * H.5 ] signature: [ 2, 2, 8, 8 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 7 Example # 6 -- C~ -- G~ Id: SmallGroup <64, 74> G~ name: C2.(C4.D4) GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.4, G.2^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6 generating vector: [ G.3 * G.6, G.2 * G.3 * G.4 * G.6, G.1 * G.3 * G.4 * G.5, G.1 * G.2 * G.3 ] signature: [ 2, 4, 4, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 8 sigma: G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5 generating vector: [ H.3 * H.5, H.2 * H.3 * H.5, H.1 * H.3 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 4, 4, 4 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 7 Example # 7 -- C~ -- G~ Id: SmallGroup <72, 22> G~ name: D6:S3 GrpPC : G of order 72 = 2^3 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.2 = G.4^2, G.5^G.1 = G.5^2 generating vector: [ G.1, G.2 * G.4, G.1 * G.3 * G.4^2 * G.5, G.2 * G.5^2 ] signature: [ 2, 2, 6, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 2, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <36, 10> G name: S3^2 GrpPC : H of order 36 = 2^2 * 3^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^3 = Id(H), H.3^H.2 = H.3^2, H.4^H.1 = H.4^2 generating vector: [ H.1, H.2 * H.3, H.1 * H.3^2 * H.4, H.2 * H.4^2 ] signature: [ 2, 2, 6, 6 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 6 Example # 8 -- C~ -- G~ Id: SmallGroup <72, 30> G~ name: C3*C3:D4 GrpPC : G of order 72 = 2^3 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.4 * G.5^2, G.1 * G.4 * G.5, G.2 * G.3^2 * G.4 * G.5^2, G.2 * G.3 * G.4 * G.5^2 ] signature: [ 2, 2, 6, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <36, 12> G name: C6*S3 GrpPC : H of order 36 = 2^2 * 3^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4^2, H.1 * H.4, H.2 * H.3^2 * H.4^2, H.2 * H.3 * H.4^2 ] signature: [ 2, 2, 6, 6 ] genus: 13 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 6 Example # 9 -- C~ -- G~ Id: SmallGroup <72, 35> G~ name: C6^2:C2 GrpPC : G of order 72 = 2^3 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.1 = G.4^2, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.3, G.1 * G.3 * G.4^2 * G.5^2, G.2 * G.3 * G.4^2, G.2 * G.3 * G.4^2 * G.5 ] signature: [ 2, 2, 6, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 8 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <36, 13> G name: C2*C3:S3 GrpPC : H of order 36 = 2^2 * 3^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^3 = Id(H), H.3^H.1 = H.3^2, H.4^H.1 = H.4^2 generating vector: [ H.1, H.1 * H.3^2 * H.4^2, H.2 * H.3^2, H.2 * H.3^2 * H.4 ] signature: [ 2, 2, 6, 6 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 7 Example # 10 -- C~ -- G~ Id: SmallGroup <96, 202> G~ name: D4.A4 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = G.6, G.5^2 = G.6, G.6^2 = Id(G), G.2^G.1 = G.2 * G.6, G.4^G.3 = G.5, G.5^G.3 = G.4 * G.5, G.5^G.4 = G.5 * G.6 generating vector: [ G.1 * G.2 * G.5, G.2, G.3 * G.5, G.1 * G.3^2 * G.4 * G.5 ] signature: [ 2, 2, 3, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 2, 1, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 49> G name: C2^2*A4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.4^H.3 = H.5, H.5^H.3 = H.4 * H.5 generating vector: [ H.1 * H.2 * H.5, H.2, H.3 * H.5, H.1 * H.3^2 * H.4 * H.5 ] signature: [ 2, 2, 3, 6 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 11 -- C~ -- G~ Id: SmallGroup <96, 32> G~ name: (C3*OD16):C2 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.6^3 = Id(G), G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5, G.6^G.1 = G.6^2 generating vector: [ G.1 * G.5 * G.6^2, G.1, G.1 * G.2 * G.4 * G.6, G.1 * G.2 * G.3 ] signature: [ 2, 2, 4, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 14> G name: D6:C4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^2 = Id(H), H.5^3 = Id(H), H.2^H.1 = H.2 * H.4, H.5^H.1 = H.5^2 generating vector: [ H.1 * H.5^2, H.1, H.1 * H.2 * H.4 * H.5, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 5 Example # 12 -- C~ -- G~ Id: SmallGroup <96, 186> G~ name: C4*S4 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^3 = Id(G), G.5^2 = Id(G), G.6^2 = Id(G), G.4^G.1 = G.4^2, G.5^G.1 = G.6, G.5^G.4 = G.6, G.6^G.1 = G.5, G.6^G.4 = G.5 * G.6 generating vector: [ G.1 * G.4^2 * G.5, G.1 * G.3 * G.4^2 * G.5, G.1 * G.2 * G.4 * G.5, G.1 * G.2 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 0, 1, 1, 0, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 48> G name: C2*S4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.3^H.1 = H.3^2, H.4^H.1 = H.5, H.4^H.3 = H.5, H.5^H.1 = H.4, H.5^H.3 = H.4 * H.5 generating vector: [ H.1 * H.3^2 * H.4, H.1 * H.3^2 * H.4, H.1 * H.2 * H.3 * H.4, H.1 * H.2 * H.3 * H.4 * H.5 ] signature: [ 2, 2, 4, 4 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 1, 2, 0, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 13 -- C~ -- G~ Id: SmallGroup <96, 203> G~ name: C2^2:SL(2,3) GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^3 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = G.6, G.5^2 = G.6, G.6^2 = Id(G), G.2^G.1 = G.3, G.3^G.1 = G.2 * G.3, G.4^G.1 = G.5, G.5^G.1 = G.4 * G.5, G.5^G.4 = G.5 * G.6 generating vector: [ G.2 * G.3 * G.6, G.1 * G.2 * G.4 * G.5, G.1, G.1 * G.5 ] signature: [ 2, 3, 3, 3 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 2, 0, 1, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 50> G name: C2^4:C3 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^3 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.2^H.1 = H.3, H.3^H.1 = H.2 * H.3, H.4^H.1 = H.5, H.5^H.1 = H.4 * H.5 generating vector: [ H.2 * H.3, H.1 * H.2 * H.4 * H.5, H.1, H.1 * H.5 ] signature: [ 2, 3, 3, 3 ] genus: 13 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 14 -- C~ -- G~ Id: SmallGroup <128, 357> G~ name: C4^2.C2^3 GrpPC : G of order 128 = 2^7 PC-Relations: G.2^2 = G.7, G.4^2 = G.6, G.5^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.2 = G.5 * G.7, G.5^G.3 = G.5 * G.7 generating vector: [ G.3 * G.5, G.2 * G.3 * G.4, G.1 * G.5 * G.6 * G.7, G.1 * G.2 * G.4 * G.6 ] signature: [ 2, 2, 2, 8 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 128> G name: (C2*D8):C2 GrpPC : H of order 64 = 2^6 PC-Relations: H.4^2 = H.6, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.1 = H.4 * H.6, H.4^H.2 = H.4 * H.6 generating vector: [ H.3 * H.5, H.2 * H.3 * H.4, H.1 * H.5 * H.6, H.1 * H.2 * H.4 * H.6 ] signature: [ 2, 2, 2, 8 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 15 -- C~ -- G~ Id: SmallGroup <144, 117> G~ name: (C3*C6).D4 GrpPC : G of order 144 = 2^4 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = G.4, G.4^2 = Id(G), G.5^3 = Id(G), G.6^3 = Id(G), G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.4, G.5^G.1 = G.5^2, G.5^G.2 = G.6, G.5^G.3 = G.5^2, G.6^G.2 = G.5, G.6^G.3 = G.6^2 generating vector: [ G.1 * G.5, G.1 * G.4, G.2 * G.3 * G.4 * G.5 * G.6, G.2 * G.3 * G.5^2 * G.6 ] signature: [ 2, 2, 2, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <72, 40> G name: S3wrC2 GrpPC : H of order 72 = 2^3 * 3^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.5^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2, H.4^H.2 = H.5, H.4^H.3 = H.4^2, H.5^H.2 = H.4, H.5^H.3 = H.5^2 generating vector: [ H.1 * H.4, H.1, H.2 * H.3 * H.4 * H.5, H.2 * H.3 * H.4^2 * H.5 ] signature: [ 2, 2, 2, 6 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 2, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 5 Example # 16 -- C~ -- G~ Id: SmallGroup <144, 153> G~ name: S3*C3:D4 GrpPC : G of order 144 = 2^4 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.6^3 = Id(G), G.3^G.2 = G.3 * G.4, G.5^G.2 = G.5^2, G.6^G.1 = G.6^2 generating vector: [ G.1 * G.2 * G.4 * G.5^2 * G.6, G.2 * G.4, G.1 * G.3 * G.4, G.3 * G.4 * G.5^2 * G.6 ] signature: [ 2, 2, 2, 6 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <72, 46> G name: C2*S3^2 GrpPC : H of order 72 = 2^3 * 3^2 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.5^3 = Id(H), H.4^H.2 = H.4^2, H.5^H.1 = H.5^2 generating vector: [ H.1 * H.2 * H.4^2 * H.5, H.2, H.1 * H.3, H.3 * H.4^2 * H.5 ] signature: [ 2, 2, 2, 6 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 6 Example # 17 -- C~ -- G~ Id: SmallGroup <192, 312> G~ name: C3:(C4wrC2:C2) GrpPC : G of order 192 = 2^6 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.6, G.3^2 = G.4 * G.6, G.4^2 = G.6, G.5^2 = Id(G), G.6^2 = Id(G), G.7^3 = Id(G), G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.5^G.1 = G.5 * G.6, G.5^G.3 = G.5 * G.6, G.7^G.1 = G.7^2 generating vector: [ G.1 * G.4 * G.6 * G.7^2, G.1 * G.3 * G.5 * G.7^2, G.1 * G.2 * G.4 * G.6 * G.7, G.1 * G.2 * G.3 * G.4 * G.5 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <96, 89> G name: C2^2:D12 GrpPC : H of order 96 = 2^5 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = H.4, H.4^2 = Id(H), H.5^2 = Id(H), H.6^3 = Id(H), H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5, H.6^H.1 = H.6^2 generating vector: [ H.1 * H.4 * H.6^2, H.1 * H.3 * H.5 * H.6^2, H.1 * H.2 * H.4 * H.6, H.1 * H.2 * H.3 * H.4 * H.5 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 13 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 18 -- C~ -- G~ Id: SmallGroup <192, 1478> G~ name: Q8:S4 GrpPC : G of order 192 = 2^6 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.4, G.3^2 = G.4, G.4^2 = Id(G), G.5^3 = Id(G), G.6^2 = Id(G), G.7^2 = Id(G), G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.4, G.5^G.1 = G.5^2, G.6^G.1 = G.7, G.6^G.5 = G.7, G.7^G.1 = G.6, G.7^G.5 = G.6 * G.7 generating vector: [ G.1 * G.3 * G.5^2 * G.6, G.1 * G.4 * G.5 * G.7, G.1 * G.2 * G.3 * G.5^2, G.1 * G.2 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <96, 226> G name: C2^2*S4 GrpPC : H of order 96 = 2^5 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.5^2 = Id(H), H.6^2 = Id(H), H.4^H.1 = H.4^2, H.5^H.1 = H.6, H.5^H.4 = H.6, H.6^H.1 = H.5, H.6^H.4 = H.5 * H.6 generating vector: [ H.1 * H.3 * H.4^2 * H.5, H.1 * H.4 * H.6, H.1 * H.2 * H.3 * H.4^2, H.1 * H.2 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 13 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 18 b = 16 Example # 1 -- C~ -- G~ Id: SmallGroup <128, 749> G~ name: C4.C2^2wrC2 GrpPC : G of order 128 = 2^7 PC-Relations: G.4^2 = G.7, G.5^2 = G.7, G.6^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.7, G.4^G.2 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.3 = G.5 * G.7, G.6^G.2 = G.6 * G.7, G.6^G.3 = G.6 * G.7 generating vector: [ G.2 * G.6 * G.7, G.3 * G.5 * G.6 * G.7, G.1 * G.4, G.1 * G.2 * G.3 * G.4 * G.5 * G.6 * G.7 ] signature: [ 2, 2, 2, 8 ] genus: 25 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 16 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 73> G name: C2.C4:D4 GrpPC : H of order 64 = 2^6 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.6 generating vector: [ H.2 * H.6, H.3 * H.5 * H.6, H.1 * H.4, H.1 * H.2 * H.3 * H.4 * H.5 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 4 1