g~: 21 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <32, 3> G~ name: C4*C8 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.3, G.2^2 = G.4, G.3^2 = G.5 generating vector: [ G.2 * G.4 * G.5, G.2 * G.4, G.1 * G.5, G.1 * G.3 * G.4 * G.5 ] signature: [ 4, 4, 8, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.4 * G.5 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <16, 5> G name: C2*C8 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.3, H.2^2 = H.4, H.3^2 = H.4 generating vector: [ H.2, H.2 * H.4, H.1 * H.4, H.1 * H.3 ] signature: [ 4, 4, 8, 8 ] genus: 11 decomp H^0(K_C): [ 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 2 -- C~ -- G~ Id: SmallGroup <32, 13> G~ name: C8:C4 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^2 = G.3, G.3^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.4, G.1 * G.4 * G.5, G.2 * G.3 * G.5, G.2 * G.4 * G.5 ] signature: [ 4, 4, 8, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 0, 1, 2, 2, 2, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.4 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 8> G name: SD16 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^2 = H.3, H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4 generating vector: [ H.1 * H.4, H.1, H.2 * H.3 * H.4, H.2 ] signature: [ 4, 4, 8, 8 ] genus: 11 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 2, 2 ] N = dim S^2H^0(K_C)^G = 6 Example # 3 -- C~ -- G~ Id: SmallGroup <48, 14> G~ name: D6:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.3 * G.4 * G.5, G.1 * G.4 * G.5, G.2 * G.5^2, G.2 * G.5 ] signature: [ 2, 2, 12, 12 ] genus: 21 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 6> G name: D12 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4, H.1 * H.3 * H.4, H.2 * H.4^2, H.2 * H.4 ] signature: [ 2, 2, 12, 12 ] genus: 11 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 4 -- C~ -- G~ Id: SmallGroup <48, 21> G~ name: C3*C2^2:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.5, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.2^G.1 = G.2 * G.4 generating vector: [ G.2, G.2 * G.4 * G.5, G.1 * G.2 * G.3^2 * G.4, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 12, 12 ] genus: 21 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 10> G name: C3*D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2 * H.4 generating vector: [ H.2, H.2 * H.4, H.1 * H.2 * H.3^2 * H.4, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 12, 12 ] genus: 11 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 5 -- C~ -- G~ Id: SmallGroup <48, 19> G~ name: C6.D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.2, G.1 * G.3 * G.5^2, G.1 * G.3 * G.4 * G.5, G.2 * G.3 * G.4 * G.5 ] signature: [ 2, 4, 4, 6 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <24, 8> G name: C3:D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = H.3, H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.2, H.1 * H.3 * H.4^2, H.1 * H.4, H.2 * H.4 ] signature: [ 2, 4, 4, 6 ] genus: 11 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 0, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 5 Example # 6 -- C~ -- G~ Id: SmallGroup <64, 118> G~ name: C4*D8 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.1 * G.3, G.2 * G.6, G.3 * G.4, G.1 * G.2 * G.6 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.5 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <32, 39> G name: C2*D8 GrpPC : H of order 32 = 2^5 PC-Relations: H.4^2 = H.5, H.2^H.1 = H.2 * H.4, H.4^H.1 = H.4 * H.5, H.4^H.2 = H.4 * H.5 generating vector: [ H.1 * H.3, H.2 * H.5, H.3 * H.4, H.1 * H.2 * H.5 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 7 -- C~ -- G~ Id: SmallGroup <64, 147> G~ name: C2^2:D8 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4 * G.6, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6 generating vector: [ G.1 * G.4 * G.5 * G.6, G.1 * G.2 * G.5, G.3 * G.4 * G.6, G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 7 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 39> G name: C2*D8 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4 * H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.4, H.4^H.1 = H.4 * H.5 generating vector: [ H.1 * H.4 * H.5, H.1 * H.2, H.3 * H.4 * H.5, H.2 * H.3 * H.4 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 6 Example # 8 -- C~ -- G~ Id: SmallGroup <64, 149> G~ name: C4.(C2*D4) GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.6 generating vector: [ G.1 * G.4, G.3 * G.5, G.1 * G.2, G.2 * G.3 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 43> G name: C8:C2^2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.4^2 = H.5, H.2^H.1 = H.2 * H.4, H.3^H.2 = H.3 * H.5, H.4^H.1 = H.4 * H.5 generating vector: [ H.1 * H.4, H.3, H.1 * H.2, H.2 * H.3 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 5 Example # 9 -- C~ -- G~ Id: SmallGroup <64, 163> G~ name: C2.D8:C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.6, G.3^2 = G.4, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.5^G.1 = G.5 * G.6, G.5^G.3 = G.5 * G.6 generating vector: [ G.2 * G.4 * G.5 * G.6, G.1 * G.6, G.3 * G.4, G.1 * G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 * G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 43> G name: C8:C2^2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.5, H.3^2 = H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.5, H.3^H.1 = H.3 * H.4, H.4^H.1 = H.4 * H.5, H.4^H.3 = H.4 * H.5 generating vector: [ H.2 * H.4, H.1 * H.5, H.3 * H.5, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 5 Example # 10 -- C~ -- G~ Id: SmallGroup <96, 91> G~ name: C3:C4:D4 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.4, G.3^2 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.6^3 = Id(G), G.3^G.1 = G.3 * G.4 * G.5, G.3^G.2 = G.3 * G.5, G.6^G.1 = G.6^2 generating vector: [ G.3 * G.5, G.1 * G.4 * G.6^2, G.1 * G.2 * G.3 * G.6, G.2 * G.6 ] signature: [ 2, 2, 2, 12 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 38> G name: S3*D4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.4, H.3^2 = Id(H), H.4^2 = Id(H), H.5^3 = Id(H), H.3^H.2 = H.3 * H.4, H.5^H.1 = H.5^2 generating vector: [ H.3 * H.4, H.1 * H.4 * H.5^2, H.1 * H.2 * H.3 * H.5, H.2 * H.5 ] signature: [ 2, 2, 2, 12 ] genus: 11 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 5 10 b = 8 Example # 1 -- C~ -- G~ Id: SmallGroup <48, 4> G~ name: C8*S3 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = G.4, G.4^2 = Id(G), G.5^3 = Id(G), G.5^G.1 = G.5^2 generating vector: [ G.1, G.1 * G.4 * G.5, G.2, G.2 * G.3 * G.5^2 ] signature: [ 2, 2, 8, 24 ] genus: 21 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 5> G name: C4*S3 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.1, H.1 * H.4, H.2, H.2 * H.3 * H.4^2 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2 ] N = dim S^2H^0(K_C)^G = 3 Example # 2 -- C~ -- G~ Id: SmallGroup <48, 6> G~ name: C8:S3 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = G.4, G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.3 * G.4 * G.5^2, G.1 * G.4, G.2, G.2 * G.5^2 ] signature: [ 2, 2, 8, 24 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 6> G name: D12 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.3 * H.4^2, H.1, H.2, H.2 * H.4^2 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 3 -- C~ -- G~ Id: SmallGroup <64, 124> G~ name: (C4*C8):C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.3^2 = G.5, G.4^2 = G.6, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.6, G.1 * G.3 * G.4 * G.5 * G.6, G.1 * G.2 * G.4 * G.5 * G.6, G.3 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 25> G name: C4*D4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.5, H.3^2 = H.5, H.2^H.1 = H.2 * H.4 generating vector: [ H.2, H.1 * H.3 * H.4 * H.5, H.1 * H.2 * H.4 * H.5, H.3 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 4 -- C~ -- G~ Id: SmallGroup <64, 133> G~ name: (C2*Q16):C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.6, G.3^2 = G.6, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.6, G.3 * G.4, G.1 * G.3 * G.4 * G.6, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.2, H.3 * H.4, H.1 * H.3 * H.4, H.1 * H.2 * H.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 5 -- C~ -- G~ Id: SmallGroup <64, 176> G~ name: C8.D4 GrpPC : G of order 64 = 2^6 PC-Relations: G.2^2 = G.4, G.3^2 = G.5 * G.6, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6 generating vector: [ G.1 * G.2 * G.3, G.1, G.3 * G.4 * G.5, G.2 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 4, 8 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 34> G name: C4:D4 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.3^2 = H.5, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.1 * H.2 * H.3, H.1, H.3 * H.4 * H.5, H.2 * H.4 * H.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 5 Example # 6 -- C~ -- G~ Id: SmallGroup <96, 192> G~ name: (C2.S4):C2 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.6, G.3^3 = Id(G), G.4^2 = G.6, G.5^2 = G.6, G.6^2 = Id(G), G.3^G.1 = G.3^2, G.4^G.1 = G.5, G.4^G.3 = G.5 * G.6, G.5^G.1 = G.4, G.5^G.3 = G.4 * G.5, G.5^G.4 = G.5 * G.6 generating vector: [ G.2 * G.4 * G.5 * G.6, G.1 * G.3 * G.6, G.1 * G.6, G.2 * G.3 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 2, 12 ] genus: 21 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 8 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 48> G name: C2*S4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.3^H.1 = H.3^2, H.4^H.1 = H.5, H.4^H.3 = H.5, H.5^H.1 = H.4, H.5^H.3 = H.4 * H.5 generating vector: [ H.2 * H.4 * H.5, H.1 * H.3, H.1, H.2 * H.3 * H.4 * H.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 6