g~: 17 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <24, 9> G~ name: C2*C12 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.4, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G) generating vector: [ G.1 * G.2 * G.4, G.1 * G.4, G.1 * G.3^2, G.1 * G.2 * G.3 ] signature: [ 4, 4, 12, 12 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 2, 1, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <12, 2> G name: C12 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.3, H.2^3 = Id(H), H.3^2 = Id(H) generating vector: [ H.1, H.1 * H.3, H.1 * H.2^2, H.1 * H.2 * H.3 ] signature: [ 4, 4, 12, 12 ] genus: 9 decomp H^0(K_C): [ 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 2 -- C~ -- G~ Id: SmallGroup <32, 2> G~ name: C2.C4^2 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^2 = G.5, G.2^G.1 = G.2 * G.3 generating vector: [ G.2 * G.3, G.1 * G.2 * G.5, G.1 * G.2 * G.3, G.2 * G.3 * G.4 * G.5 ] signature: [ 4, 4, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3, H.1 * H.2 * H.4, H.1 * H.2 * H.3, H.2 * H.3 * H.4 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 3 -- C~ -- G~ Id: SmallGroup <32, 21> G~ name: C2*C4^2 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.2^2 = G.5 generating vector: [ G.2, G.1 * G.2, G.2 * G.3 * G.4, G.1 * G.2 * G.3 ] signature: [ 4, 4, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.3 * G.4 * G.5 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <16, 2> G name: C4^2 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.3, H.2^2 = H.4 generating vector: [ H.2, H.1 * H.2, H.2 * H.4, H.1 * H.2 * H.3 * H.4 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 4 -- C~ -- G~ Id: SmallGroup <32, 26> G~ name: C4*Q8 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.2^2 = G.4, G.3^2 = G.4 * G.5, G.2^G.1 = G.2 * G.4 generating vector: [ G.2 * G.3 * G.4, G.1 * G.4, G.1 * G.2, G.3 ] signature: [ 4, 4, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.4 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <16, 10> G name: C2^2*C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.3^2 = H.4 generating vector: [ H.2 * H.3, H.1, H.1 * H.2, H.3 ] signature: [ 4, 4, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 5 -- C~ -- G~ Id: SmallGroup <40, 8> G~ name: C5:D4 GrpPC : G of order 40 = 2^3 * 5 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^5 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.1 = G.4^4 generating vector: [ G.1 * G.3, G.1 * G.3 * G.4^3, G.2 * G.4^3, G.2 * G.4^4 ] signature: [ 2, 2, 10, 10 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <20, 4> G name: D10 GrpPC : H of order 20 = 2^2 * 5 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^5 = Id(H), H.3^H.1 = H.3^4 generating vector: [ H.1, H.1 * H.3^3, H.2 * H.3^3, H.2 * H.3^4 ] signature: [ 2, 2, 10, 10 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 6 -- C~ -- G~ Id: SmallGroup <48, 14> G~ name: D6:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.5, G.1 * G.5^2, G.2 * G.4, G.2 * G.3 * G.4 * G.5^2 ] signature: [ 2, 2, 4, 12 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.3 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <24, 6> G name: D12 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4, H.1 * H.4^2, H.2 * H.3, H.2 * H.4^2 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 7 -- C~ -- G~ Id: SmallGroup <48, 14> G~ name: D6:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.2^G.1 = G.2 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1, G.1 * G.3 * G.5^2, G.2 * G.3 * G.4, G.2 * G.3 * G.4 * G.5 ] signature: [ 2, 2, 4, 12 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.3 * G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 6> G name: D12 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.3, H.3^2 = Id(H), H.4^3 = Id(H), H.2^H.1 = H.2 * H.3, H.4^H.1 = H.4^2 generating vector: [ H.1, H.1 * H.3 * H.4^2, H.2, H.2 * H.4 ] signature: [ 2, 2, 4, 12 ] genus: 9 decomp H^0(K_C): [ 0, 0, 1, 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 8 -- C~ -- G~ Id: SmallGroup <48, 43> G~ name: C2*C3:D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.1 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.2, G.1, G.2 * G.3 * G.5, G.3 * G.5^2 ] signature: [ 2, 2, 6, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 2, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 14> G name: C2^2*S3 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.1 * H.2, H.1, H.2 * H.3 * H.4, H.3 * H.4^2 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 9 -- C~ -- G~ Id: SmallGroup <48, 45> G~ name: C6*D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.5^2 = Id(G), G.2^G.1 = G.2 * G.5 generating vector: [ G.1, G.1 * G.3, G.2 * G.4 * G.5, G.2 * G.3 * G.4^2 * G.5 ] signature: [ 2, 2, 6, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 10> G name: C3*D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2 * H.4 generating vector: [ H.1, H.1, H.2 * H.3 * H.4, H.2 * H.3^2 * H.4 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 10 -- C~ -- G~ Id: SmallGroup <48, 45> G~ name: C6*D4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.5^2 = Id(G), G.2^G.1 = G.2 * G.5 generating vector: [ G.1, G.1 * G.3, G.2 * G.4 * G.5, G.2 * G.3 * G.4^2 * G.5 ] signature: [ 2, 2, 6, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.3 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 10> G name: C3*D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2 * H.4 generating vector: [ H.1, H.1 * H.4, H.2 * H.3 * H.4, H.2 * H.3^2 ] signature: [ 2, 2, 6, 6 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 11 -- C~ -- G~ Id: SmallGroup <48, 32> G~ name: C2*SL(2,3) GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = G.5, G.4^2 = G.5, G.5^2 = Id(G), G.3^G.2 = G.4, G.4^G.2 = G.3 * G.4, G.4^G.3 = G.4 * G.5 generating vector: [ G.1, G.2^2 * G.4 * G.5, G.2^2 * G.3 * G.4 * G.5, G.1 * G.2^2 * G.3 ] signature: [ 2, 3, 3, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 1, 1, 2, 0, 0, 0, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 13> G name: C2*A4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.3^H.2 = H.4, H.4^H.2 = H.3 * H.4 generating vector: [ H.1, H.2^2 * H.4, H.2^2 * H.3 * H.4, H.1 * H.2^2 * H.3 ] signature: [ 2, 3, 3, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 0, 2 ] N = dim S^2H^0(K_C)^G = 4 Example # 12 -- C~ -- G~ Id: SmallGroup <48, 30> G~ name: A4:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.2, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.3^G.1 = G.3^2, G.4^G.1 = G.5, G.4^G.3 = G.5, G.5^G.1 = G.4, G.5^G.3 = G.4 * G.5 generating vector: [ G.2 * G.4, G.3 * G.4 * G.5, G.1 * G.3 * G.4, G.1 * G.4 ] signature: [ 2, 3, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 1, 2, 0, 1, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.2 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <24, 12> G name: S4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2^2, H.3^H.1 = H.4, H.3^H.2 = H.4, H.4^H.1 = H.3, H.4^H.2 = H.3 * H.4 generating vector: [ H.3, H.2 * H.3 * H.4, H.1 * H.2 * H.3, H.1 * H.3 ] signature: [ 2, 3, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 4 Example # 13 -- C~ -- G~ Id: SmallGroup <48, 30> G~ name: A4:C4 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = G.2, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.3^G.1 = G.3^2, G.4^G.1 = G.5, G.4^G.3 = G.5, G.5^G.1 = G.4, G.5^G.3 = G.4 * G.5 generating vector: [ G.4, G.3 * G.4 * G.5, G.1 * G.2 * G.3^2 * G.5, G.1 * G.3 * G.4 ] signature: [ 2, 3, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 1, 2, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.2 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 12> G name: S4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2^2, H.3^H.1 = H.4, H.3^H.2 = H.4, H.4^H.1 = H.3, H.4^H.2 = H.3 * H.4 generating vector: [ H.3, H.2 * H.3 * H.4, H.1 * H.2^2 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 3, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 2 ] N = dim S^2H^0(K_C)^G = 4 Example # 14 -- C~ -- G~ Id: SmallGroup <64, 8> G~ name: C2^2.SD16 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.4, G.3^2 = G.6, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.2 = G.4 * G.5 * G.6 generating vector: [ G.2 * G.5 * G.6, G.2, G.1, G.1 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 6> G name: C2^2.D4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.4^H.2 = H.4 * H.5 generating vector: [ H.2 * H.5, H.2, H.1, H.1 * H.4 * H.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 15 -- C~ -- G~ Id: SmallGroup <64, 8> G~ name: C2^2.SD16 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.4, G.3^2 = G.6, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.2 = G.4 * G.5 * G.6 generating vector: [ G.2 * G.5 * G.6, G.2, G.1, G.1 * G.4 * G.5 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.5 * G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 9> G name: D4:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.4, H.3^2 = H.5, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.5 generating vector: [ H.2, H.2, H.1, H.1 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 16 -- C~ -- G~ Id: SmallGroup <64, 41> G~ name: OD32:C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.5^2 = G.6, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 * G.6, G.4^G.2 = G.4 * G.6, G.5^G.1 = G.5 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.2 * G.3 * G.6, G.2 * G.3 * G.5, G.1 * G.3 * G.5, G.1 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 9> G name: D4:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.4, H.3^2 = H.5, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.5 generating vector: [ H.2 * H.3, H.2 * H.3 * H.5, H.1 * H.3 * H.5, H.1 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 17 -- C~ -- G~ Id: SmallGroup <64, 71> G~ name: C4:(C2^2:C4) GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.6, G.2^2 = G.4 * G.6, G.3^2 = G.5, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5 generating vector: [ G.1 * G.2 * G.3, G.1 * G.2 * G.4 * G.5, G.2 * G.3 * G.5, G.2 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <32, 34> G name: C4:D4 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^2 = H.4, H.3^2 = H.5, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.1 * H.2 * H.3, H.1 * H.2 * H.4 * H.5, H.2 * H.3 * H.5, H.2 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 18 -- C~ -- G~ Id: SmallGroup <64, 75> G~ name: (C2^2*D4).C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.3^2 = G.4, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6 generating vector: [ G.1 * G.5 * G.6, G.2 * G.5 * G.6, G.1 * G.3 * G.5 * G.6, G.2 * G.3 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.5 generating vector: [ H.1 * H.4 * H.5, H.2 * H.4 * H.5, H.1 * H.3 * H.4 * H.5, H.2 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 5 Example # 19 -- C~ -- G~ Id: SmallGroup <64, 91> G~ name: (C2*D4):C4 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.3^2 = G.6, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.2 * G.3 * G.5, G.2 * G.4, G.1 * G.6, G.1 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 22> G name: C2*C2^2:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.5, H.2^H.1 = H.2 * H.4 generating vector: [ H.2 * H.3 * H.5, H.2 * H.4, H.1, H.1 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 20 -- C~ -- G~ Id: SmallGroup <64, 101> G~ name: C2*C4wrC2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.4^2 = G.6, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.3 * G.4 * G.6, G.2 * G.4 * G.6, G.1 * G.2 * G.5 * G.6, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 22> G name: C2*C2^2:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.5, H.2^H.1 = H.2 * H.4 generating vector: [ H.2 * H.3 * H.4, H.2 * H.4, H.1 * H.2 * H.5, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 4 Example # 21 -- C~ -- G~ Id: SmallGroup <64, 101> G~ name: C2*C4wrC2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.4^2 = G.6, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.3 * G.4 * G.6, G.2 * G.4 * G.6, G.1 * G.2 * G.5 * G.6, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 11> G name: C4wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.4, H.3^2 = H.5, H.4^2 = H.5, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.5 generating vector: [ H.2 * H.3 * H.5, H.2 * H.3 * H.5, H.1 * H.2 * H.4 * H.5, H.1 * H.2 * H.3 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 4 Example # 22 -- C~ -- G~ Id: SmallGroup <64, 102> G~ name: OD16:C2^2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.5, G.4^2 = G.6, G.5^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6 generating vector: [ G.2 * G.3 * G.4 * G.5, G.2 * G.4, G.1 * G.2 * G.3 * G.4 * G.5, G.1 * G.2 * G.5 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 22> G name: C2*C2^2:C4 GrpPC : H of order 32 = 2^5 PC-Relations: H.1^2 = H.5, H.2^H.1 = H.2 * H.4 generating vector: [ H.2 * H.3 * H.4 * H.5, H.2 * H.4, H.1 * H.2 * H.3 * H.4 * H.5, H.1 * H.2 * H.5 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 4 Example # 23 -- C~ -- G~ Id: SmallGroup <64, 139> G~ name: (C2^2.D4):C2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.3 = G.4 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.3 * G.5 * G.6, G.2 * G.3 * G.6, G.1 * G.3 * G.4 * G.6, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 6 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.3 * H.5, H.2 * H.3, H.1 * H.3 * H.4, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 9 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 5 Example # 24 -- C~ -- G~ Id: SmallGroup <96, 147> G~ name: (C6*D4):C2 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.5, G.3^2 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.6^3 = Id(G), G.2^G.1 = G.2 * G.5, G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.5, G.6^G.1 = G.6^2 generating vector: [ G.1 * G.2 * G.4 * G.6, G.1, G.3 * G.5, G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.4 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 38> G name: S3*D4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.4, H.3^2 = Id(H), H.4^2 = Id(H), H.5^3 = Id(H), H.2^H.1 = H.2 * H.4, H.3^H.2 = H.3 * H.4, H.5^H.1 = H.5^2 generating vector: [ H.1 * H.2 * H.5, H.1, H.3 * H.4, H.2 * H.3 * H.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 25 -- C~ -- G~ Id: SmallGroup <96, 147> G~ name: (C6*D4):C2 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.5, G.3^2 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.6^3 = Id(G), G.2^G.1 = G.2 * G.5, G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.5, G.6^G.1 = G.6^2 generating vector: [ G.1 * G.2 * G.4 * G.6, G.1, G.3 * G.5, G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.4 * G.5 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 38> G name: S3*D4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = H.4, H.3^2 = Id(H), H.4^2 = Id(H), H.5^3 = Id(H), H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.4, H.5^H.1 = H.5^2 generating vector: [ H.1 * H.2 * H.4 * H.5, H.1, H.3 * H.4, H.2 * H.3 * H.4 * H.5 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 26 -- C~ -- G~ Id: SmallGroup <96, 195> G~ name: GL(2,Z/4) GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.5^2 = Id(G), G.6^2 = Id(G), G.2^G.1 = G.2 * G.3, G.4^G.1 = G.4^2, G.5^G.1 = G.6, G.5^G.4 = G.6, G.6^G.1 = G.5, G.6^G.4 = G.5 * G.6 generating vector: [ G.1 * G.4 * G.6, G.1, G.2 * G.3 * G.5, G.2 * G.3 * G.4 ] signature: [ 2, 2, 2, 6 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.3 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 48> G name: C2*S4 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.3^H.1 = H.3^2, H.4^H.1 = H.5, H.4^H.3 = H.5, H.5^H.1 = H.4, H.5^H.3 = H.4 * H.5 generating vector: [ H.1 * H.3 * H.5, H.1, H.2 * H.4, H.2 * H.3 ] signature: [ 2, 2, 2, 6 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 27 -- C~ -- G~ Id: SmallGroup <96, 204> G~ name: C2^3:A4 GrpPC : G of order 96 = 2^5 * 3 PC-Relations: G.1^3 = Id(G), G.2^2 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^2 = Id(G), G.6^2 = Id(G), G.2^G.1 = G.3, G.3^G.1 = G.2 * G.3, G.4^G.1 = G.5, G.4^G.3 = G.4 * G.6, G.5^G.1 = G.4 * G.5, G.5^G.2 = G.5 * G.6 generating vector: [ G.5, G.2 * G.3 * G.4 * G.5, G.1 * G.4, G.1^2 * G.2 * G.3 * G.5 ] signature: [ 2, 2, 3, 3 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <48, 50> G name: C2^4:C3 GrpPC : H of order 48 = 2^4 * 3 PC-Relations: H.1^3 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.2^H.1 = H.3, H.3^H.1 = H.2 * H.3, H.4^H.1 = H.5, H.5^H.1 = H.4 * H.5 generating vector: [ H.5, H.2 * H.3 * H.4 * H.5, H.1 * H.4, H.1^2 * H.2 * H.3 * H.5 ] signature: [ 2, 2, 3, 3 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 28 -- C~ -- G~ Id: SmallGroup <128, 330> G~ name: C2^3.(C2*D4) GrpPC : G of order 128 = 2^7 PC-Relations: G.3^2 = G.7, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.7, G.5^G.2 = G.5 * G.7 generating vector: [ G.2 * G.3 * G.4 * G.7, G.1 * G.4 * G.6, G.2 * G.6, G.1 * G.3 * G.4 * G.6 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 128> G name: (C2*D8):C2 GrpPC : H of order 64 = 2^6 PC-Relations: H.4^2 = H.6, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.1 = H.4 * H.6, H.4^H.2 = H.4 * H.6 generating vector: [ H.2 * H.3 * H.4, H.1 * H.4 * H.6, H.2 * H.6, H.1 * H.3 * H.4 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 29 -- C~ -- G~ Id: SmallGroup <128, 330> G~ name: C2^3.(C2*D4) GrpPC : G of order 128 = 2^7 PC-Relations: G.3^2 = G.7, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.7, G.5^G.2 = G.5 * G.7 generating vector: [ G.2 * G.3 * G.4 * G.7, G.1 * G.4 * G.6, G.2 * G.6, G.1 * G.3 * G.4 * G.6 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 138> G name: C2wrC2^2 GrpPC : H of order 64 = 2^6 PC-Relations: H.3^2 = H.6, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.3 = H.4 * H.6, H.5^H.2 = H.5 * H.6 generating vector: [ H.2 * H.3 * H.4 * H.6, H.1 * H.4, H.2, H.1 * H.3 * H.4 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 30 -- C~ -- G~ Id: SmallGroup <128, 738> G~ name: C2^2.C2^2wrC2 GrpPC : G of order 128 = 2^7 PC-Relations: G.4^2 = G.7, G.5^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.7, G.4^G.2 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.3 = G.5 * G.7 generating vector: [ G.2 * G.6, G.1 * G.4 * G.5, G.3 * G.6, G.1 * G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 73> G name: C2.C4:D4 GrpPC : H of order 64 = 2^6 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.6 generating vector: [ H.2 * H.6, H.1 * H.4 * H.5, H.3 * H.6, H.1 * H.2 * H.3 * H.4 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 31 -- C~ -- G~ Id: SmallGroup <128, 738> G~ name: C2^2.C2^2wrC2 GrpPC : G of order 128 = 2^7 PC-Relations: G.4^2 = G.7, G.5^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.7, G.4^G.2 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.3 = G.5 * G.7 generating vector: [ G.2 * G.6, G.1 * G.4 * G.5, G.3 * G.6, G.1 * G.2 * G.3 * G.4 * G.6 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.6 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <64, 134> G name: D4:D4 GrpPC : H of order 64 = 2^6 PC-Relations: H.4^2 = H.6, H.5^2 = H.6, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.1 = H.4 * H.6, H.4^H.2 = H.4 * H.6, H.5^H.1 = H.5 * H.6, H.5^H.3 = H.5 * H.6 generating vector: [ H.2, H.1 * H.4 * H.5, H.3, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 32 -- C~ -- G~ Id: SmallGroup <128, 740> G~ name: C2^2.C2^2wrC2 GrpPC : G of order 128 = 2^7 PC-Relations: G.4^2 = G.7, G.5^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.6, G.4^G.1 = G.4 * G.7, G.4^G.2 = G.4 * G.7, G.4^G.3 = G.4 * G.7, G.5^G.1 = G.5 * G.7, G.5^G.3 = G.5 * G.7, G.6^G.1 = G.6 * G.7 generating vector: [ G.3 * G.4 * G.5 * G.7, G.2 * G.4 * G.6, G.1 * G.4, G.1 * G.2 * G.3 * G.4 * G.5 * G.6 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 73> G name: C2.C4:D4 GrpPC : H of order 64 = 2^6 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.3^H.2 = H.3 * H.6 generating vector: [ H.3 * H.4 * H.5, H.2 * H.4 * H.6, H.1 * H.4, H.1 * H.2 * H.3 * H.4 * H.5 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0 ] N = dim S^2H^0(K_C)^G = 4 Example # 33 -- C~ -- G~ Id: SmallGroup <128, 922> G~ name: C4.C2^2wrC2 GrpPC : G of order 128 = 2^7 PC-Relations: G.4^2 = G.6 * G.7, G.6^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.7, G.5^G.2 = G.5 * G.7, G.6^G.1 = G.6 * G.7, G.6^G.2 = G.6 * G.7 generating vector: [ G.2 * G.6 * G.7, G.2 * G.3 * G.4 * G.5 * G.6 * G.7, G.1 * G.4 * G.7, G.1 * G.3 * G.5 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 128> G name: (C2*D8):C2 GrpPC : H of order 64 = 2^6 PC-Relations: H.4^2 = H.6, H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.1 = H.4 * H.6, H.4^H.2 = H.4 * H.6 generating vector: [ H.2 * H.6, H.2 * H.3 * H.4 * H.5 * H.6, H.1 * H.4, H.1 * H.3 * H.5 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 34 -- C~ -- G~ Id: SmallGroup <128, 932> G~ name: C2.C2wrC2^2 GrpPC : G of order 128 = 2^7 PC-Relations: G.2^2 = G.7, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.7, G.4^G.3 = G.4 * G.6, G.5^G.2 = G.5 * G.6 * G.7, G.5^G.4 = G.5 * G.7, G.6^G.1 = G.6 * G.7 generating vector: [ G.2 * G.3 * G.6 * G.7, G.3 * G.6 * G.7, G.1 * G.5 * G.7, G.1 * G.2 * G.5 * G.6 * G.7 ] signature: [ 2, 2, 2, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <64, 138> G name: C2wrC2^2 GrpPC : H of order 64 = 2^6 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5, H.4^H.3 = H.4 * H.6, H.5^H.2 = H.5 * H.6 generating vector: [ H.2 * H.3 * H.6, H.3 * H.6, H.1 * H.5, H.1 * H.2 * H.5 * H.6 ] signature: [ 2, 2, 2, 4 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 4 Example # 35 -- C~ -- G~ Id: SmallGroup <192, 1494> G~ name: C2^3:A4:C2 GrpPC : G of order 192 = 2^6 * 3 PC-Relations: G.1^2 = Id(G), G.2^3 = Id(G), G.3^2 = Id(G), G.4^2 = Id(G), G.5^2 = G.7, G.6^2 = G.7, G.7^2 = Id(G), G.2^G.1 = G.2^2, G.3^G.1 = G.4, G.3^G.2 = G.4, G.4^G.1 = G.3, G.4^G.2 = G.3 * G.4, G.5^G.1 = G.6, G.5^G.2 = G.5 * G.6, G.5^G.3 = G.5 * G.7, G.6^G.1 = G.5, G.6^G.2 = G.5 * G.7, G.6^G.4 = G.6 * G.7, G.6^G.5 = G.6 * G.7 generating vector: [ G.1 * G.2 * G.4 * G.5, G.1 * G.5 * G.6 * G.7, G.4 * G.5 * G.6 * G.7, G.2 * G.3 * G.5 ] signature: [ 2, 2, 2, 3 ] genus: 17 decomp H^0(K_C~): [ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.7 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <96, 227> G name: C2^2:S4 GrpPC : H of order 96 = 2^5 * 3 PC-Relations: H.1^2 = Id(H), H.2^3 = Id(H), H.3^2 = Id(H), H.4^2 = Id(H), H.5^2 = Id(H), H.6^2 = Id(H), H.2^H.1 = H.2^2, H.3^H.1 = H.4, H.3^H.2 = H.4, H.4^H.1 = H.3, H.4^H.2 = H.3 * H.4, H.5^H.1 = H.6, H.5^H.2 = H.5 * H.6, H.6^H.1 = H.5, H.6^H.2 = H.5 generating vector: [ H.1 * H.2 * H.4 * H.5, H.1 * H.5 * H.6, H.4 * H.5 * H.6, H.2 * H.3 * H.5 ] signature: [ 2, 2, 2, 3 ] genus: 9 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1, 0, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 3 35 b = 16 Example # 1 -- C~ -- G~ Id: SmallGroup <64, 137> G~ name: C2.C2^2wrC2 GrpPC : G of order 64 = 2^6 PC-Relations: G.1^2 = G.6, G.3^2 = G.6, G.4^2 = G.6, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.6, G.4^G.2 = G.4 * G.6, G.4^G.3 = G.4 * G.6, G.5^G.2 = G.5 * G.6 generating vector: [ G.2 * G.3 * G.5 * G.6, G.2, G.1 * G.3 * G.4 * G.6, G.1 * G.4 * G.6 ] signature: [ 2, 2, 4, 4 ] genus: 17 decomp H^0(K_C~): [ 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.6 branch points: 16 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <32, 27> G name: C2^2wrC2 GrpPC : H of order 32 = 2^5 PC-Relations: H.2^H.1 = H.2 * H.4, H.3^H.1 = H.3 * H.5 generating vector: [ H.2 * H.3 * H.5, H.2, H.1 * H.3 * H.4, H.1 * H.4 ] signature: [ 2, 2, 4, 2 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 1