g~: 16 r: 4 b = 2 Example # 1 -- C~ -- G~ Id: SmallGroup <40, 10> G~ name: C5*D4 GrpPC : G of order 40 = 2^3 * 5 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^5 = Id(G), G.4^2 = Id(G), G.2^G.1 = G.2 * G.4 generating vector: [ G.2, G.1, G.3^4, G.1 * G.2 * G.3 ] signature: [ 2, 2, 5, 20 ] genus: 16 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 2 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <20, 5> G name: C2*C10 GrpPC : H of order 20 = 2^2 * 5 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^5 = Id(H) generating vector: [ H.2, H.1, H.3^4, H.1 * H.2 * H.3 ] signature: [ 2, 2, 5, 10 ] genus: 8 decomp H^0(K_C): [ 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 2 -- C~ -- G~ Id: SmallGroup <48, 25> G~ name: C3*D8 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = G.5, G.5^2 = Id(G), G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.5, G.1 * G.4 * G.5, G.3, G.1 * G.2 * G.3^2 * G.4 * G.5 ] signature: [ 2, 2, 3, 24 ] genus: 16 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 2 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 10> G name: C3*D4 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.4^2 = Id(H), H.2^H.1 = H.2 * H.4 generating vector: [ H.2, H.1 * H.4, H.3, H.1 * H.2 * H.3^2 * H.4 ] signature: [ 2, 2, 3, 12 ] genus: 8 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 2