g~: 15 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <24, 9> G~ name: C2*C12 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.4, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G) generating vector: [ G.4, G.2 * G.3, G.1 * G.3 * G.4, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 6, 12, 12 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <12, 2> G name: C12 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.3, H.2^3 = Id(H), H.3^2 = Id(H) generating vector: [ H.3, H.2 * H.3, H.1 * H.2 * H.3, H.1 * H.2 ] signature: [ 2, 6, 12, 12 ] genus: 8 decomp H^0(K_C): [ 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 2 -- C~ -- G~ Id: SmallGroup <24, 9> G~ name: C2*C12 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.4, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G) generating vector: [ G.1, G.1 * G.2 * G.4, G.2 * G.3^2 * G.4, G.3 * G.4 ] signature: [ 4, 4, 6, 6 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.2 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <12, 2> G name: C12 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.3, H.2^3 = Id(H), H.3^2 = Id(H) generating vector: [ H.1, H.1 * H.3, H.2^2 * H.3, H.2 * H.3 ] signature: [ 4, 4, 6, 6 ] genus: 8 decomp H^0(K_C): [ 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 2 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <16, 1> G~ name: C16 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.2, G.2^2 = G.3, G.3^2 = G.4 generating vector: [ G.1 * G.4, G.1 * G.4, G.1 * G.3, G.1 * G.4 ] signature: [ 16, 16, 16, 16 ] genus: 15 decomp H^0(K_C~): [ 0, 1, 0, 2, 0, 2, 1, 2, 1, 0, 1, 0, 2, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.1, H.1, H.1 * H.3, H.1 ] signature: [ 8, 8, 8, 8 ] genus: 7 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 1, 2, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 2 -- C~ -- G~ Id: SmallGroup <24, 9> G~ name: C2*C12 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.4, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G) generating vector: [ G.2, G.2 * G.3^2 * G.4, G.1 * G.3^2 * G.4, G.1 * G.3^2 * G.4 ] signature: [ 2, 6, 12, 12 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 2, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 4 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <12, 5> G name: C2*C6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H) generating vector: [ H.2, H.2 * H.3^2, H.1 * H.3^2, H.1 * H.3^2 ] signature: [ 2, 6, 6, 6 ] genus: 7 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 Example # 3 -- C~ -- G~ Id: SmallGroup <32, 19> G~ name: SD32 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.5, G.3^2 = G.4 * G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.4, G.2 * G.3, G.1 * G.2, G.1 * G.2 * G.4 * G.5 ] signature: [ 2, 2, 16, 16 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 5 sigma: G.5 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 7> G name: D8 GrpPC : H of order 16 = 2^4 PC-Relations: H.3^2 = H.4, H.2^H.1 = H.2 * H.3, H.3^H.1 = H.3 * H.4, H.3^H.2 = H.3 * H.4 generating vector: [ H.2 * H.4, H.2 * H.3, H.1 * H.2, H.1 * H.2 * H.4 ] signature: [ 2, 2, 8, 8 ] genus: 7 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 4 3 b = 12 Example # 1 -- C~ -- G~ Id: SmallGroup <40, 5> G~ name: C4*D5 GrpPC : G of order 40 = 2^3 * 5 PC-Relations: G.1^2 = Id(G), G.2^2 = G.3, G.3^2 = Id(G), G.4^5 = Id(G), G.4^G.1 = G.4^4 generating vector: [ G.1 * G.3, G.1 * G.4^4, G.2 * G.3, G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 20 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 2, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.3 branch points: 12 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <20, 4> G name: D10 GrpPC : H of order 20 = 2^2 * 5 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^5 = Id(H), H.3^H.1 = H.3^4 generating vector: [ H.1, H.1 * H.3^4, H.2, H.2 * H.3 ] signature: [ 2, 2, 2, 10 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 1, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 2 -- C~ -- G~ Id: SmallGroup <48, 37> G~ name: D12:C2 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.4, G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.1 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1, G.1 * G.2 * G.3 * G.5, G.2, G.3 * G.4 * G.5^2 ] signature: [ 2, 2, 4, 6 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 12 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 14> G name: C2^2*S3 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.1, H.1 * H.2 * H.3 * H.4, H.2, H.3 * H.4^2 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 3 -- C~ -- G~ Id: SmallGroup <48, 39> G~ name: D4:S3 GrpPC : G of order 48 = 2^4 * 3 PC-Relations: G.1^2 = Id(G), G.2^2 = G.4, G.3^2 = Id(G), G.4^2 = Id(G), G.5^3 = Id(G), G.3^G.1 = G.3 * G.4, G.3^G.2 = G.3 * G.4, G.5^G.1 = G.5^2 generating vector: [ G.1 * G.4 * G.5^2, G.2 * G.3 * G.4, G.1 * G.2, G.3 * G.4 * G.5^2 ] signature: [ 2, 2, 4, 6 ] genus: 15 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.4 branch points: 12 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <24, 14> G name: C2^2*S3 GrpPC : H of order 24 = 2^3 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.4^3 = Id(H), H.4^H.1 = H.4^2 generating vector: [ H.1 * H.4^2, H.2 * H.3, H.1 * H.2, H.3 * H.4^2 ] signature: [ 2, 2, 2, 6 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0 ] N = dim S^2H^0(K_C)^G = 3 3