g~: 14 r: 4 b = 2 Example # 1 -- C~ -- G~ Id: SmallGroup <18, 2> G~ name: C18 GrpPC : G of order 18 = 2 * 3^2 PC-Relations: G.1^2 = Id(G), G.2^3 = G.3, G.3^3 = Id(G) generating vector: [ G.3, G.2 * G.3^2, G.1 * G.2 * G.3, G.1 * G.2 * G.3 ] signature: [ 3, 9, 18, 18 ] genus: 14 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 0, 1, 0, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.1 branch points: 2 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <9, 1> G name: C9 GrpPC : H of order 9 = 3^2 PC-Relations: H.1^3 = H.2 generating vector: [ H.2, H.1 * H.2^2, H.1 * H.2, H.1 * H.2 ] signature: [ 3, 9, 9, 9 ] genus: 7 decomp H^0(K_C): [ 0, 0, 1, 0, 1, 1, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 1 b = 6 Example # 1 -- C~ -- G~ Id: SmallGroup <16, 1> G~ name: C16 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.2, G.2^2 = G.3, G.3^2 = G.4 generating vector: [ G.2, G.2, G.1 * G.2, G.1 * G.4 ] signature: [ 8, 8, 16, 16 ] genus: 14 decomp H^0(K_C~): [ 0, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 0, 1, 1, 2, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 6 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.2, H.2, H.1 * H.2, H.1 ] signature: [ 4, 4, 8, 8 ] genus: 6 decomp H^0(K_C): [ 0, 0, 1, 1, 0, 1, 1, 2 ] N = dim S^2H^0(K_C)^G = 2 1