g~: 11 r: 4 b = 0 Example # 1 -- C~ -- G~ Id: SmallGroup <16, 5> G~ name: C2*C8 GrpPC : G of order 16 = 2^4 PC-Relations: G.1^2 = G.3, G.3^2 = G.4 generating vector: [ G.3 * G.4, G.2 * G.3, G.1 * G.4, G.1 * G.2 * G.3 ] signature: [ 4, 4, 8, 8 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 4 sigma: G.2 branch points: 0 verify (B1): true verify (B2): false -- C -- G Id: SmallGroup <8, 1> G name: C8 GrpPC : H of order 8 = 2^3 PC-Relations: H.1^2 = H.2, H.2^2 = H.3 generating vector: [ H.2 * H.3, H.2, H.1 * H.3, H.1 * H.2 ] signature: [ 4, 4, 8, 8 ] genus: 6 decomp H^0(K_C): [ 0, 1, 1, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 3 Example # 2 -- C~ -- G~ Id: SmallGroup <24, 9> G~ name: C2*C12 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.4, G.2^2 = Id(G), G.3^3 = Id(G), G.4^2 = Id(G) generating vector: [ G.2, G.3, G.1, G.1 * G.2 * G.3^2 * G.4 ] signature: [ 2, 3, 4, 12 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 * G.4 branch points: 0 verify (B1): true verify (B2): true -- C -- G Id: SmallGroup <12, 2> G name: C12 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.3, H.2^3 = Id(H), H.3^2 = Id(H) generating vector: [ H.3, H.2, H.1, H.1 * H.2^2 ] signature: [ 2, 3, 4, 12 ] genus: 6 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 3 -- C~ -- G~ Id: SmallGroup <24, 7> G~ name: C2*C3:C4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.3, G.1 * G.2, G.1 * G.3 * G.4^2, G.2 * G.3 * G.4 ] signature: [ 2, 4, 4, 6 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 2, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <12, 1> G name: C3:C4 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.2, H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.2, H.1, H.1 * H.2 * H.3^2, H.2 * H.3 ] signature: [ 2, 4, 4, 6 ] genus: 6 decomp H^0(K_C): [ 0, 0, 1, 1, 2, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 4 -- C~ -- G~ Id: SmallGroup <24, 7> G~ name: C2*C3:C4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.2, G.1 * G.2 * G.3, G.1 * G.3 * G.4^2, G.3 * G.4 ] signature: [ 2, 4, 4, 6 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 * G.3 branch points: 0 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <12, 1> G name: C3:C4 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = H.2, H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.2, H.1, H.1 * H.2 * H.3^2, H.2 * H.3 ] signature: [ 2, 4, 4, 6 ] genus: 6 decomp H^0(K_C): [ 0, 0, 1, 1, 2, 0 ] N = dim S^2H^0(K_C)^G = 2 Example # 5 -- C~ -- G~ Id: SmallGroup <40, 12> G~ name: C2*F5 GrpPC : G of order 40 = 2^3 * 5 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^5 = Id(G), G.4^G.1 = G.4^2, G.4^G.3 = G.4^4 generating vector: [ G.2 * G.3 * G.4^3, G.3 * G.4^2, G.1 * G.4^3, G.1 * G.2 * G.3 * G.4^2 ] signature: [ 2, 2, 4, 4 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.2 branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <20, 3> G name: F5 GrpPC : H of order 20 = 2^2 * 5 PC-Relations: H.1^2 = H.2, H.2^2 = Id(H), H.3^5 = Id(H), H.3^H.1 = H.3^2, H.3^H.2 = H.3^4 generating vector: [ H.2 * H.3^3, H.2 * H.3^2, H.1 * H.3^3, H.1 * H.2 * H.3^2 ] signature: [ 2, 2, 4, 4 ] genus: 6 decomp H^0(K_C): [ 0, 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 6 -- C~ -- G~ Id: SmallGroup <120, 35> G~ name: C2*A5 Permutation group G acting on a set of cardinality 7 Order = 120 = 2^3 * 3 * 5 (1, 2, 3, 5, 4) (1, 3)(2, 4)(6, 7) generating vector: [ (1, 2)(4, 5)(6, 7), (1, 3)(4, 5), (1, 3)(2, 4)(6, 7), (1, 2, 4) ] signature: [ 2, 2, 2, 3 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 1, 1, 0, 0, 0, 0, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: (6, 7) branch points: 0 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <60, 5> G name: A5 Permutation group H acting on a set of cardinality 6 Order = 60 = 2^2 * 3 * 5 (2, 3, 4, 5, 6) (1, 2)(4, 5) generating vector: [ (1, 6)(2, 5), (2, 3)(4, 6), (1, 2)(4, 5), (1, 3, 5)(2, 6, 4) ] signature: [ 2, 2, 2, 3 ] genus: 6 decomp H^0(K_C): [ 0, 1, 1, 0, 0 ] N = dim S^2H^0(K_C)^G = 2 6 b = 4 Example # 1 -- C~ -- G~ Id: SmallGroup <24, 3> G~ name: SL(2,3) GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^3 = Id(G), G.2^2 = G.4, G.3^2 = G.4, G.4^2 = Id(G), G.2^G.1 = G.3, G.3^G.1 = G.2 * G.3, G.3^G.2 = G.3 * G.4 generating vector: [ G.1 * G.2, G.1^2 * G.3 * G.4, G.1^2 * G.3 * G.4, G.1 * G.3 * G.4 ] signature: [ 3, 3, 3, 6 ] genus: 11 decomp H^0(K_C~): [ 0, 1, 1, 2, 0, 1, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.4 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <12, 3> G name: A4 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^3 = Id(H), H.2^2 = Id(H), H.3^2 = Id(H), H.2^H.1 = H.3, H.3^H.1 = H.2 * H.3 generating vector: [ H.1 * H.2, H.1^2 * H.3, H.1^2 * H.3, H.1 * H.3 ] signature: [ 3, 3, 3, 3 ] genus: 5 decomp H^0(K_C): [ 0, 1, 1, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 2 -- C~ -- G~ Id: SmallGroup <32, 11> G~ name: C4wrC2 GrpPC : G of order 32 = 2^5 PC-Relations: G.1^2 = G.4, G.3^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.3, G.3^G.1 = G.3 * G.5, G.3^G.2 = G.3 * G.5 generating vector: [ G.2 * G.3 * G.5, G.3 * G.4 * G.5, G.1 * G.2 * G.4 * G.5, G.1 * G.3 * G.4 * G.5 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 4 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 3> G name: C2^2:C4 GrpPC : H of order 16 = 2^4 PC-Relations: H.1^2 = H.4, H.2^H.1 = H.2 * H.3 generating vector: [ H.2 * H.3, H.3 * H.4, H.1 * H.2 * H.4, H.1 * H.3 * H.4 ] signature: [ 2, 2, 4, 4 ] genus: 5 decomp H^0(K_C): [ 0, 0, 0, 0, 1, 0, 1, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 2 b = 12 Example # 1 -- C~ -- G~ Id: SmallGroup <24, 7> G~ name: C2*C3:C4 GrpPC : G of order 24 = 2^3 * 3 PC-Relations: G.1^2 = G.3, G.2^2 = Id(G), G.3^2 = Id(G), G.4^3 = Id(G), G.4^G.1 = G.4^2 generating vector: [ G.2, G.1 * G.3, G.1 * G.3 * G.4^2, G.2 * G.3 * G.4 ] signature: [ 2, 4, 4, 6 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.3 branch points: 12 verify (B1): false verify (B2): true -- C -- G Id: SmallGroup <12, 4> G name: D6 GrpPC : H of order 12 = 2^2 * 3 PC-Relations: H.1^2 = Id(H), H.2^2 = Id(H), H.3^3 = Id(H), H.3^H.1 = H.3^2 generating vector: [ H.2, H.1, H.1 * H.3^2, H.2 * H.3 ] signature: [ 2, 2, 2, 6 ] genus: 3 decomp H^0(K_C): [ 0, 0, 0, 1, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 2 -- C~ -- G~ Id: SmallGroup <32, 42> G~ name: D8:C2 GrpPC : G of order 32 = 2^5 PC-Relations: G.3^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.4, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.2 * G.4 * G.5, G.1, G.3, G.1 * G.2 * G.3 * G.4 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 2, 1 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 12 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^H.1 = H.2 * H.4 generating vector: [ H.2 * H.4, H.1, H.3, H.1 * H.2 * H.3 * H.4 ] signature: [ 2, 2, 2, 4 ] genus: 3 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 Example # 3 -- C~ -- G~ Id: SmallGroup <32, 44> G~ name: SD16:C2 GrpPC : G of order 32 = 2^5 PC-Relations: G.2^2 = G.5, G.4^2 = G.5, G.2^G.1 = G.2 * G.4, G.3^G.1 = G.3 * G.5, G.4^G.1 = G.4 * G.5, G.4^G.2 = G.4 * G.5 generating vector: [ G.3 * G.5, G.1, G.2 * G.4, G.1 * G.2 * G.3 ] signature: [ 2, 2, 4, 8 ] genus: 11 decomp H^0(K_C~): [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2 ] N~ = dim S^2H^0(K_C~)^G~ = 3 sigma: G.5 branch points: 12 verify (B1): false verify (B2): false -- C -- G Id: SmallGroup <16, 11> G name: C2*D4 GrpPC : H of order 16 = 2^4 PC-Relations: H.2^H.1 = H.2 * H.4 generating vector: [ H.3, H.1, H.2 * H.4, H.1 * H.2 * H.3 ] signature: [ 2, 2, 2, 4 ] genus: 3 decomp H^0(K_C): [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 1 ] N = dim S^2H^0(K_C)^G = 2 3