G:=SmallGroup(32,42); Conjugacy Classes of group G ---------------------------- [1] Order 1 Length 1 Id(G) [2] Order 2 Length 1 G.5 [3] Order 2 Length 2 G.3 * G.4 [4] Order 2 Length 4 G.2 [5] Order 2 Length 4 G.1 [6] Order 4 Length 1 G.3 * G.5 [7] Order 4 Length 1 G.3 [8] Order 4 Length 2 G.4 [9] Order 4 Length 4 G.1 * G.3 [10] Order 4 Length 4 G.2 * G.3 [11] Order 8 Length 2 G.1 * G.2 * G.3 * G.5 [12] Order 8 Length 2 G.1 * G.2 * G.3 [13] Order 8 Length 2 G.1 * G.2 * G.5 [14] Order 8 Length 2 G.1 * G.2 Character Table of Group G -------------------------- ---------------------------------------------------------- Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Size | 1 1 2 4 4 1 1 2 4 4 2 2 2 2 Order | 1 2 2 2 2 4 4 4 4 4 8 8 8 8 ---------------------------------------------------------- p = 2 1 1 1 1 1 2 2 2 2 2 8 8 8 8 ---------------------------------------------------------- X.1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X.2 + 1 1 1 1 -1 1 1 1 -1 1 -1 -1 -1 -1 X.3 + 1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 1 1 X.4 + 1 1 -1 1 -1 -1 -1 1 1 -1 1 1 -1 -1 X.5 + 1 1 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 X.6 + 1 1 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 1 X.7 + 1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 X.8 + 1 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 X.9 + 2 2 -2 0 0 2 2 -2 0 0 0 0 0 0 X.10 + 2 2 2 0 0 -2 -2 -2 0 0 0 0 0 0 X.11 0 2 -2 0 0 0 -2*I 2*I 0 0 0 Z1 -Z1 Z2 -Z2 X.12 0 2 -2 0 0 0 -2*I 2*I 0 0 0 -Z1 Z1 -Z2 Z2 X.13 0 2 -2 0 0 0 2*I -2*I 0 0 0 -Z1 Z1 Z2 -Z2 X.14 0 2 -2 0 0 0 2*I -2*I 0 0 0 Z1 -Z1 -Z2 Z2 Explanation of Character Value Symbols -------------------------------------- # denotes algebraic conjugation, that is, #k indicates replacing the root of unity w by w^k I = RootOfUnity(4) Z1 = (CyclotomicField(8: Sparse := true)) ! [ RationalField() | 0, -1, 0, -1 ] Z2 = (CyclotomicField(8: Sparse := true)) ! [ RationalField() | 0, -1, 0, 1 ]