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1 Introduction

We consider in this paper the following Cahn-Hilliard system with dynamic boundary con-
ditions:

∂tu− Δw = 0, in Ω and ∂nw = 0, on Γ, (1.1)

w = −Δu+ f0(u) + λu − h, in Ω, (1.2)

v = u|Γ and ∂tv + (∂nu)|Γ − ΔΓv + fΓ(v) + λΓv = hΓ, on Γ, (1.3)

u|t=0 = u0. (1.4)

In the above equations, Ω ⊂ R
3 is the domain occupied by the material, Γ is its boundary,

and ΔΓ and ∂n are the Laplace-Beltrami operator on Γ and the outward normal derivative,
respectively. Moreover, f0 is a function on (−1, 1) which is smooth and monotone, but becomes
infinite at its end points. This forces the function u to take values in (−1, 1). Furthermore, fΓ
is an everywhere defined smooth function and λ, λΓ are real constants. Finally, h and hΓ are
given source terms and u0 is a prescribed initial datum.

In the applications, the sum f0(u)+λu has the form F ′(u), where F is a double-well potential,
and a thermodynamically relevant case is given by the so-called logarithmic potential, obtained
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by choosing

f0(u) = c ln
1 + u

1 − u
and F (u) = c

∫ u

0

f0(r)dr +
λ

2
u2 for u ∈ (−1, 1), (1.5)

where c is a positive constant. In such a case, F actually presents a double-well if λ < −2c.
Dynamic boundary conditions have recently been proposed by physicists in order to account

for the interactions with the walls in confined systems (see [7–9] and the references therein, see
also [10, 11]).

The Cahn-Hilliard system, endowed with these boundary conditions, has been studied in
[6, 18, 23, 24, 26, 27] (see also [4–6, 12–15, 17] for similar boundary conditions for the Caginalp
phase-field system).

Now, while the problem is well-understood for regular nonlinear terms f0 and fΓ, in the
sense that we have rather complete and satisfactory results concerning the well-posedness, the
regularity of the solutions and the asymptotic behavior of the system (namely, the existence of
finite-dimensional attractors and the convergence of trajectories to steady states), the situation
is less clear for an irregular nonlinear bulk term f0, and, in particular, for the above logarithmic
function. The first existence result was obtained in [18], under sign conditions on the surface
nonlinear term fΓ close to the singular points of f0 (see also [5] for similar results for the
Caginalp system); roughly speaking, these conditions force the order parameter to stay away
from the pure states on the boundary. Furthermore, it was proved in [24] that, when these sign
conditions are not satisfied, then one can expect nonexistence of classical (i.e., in the sense of
distributions) solutions. A weaker notion of a solution, based on a variational inequality, was
then proposed in [24] (see also [19] for a different, yet related, approach, based on duality, for the
Caginalp system). Furthermore, it was proved that the variational solutions are classical ones
when the sign conditions are satisfied. Finally, finite-dimensional attractors for the dynamical
system based on these variational solutions were constructed.

Our aim in this paper is to study the asymptotic behavior of (1.1)–(1.4) and, contrary to
[24], we only consider classical solutions and thus assume that proper sign conditions hold. We
first prove the existence of global attractors. Our main results then concern the study of the
ω-limit sets of single trajectories and the proof, based on the Simon-�Lojasiewicz method, of the
convergence of trajectories to steady states.

The paper is organized as follows. In the next section, we carefully describe the problem
and state our results. The remaining sections are then devoted to the proofs of these results.

2 Main Results

As mentioned in the introduction, Ω is the body where the evolution is considered and
Γ := ∂Ω. We assume Ω ⊂ R

3 to be open, bounded, connected, and smooth (say, of class C2),
and write |Ω| for its Lebesgue measure. Similarly, |Γ| denotes the 2-dimensional measure of
Γ. Now, we introduce our assumptions on the structure of system (1.1)–(1.4). We give two
functions and two constants satisfying the conditions listed below,

f0 : (−1, 1) → R is a C1-function with f0(0) = 0 and f ′
0 ≥ 0, (2.1)

lim
r→±1

f0(r) = ±∞ and lim
r→±1

f ′
0(r) = +∞, (2.2)
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fΓ : R → R is a C1-function and fΓ and f ′
Γ are bounded, (2.3)

λ, λΓ ∈ R and λΓ > 0. (2.4)

As far as the source terms are concerned, we assume

h ∈ L∞(Ω) and hΓ ∈ L∞(Γ). (2.5)

Moreover, we require that there exist r0 ∈ (0, 1) and η ∈ (0, 1) such that

fΓ(r) + λΓr − hΓ(x) ≤ −η for every r ∈ (−1,−r0] and a.e. x ∈ Γ, (2.6)

fΓ(r) + λΓr − hΓ(x) ≥ η for every r ∈ [r0, 1) and a.e. x ∈ Γ. (2.7)

We further set, for r ∈ (−1, 1),

f(r) := f0(r) + λr, F0(r) :=
∫ r

0

f0(s)ds and F (r) :=
∫ r

0

f(s)ds+ C0, (2.8)

where the constant C0 is chosen such that (this is possible, since h ∈ L∞(Ω) by (2.5))

F (r) − h(x)r ≥ 0 for every r ∈ (−1, 1) and for a.e. x ∈ Ω. (2.9)

Notice that F0 is a convex function of class C2 such that minF0 = F0(0) = 0.

Remark 2.1 The notation used in the case (1.5) of a logarithmic potential agrees with
(2.8). Moreover, we observe that F0 is bounded in that case.

Now, we introduce the phase space which depends on a real parameter m. We set

Φm := {(u, v) ∈ H1(Ω) ×H1(Γ) : v = u|Γ, F0(u) ∈ L1(Ω), 〈u〉Ω = m} (2.10)

with the notation

〈u〉Ω :=
1
|Ω|

∫
Ω

u for u ∈ L1(Ω) (2.11)

for the mean value. If Φm is not empty, then F (u) ∈ L1(Ω) for some u ∈ H1(Ω). It follows
that |u| ≤ 1 a.e. in Ω, whence |m| ≤ 1. However, it is easy to see that problem (1.1)–(1.4)
(see its precise formulation below) does not have any classical solution if m = ±1, due to the
singularities of f0 at ±1. Therefore, we assume |m| < 1. In such a case, Φm is nonempty and
it is a complete metric space with respect to the metric d defined on Φm × Φm by the formula

d((u1, v1), (u2, v2)) := ‖u1 − u2‖H1(Ω) + ‖v1 − v2‖H1(Γ) + ‖F0(u1) − F0(u2)‖L1(Ω), (2.12)

where the norms involved are the standard ones. For instance, ‖v‖2
H1(Γ) =

∫
Γ(|v|2 + |∇Γv|2)dσ,

where ∇Γ is the surface gradient. A similar self-explaining notation is used in what follows for
the norms that we have to consider. For the sake of simplicity, the symbol ‖·‖X also denotes the
norm of any power of X . In order not to use a heavy notation in writing the precise formulation
of problem (1.1)–(1.4), we set

V := H1(Ω), H := L2(Ω), VΓ := H1(Γ), HΓ := L2(Γ), (2.13)
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V := {(u, v) ∈ V × VΓ : v = u|Γ}. (2.14)

Moreover, V ∗ denotes the dual space of V and 〈 · , · 〉 stands for the duality pairing between
V ∗ and V . It is understood that H is embedded into V ∗ in the usual way, i.e., so that
〈u∗, u〉 = (u∗, u)H , the standard inner product in H , whenever u∗ ∈ H and u ∈ V .

At this point, we can give our precise formulation of the problem that we want to deal with.
Given m ∈ (−1, 1) and (u0, v0) ∈ Φm, we look for a triplet (u, v, w) of real functions on [0,+∞)
satisfying

u ∈ L∞(0, T ;V ) ∩H1(0, T ;V ∗) and f0(u) ∈ L2(0, T ;H), (2.15)

v ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) and w ∈ L2(0, T ;V ) (2.16)

for every T ∈ (0,+∞),

(u(t), v(t)) ∈ Φm, (2.17)

〈∂tu(t), y〉 +
∫

Ω

∇w(t) · ∇ydx = 0, (2.18)∫
Ω

w(t)ydx =
∫

Ω

∇u(t) · ∇ydx+
∫

Ω

(f(u(t)) − h)ydx+
∫

Γ

∂tv(t)zdσ

+
∫

Γ

∇Γv(t) · ∇Γzdσ +
∫

Γ

(fΓ(v(t)) + λΓv(t) − hΓ)zdσ (2.19)

for a.e. t > 0, and

u(0) = u0, (2.20)

where (2.18) and (2.19) hold for every y ∈ V and every (y, z) ∈ V, respectively.

Remark 2.2 We note that condition (2.17) that we require in the definition of a solution
says, in particular, that u is a conserved parameter, i.e., its mean value remains constant during
the evolution. Now, such a property immediately follows from (2.18). Indeed, taking y = 1

|Ω|
as a test function, we have

d
dt

〈u〉Ω =
〈
∂tu,

1
|Ω|

〉
= 0, whence 〈u(t)〉Ω = 〈u0〉Ω = m for every t ≥ 0. (2.21)

The following well-posedness result holds, where we take m ∈ (−1, 1) only. Exactly because
of (2.21), we have to exclude m = ±1, indeed, since the extreme cases cannot be compatible
with any summability property for f(u).

Theorem 2.1 Assume (2.1)– (2.7). Then, for every m ∈ (−1, 1) and (u0, v0) ∈ Φm,
problem (2.15)– (2.20) has a unique global solution.

Remark 2.3 We do not prove the above theorem in detail and will just give some comments
below. A similar and very general result is obtained in [18]. Even though the compatibility
condition given by (2.6)– (2.7) does not fit the assumpions of the quoted paper exactly, the same
ideas can be used in the present case, in particular, regarding uniqueness. As far as existence
is concerned, let us describe very shortly the outline of the proof and refer to the next section
for further details. First, an approximating problem depending on ε ∈ (0, 1) is considered.
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More precisely, the irregular functions f0 and F0 are replaced by everywhere defined smoother
functions f0ε and F0ε. As in [18] (see [2, p. 28]),

f0ε is the Yosida regularization of f0 and F0ε(r) :=
∫ r

0

f0ε(s)ds for r ∈ R. (2.22)

Accordingly, we define fε and Fε by setting

fε(r) = f0ε(r) + λr and Fε(r) =
∫ r

0

fε(s)ds+ C0 for r ∈ R, (2.23)

where C0 is the same as in (2.8). It turns out that f0ε is a C1 function such that 0 ≤ f ′
0ε ≤ 1

ε .
More precisely, we see f0 as a maximal monotone operator in R × R in order to use (2.22) as
a definition, according to the general theory (namely, f0 is identified with the subdifferential
of the natural convex l.s.c. extension of F0 to the whole real line). Then, the approximating
problem is stated as follows. We look for a triplet satisfying all the requirements (2.15)– (2.20)
in which we read

f0ε and w − ε∂tu instead of f0 and of w, respectively, in (2.19). (2.24)

Moreover, we replace the initial datum u0 by a suitable regularization as well. The variational
problem that we obtain is much more regular than the original one, since no singular nonlinearity
appears and some parabolicity has been added. Therefore, by arguing as in [18] and using a
Galerkin procedure, one shows that the approximating problem has a unique global solution
(uε, vε, wε). Moreover, such a solution is smoother than expected. For instance, the time
derivative ∂tuε belongs at least to L2(0, T ;H) for every finite T , while ∂tu is expected to exist
just in L2(0, T ;V ∗). At this point, one can perform several a priori estimates on (uε, vε, wε)
and use compactness and monotonicity methods to let ε tend to 0, as in the case that we have
quoted. However, one important modification is needed in a precise point, as we explain in the
next Remark 2.4.

Remark 2.4 As [18] only deals with well-posedness on a finite time interval, the authors
did not care about minimizing the assumptions on the initial datum. On the contrary, here,
we want to construct a semigroup acting on Φm and are forced to assume u0 to belong to
Φm, only. Therefore, one of the a priori estimates needs some modification. More precisely,
this is the case when we differentiate. By the way, it is not clear that (2.18)– (2.19) can
be differentiated, because of the singular term f(u) and of the bad regularity of ∂tu. On
the contrary, the approximating variational equations solved by (uε, vε, wε) can actually be
differentiated with respect to t. The nonlinear functions that are involved are everywhere
defined and smooth, indeed. Moreover, the approximating initial datum can be chosen in
order to satisfy the compatibility conditions that are needed to have higher time regularity for
the approximating solution. More precisely, such a regularity could be proved in a rigorous
way by acting on the Galerkin discretization. Once one can differentiate the approximating
problem with respect to time, one can perform new a priori estimates, e.g., by testing by the
time derivative of some component of the solution. However, this generally leads to assume a
stronger regularity for the initial datum. In order to avoid this, one should use weighted test
functions. Also on that point, we say some more words in the next section (see Remark 3.2
below).
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Our next result asserts the existence of a global attractor. We refer to [1, 29] for the main
definitions and properties regarding the notion of a global attractor.

Theorem 2.2 Assume (2.1)– (2.7), m ∈ (−1, 1), and

F0 is bounded. (2.25)

Then, problem (2.15)– (2.20) defines a continuous semigroup on the phase space Φm endowed
with the weaker metric dw defined by

dw((u1, v1), (u2, v2)) := ‖u1 − u2‖V ∗ + ‖v1 − v2‖L2(Γ) (2.26)

and this semigroup possesses a global attractor Am which is compact in H1(Ω) × H1(Γ) and
bounded in H

3
2 (Ω) ×H

3
2 (Γ).

Even though condition (2.25) holds for the important case of a logarithmic potential (see
Remark 2.1), one can wonder whether it can be avoided. Actually, we are able to allow a
more singular potential, provided that its singularities have a finite order (see the forthcoming
Remark 3.3).

As a next step, we analyze single solution trajectories and characterize their ω-limits. Due
to Theorem 2.1, for every m ∈ (−1, 1) and (u0, v0) ∈ Φm, we can consider the trajectory (u, v),
where (u, v, w) is the global solution to problem (2.15)– (2.20), and define its ω-limit set. It must
be pointed out that several topologies could be considered in doing that (see the forthcoming
Remark 5.1). We make a choice among others and set

ω(u0, v0) = {(uω, vω) = lim(u(tn), v(tn)) strongly inV : tn ↑ +∞}. (2.27)

The above concise definition obviously means that a point (uω, vω) ∈ V belongs to the ω-limit
set ω(u0, v0) if and only if there exists an increasing diverging sequence {tn} in (0,+∞) such
that the sequence {(u(tn), v(tn))} converges to (uω, vω) strongly in V.

On the other hand, we can consider the steady states of (2.15)– (2.20), i.e., the solutions to
the correponding stationary problem, whose variational formulation is the following. A steady
state is a pair (us, vs) with

(us, vs) ∈ Φm and f(us) ∈ L2(Ω) (2.28)

such that there exists a real constant ws satisfying∫
Ω

∇us · ∇ydx+
∫

Ω

(f(us) − h− ws)ydx+
∫

Γ

∇Γvs · ∇Γzdσ

+
∫

Γ

(fΓ(vs) + λΓvs − hΓ)zdσ = 0 for every (y, z) ∈ V. (2.29)

Notice that, for a given (us, vs), the constant ws is unique, as easily seen by taking y = 1 and
z = 1 in (2.29). The following result holds.

Theorem 2.3 Assume (2.1)– (2.7), m ∈ (−1, 1), (2.25), and (u0, v0) ∈ Φm. Then, the
ω-limit set (2.27) is non-empty, compact, and connected in the strong topology of V. Moreover,
every (uω, vω) ∈ ω(u0, v0) is a solution (us, vs) to problem (2.28)– (2.29). In particular, for
every m ∈ (−1, 1), such a stationary problem has at least one solution.
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As a final step, we apply the so-called Simon-�Lojasiewicz method (see, e.g., [6]) to prove
that, under additional assumptions on the nonlinear terms, the ω-limit set of any trajectory
consists of a single point.

Theorem 2.4 Assume (2.1)– (2.7), m ∈ (−1, 1), (2.25), and (u0, v0) ∈ Φm. Additionally,
assume

h ∈ H1(Ω) and hΓ ∈ H1(Γ), (2.30)

∃ζ ≥ 0 such that f(r)sign r + ζr2 is convex (2.31)

and, finally,

f, fΓ|[−1,1] are analytic functions. (2.32)

Then, the ω-limit set of any weak solution consists of a unique stationary point (u, v). More
precisely,

(u(t), v(t)) → (u, v), weakly in H3(Ω) ×H3(Γ). (2.33)

Remark 2.5 It will be clear from the proof that the H3-convergence could in fact be
improved in a way limited only by the regularity of h, hΓ, and Ω.

The rest of the paper is devoted to the proofs of such results and is organized as follows.
Section 3 is devoted to the derivation of several a priori estimates which are preliminary to the
proofs of the above theorems. In the same section, we give some more details on the proof of
the existence of a solution in the sense of Theorem 2.1. In Sections 4 and 5, we prove Theorems
2.2 and 2.3, respectively. Finally, the proof of Theorem 2.4 is given in Section 6.

3 A priori Estimates

In this section, we prepare some auxiliary materials which will be used in the next sections
to prove Theorems 2.2 and 2.3. By the way, what we do here gives the main ideas that are
needed to prove Theorem 2.1 as well. However, most of the estimate that we derive are formal,
since the test functions that we choose often do not satisfy the required regularity. A completely
rigorous procedure could be obtained by performing the same estimates on the approximating
problem mentioned in Remark 2.3. In particular, Remark 2.4 should be taken into account as
well. On the other hand, using a completely correct argument would lead to an unnecessarily
heavy paper. So, we just try to make the formal procedure as close as possible to the rigorous
one. In particular, we do not use the a priori bound |u| < 1 which follows from the definition
of a solution. Such a bound is not satisfied by the approximating uε, indeed.

However, before starting, we recall some facts. First, as Ω is bounded and smooth, for every
u ∈ V , the following inequalities hold:

‖u‖2
H1(Ω) ≤ cΩ(‖∇u‖2

L2(Ω) + ‖u|Γ‖2
L2(Γ)) and ‖u‖2

H1(Ω) ≤ cΩ(‖∇u‖2
L2(Ω) + |〈u〉Ω|2), (3.1)

where cΩ depends on Ω, only. Moreover, the same assumptions on Ω imply that V and H are
compactly embedded into H and V ∗, respectively. In particular, the following inequality holds:

‖u‖2
L2(Ω) ≤ δ‖∇u‖2

L2(Ω) + cδ‖u‖2
V ∗ for every u ∈ V , (3.2)
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where δ > 0 is arbitrary and cδ depends on Ω and δ, only. Next, we define

dom N := {u∗ ∈ V ∗ : 〈u∗, 1〉 = 0} and N : dom N → {u ∈ V : 〈u〉Ω = 0} (3.3)

by setting, for u∗ ∈ dom N,

Nu∗ ∈ V, 〈Nu∗〉Ω = 0 and
∫

Ω

∇Nu∗ · ∇y = 〈u∗, y〉 for every y ∈ V , (3.4)

i.e., Nu∗ is the solution u to the generalized Neumann problem for −Δ with datum u∗ which
satisfies 〈u〉Ω = 0. As Ω is bounded, smooth, and connected, it turns out that (3.4) yields a
well-defined isomorphism which satisfies

〈u∗,Nv∗〉 = 〈v∗,Nu∗〉 =
∫

Ω

(∇Nu∗) · (∇Nv∗) for u∗, v∗ ∈ dom N. (3.5)

Moreover, if we define ‖ · ‖∗ : V ∗ → [0,+∞) by the formula

‖u∗‖2
∗ := ‖∇N(u∗ − 〈u∗〉Ω)‖2

L2(Ω) + |〈u∗〉Ω|2 for u∗ ∈ V ∗, where 〈u∗〉Ω :=
1
|Ω| 〈u∗, 1〉, (3.6)

it is straightforward to prove that ‖ · ‖∗ is a norm which makes V ∗ a Hilbert space. Therefore,
the following inequalities hold:

1
cΩ

‖u∗‖V ∗ ≤ ‖u∗‖∗ ≤ cΩ‖u∗‖V ∗ for u∗ ∈ V ∗, (3.7)

where cΩ depends on Ω, only. Indeed, as the latter (trivially) holds, the former follows from
the open mapping theorem, provided that we replace cΩ by a larger constant, if necessary. In
particular, we can replace ‖ · ‖V ∗ by ‖ · ‖∗ in (3.2). Note that

〈u∗,Nu∗〉 = ‖u∗‖2
∗ for every u∗ ∈ dom N (3.8)

by (3.5)– (3.6). Furthermore, owing to (3.5) once more, we see that

2〈∂tu∗(t),Nu∗(t)〉 =
d
dt

∫
Ω

|∇Nu∗(t)|2 =
d
dt

‖u∗(t)‖2
∗ for a.e. t ∈ (0,+∞) (3.9)

for every u∗ ∈ H1
loc(0,+∞;V ∗) satisfying 〈u∗(t)〉Ω = 0 for every t ≥ 0. Finally, we stress the

following consequence of (2.21):

∂tu(t) and u(t) −m belong to dom N for t > 0, (3.10)

whenever (u, v, w) is a solution to problem (2.15)– (2.20). Moreover, the same property holds
for the component uε of the solution to the approximating problem mentioned in Remark 2.3.

Remark 3.1 In the rest of the section, in order to simplify the notation, we use the same
symbol c (small c) for constants which can be different from each other (even in the same chain
of inequalities) and depend on Ω, f0, fΓ, λ, λΓ, on the L∞-norms of h and hΓ, and on m, only.
Symbols such as cδ or c(M) allow the constants to depend on the positive parameter δ or M ,
in addition. On the contrary, symbols such as C, C1, etc., with a capital letter, are used to
denote precise constants (e.g., precise values of the above constants c’s), in order to be able
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to refer to them, if necessary. Symbols such as Ci(M) denote a dependence on the parameter
M , in addition. This is done in estimating from above, mainly. Similarly, α, α1, etc., are used
for estimates from below and t1, t2, etc., stand for values of t which depend on the quantity
specified above, only, while symbols such as ti(R) allow a further dependence on the parameter
R, in addition. We stress that none of such constants and values c, Ci, αi, ti depends on the
initial datum u0.

In agreement with the introduction to the present section, we state and prove some prop-
erties of the approximating functions defined in (2.22)– (2.23). These are ε-versions of the
inequalities (see [22, Appendix, Proposition A.1] for some of them) which will be used below
when performing our formal estimates, namely,

f(r)(r −m) ≥M(r −m)2 − C(M) for |r| < 1, (3.11)

f(r)(r −m) ≥ α(F (r) + ‖h‖∞|r|) − C for |r| < 1, (3.12)

f(r)(r −m) ≥ α|f(r)| − C for |r| < 1, (3.13)

whose proofs would be simpler or even trivial. In (3.11), M > 0 is arbitrary and C(M)
exists accordingly. In (3.12)– (3.13), both α > 0 and C are suitably chosen. For the sake of
convenience, we summarize some properties of the Yosida regularization f0ε of f0 and of its
primitive F0ε (see, e.g., [2, p. 28, p. 39]). For every ε > 0 and r ∈ R, f0ε(r) is the unique s ∈ R

satisfying r − εs ∈ (−1, 1) and f0(r − εs) = s, by definition. Thus,

r − εf0ε(r) ∈ (−1, 1) and f0(r − εf0ε(r)) = f0ε(r) for every r ∈ R. (3.14)

As f0 is a C1 function, the same holds for f0ε. Moreover, 0 ≤ f ′
0ε(r) ≤ 1

ε for every r ∈ R.
Finally, we have

|f0ε(r)| ≤ |f0(r)| and 0 ≤ F0ε(r) ≤ F0(r) for every r ∈ (−1, 1), (3.15)

lim
ε→0

f0ε(r) = f0(r) and lim
ε→0

F0ε(r) = F0(r) for every r ∈ (−1, 1). (3.16)

In particular, both f0ε and F0ε are uniformly bounded on every compact subset of (−1, 1).

Lemma 3.1 For every M > 0, we have

f ′
0ε(r) ≥M for |r| ≥ r∗ and ε ∈ (0, ε∗) (3.17)

for suitable r∗ = r∗(M) and ε∗ = ε∗(M) belonging to (0, 1).

Proof We fix M > 0 and prove (3.17). We deal with r ≥ 0, only, since a similar argument
holds for r ≤ 0. Recalling (2.2), we choose r0 ∈ (0, 1) such that

f ′
0(r) ≥ 2M for every r ∈ (r0, 1),

and fix r1 ∈ (r0, 1). As f0ε(r1) tends to f0(r1) as ε→ 0, we can fix ε0 ∈ (0, 1) in order to fulfil
the inequality r1−εf0ε(r1) > r0 for ε ∈ (0, ε0). On the other hand, the function r �→ r−εf0ε(r)
is nondecreasing on R, since f ′

0ε ≤ 1
ε . We deduce that

f ′
0(r − εf0ε(r)) ≥ 2M for r ≥ r1 and ε < ε0.
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After differentiating (3.14), the above inequality yields

f ′
0ε(r) =

f ′
0(r − εf0ε(r))

1 + εf ′
0(r − εf0ε(r))

≥ 2M
1 + 2Mε

since the function s �→ s
1+εs is increasing on [0,+∞). Therefore, we deduce that (3.17) holds

for every r ≥ r1 and ε small enough.

Lemma 3.2 For every M > 0, there exists C(M) such that

f0ε(r)(r −m) ≥M(r −m)2 − C(M) and fε(r)(r −m) ≥M(r −m)2 − C(M) (3.18)

for every r ∈ R and ε > 0 small enough. Moreover, α > 0 and C > 0 exist such that

fε(r)(r −m) ≥ α(Fε(r) + ‖h‖∞|r|) − C and fε(r)(r −m) ≥ α|fε(r)| − C (3.19)

for every r ∈ R and ε > 0 small enough.

Proof Given M > 0, we prove the first inequality (3.18). We argue, e.g., for r ≥ 0. By
applying Lemma 3.1, we find r∗ and ε∗ such that f ′

0ε(r) ≥ 2M for r ≥ r∗ and ε ≤ ε∗. Clearly,
we can assume r∗ ≥ m. Then, we have, for r ≥ r∗,

f0ε(r)(r −m) ≥ f0ε(r∗)(r −m) + 2M(r − r∗)(r −m) for ε ∈ (0, ε∗).

As f0ε(r∗) converges to f0(r∗) as ε→ 0, by assuming ε small enough, we have, for every δ > 0,

f0ε(r)(r −m) ≥ −δ(r −m)2 − cδ,M + 2M((r −m)2 + (m− r∗)(r −m))

≥ −δ(r −m)2 − cδ,M + 2M(r −m)2 − 2Mδ(r −m)2 − 2Mcδ,M

and the desired inequality follows for r ≥ r∗ by choosing δ small enough. On the other hand,
everything is bounded for r ∈ [0, r∗]. In order to prove the second (3.18), we apply the first one
with 2M + |λ| in place of M and have

fε(r)(r −m) ≥ (2M + |λ|)(r −m)2 − c(M) + λ((r −m)2 +m(r −m))

≥ 2M(r −m)2 − c(M) − |λ| |m| |r −m|.

Then, we conclude in an obvious way. Now, let us come to inequalities (3.19). As m ∈ (−1, 1),
we can fix m∗ ∈ (|m|, 1). We first show an estimate from below of the form

f0ε(r)(r −m) ≥ α1F0ε(r) − c. (3.20)

We recall that F0ε is convex, F0ε(0) = 0, and f0ε = F ′
0ε. Moreover, noting that f0ε(0) = 0,

since f0(0) = 0, we have f0ε(r)(r −m) ≥ 0 if |r| ≥ m∗. Therefore, if we choose α1 ∈ (0, 1) such
that

r

r −m
≤ 1
α1

for |r| ≥ m∗,

we have, for such values of r,

F0ε(r) ≤ rf0ε(r) =
r

r −m
f0ε(r)(r −m) ≤ 1

α1
f0ε(r)(r −m)
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and (3.20) holds with any c ≥ 0. Now, assume |r| ≤ m∗. Then, we have

α1F0ε(r) − f0ε(r)(r −m) ≤ α1F0(r) + 2m∗|f0(r)|.

As the right-hand side is bounded on [−m∗,m∗], (3.20) is established. At this point, we can
set α := α1

2 . It follows that (see (2.22)–(2.23))

fε(r)(r −m) ≥ αF0ε(r) − c+
(1

2
f0ε(r) + λr

)
(r −m)

= α(Fε(r) + ‖h‖∞|r|) − α‖h‖∞|r| +
1
2
f0ε(r)(r −m) +

(
1 − α

2

)
λr2 − λmr − c

≥ α(Fε(r) + ‖h‖∞|r|) +
1
2
f0ε(r)(r −m) − cr2 − c|r| − c

≥ α(Fε(r) + ‖h‖∞|r|) +
1
2
f0ε(r)(r −m) − c(r −m)2 − c

for every r ∈ R and the first inequality (3.19) easily follows by applying the first (3.18). Finally,
we prove the second (3.19). We argue, e.g., for r ≥ 0. For r ≥ m∗, we have

fε(r)(r −m) =
1
2
|f0ε(r)|(r −m) +

1
2
f0ε(r)(r −m) + λr(r −m)

≥ 1
2

(|fε(r)| − |λ|r)(r −m) +
1
2
f0ε(r)(r −m) − |λ|r(r −m)

≥ m∗ −m

2
|fε(r)| +

1
2
f0ε(r)(r −m) − c(r −m)2 − c

and the desired inequality follows with α = m∗−m
2 by applying the first (3.18) with M = 2c.

On the other hand, everything is uniformly bounded on [0,m∗] and we conclude.

Now, we can start proving our formal estimates and we refer to inequalities (3.11)–(3.13)
in doing that. On the other hand, it is clear that corresponding rigorous estimates could be
performed on the approximating solution by using the previous lemmas.

First a priori estimate
Owing to (3.10), we formally choose y = N(∂tu + u −m) in (2.18). At the same time, we

take y = −(∂tu+ u −m) and z = −(∂tv + v −m) in (2.19). Then, we sum the equalities that
we obtain. We have (at any positive time)

〈∂tu,N(∂tu+ u−m)〉 +
∫

Ω

∇w · ∇N(∂tu+ u−m)dx

−
∫

Ω

w(∂tu+ u−m)dx+
∫

Ω

∇u · ∇(∂tu+ u−m)dx+
∫

Ω

(f(u) − h)(∂tu+ u−m)dx

+
∫

Γ

∂tv(∂tv + v −m)dσ +
∫

Γ

∇Γv · ∇Γ(∂tv + v −m)dσ

+
∫

Γ

(fΓ(v) + λΓv − hΓ)(∂tv + v −m)dσ = 0.

The third integral on the left-hand side cancels the second one, thanks to (3.4). Then, owing
to the other properties of N just mentioned and adding ‖u−m‖2∗ to both sides for convenience,
we easily deduce that

1
2

d
dt

(
‖u−m‖2

∗ + ‖∇u‖2
L2(Ω) + 2

∫
Ω

(F (u) − hu)dx
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+ ‖v −m‖2
L2(Γ) + ‖∇Γv‖2

L2(Γ) + λΓ‖v‖2
L2(Γ)

)
+ ‖∂tu‖2

∗ + ‖u−m‖2
∗ + ‖∇u‖2

L2(Ω) +
∫

Ω

f(u)(u−m)dx

+ ‖∂tv‖2
L2(Γ) + ‖∇Γv‖2

L2(Γ) + λΓ

∫
Γ

v(v −m)dσ

= ‖u−m‖2
∗ +

∫
Ω

h(u−m)dx+
∫

Γ

(hΓ − fΓ(v))(∂tv + v −m)dσ.

We only have to deal with terms without a definite sign. We recall that F (u)−hu ≥ 0 by (2.8).
So, as far as the terms on the left-hand side are concerned, we have∫

Ω

f(u)(u−m)dx

≥ α

3

∫
Ω

(F (u) + ‖h‖∞|u|)dx+
α

3

∫
Ω

|f(u)|dx+
1
3

∫
Ω

f(u)(u−m)dx− c

≥ α

3

∫
Ω

(F (u) − hu)dx+
α

3
‖f(u)‖L1(Ω) +M‖u−m‖2

L2(Ω) − c(M) (3.21)

for every M > 0, thanks to (3.11)–(3.13). On the other hand, we trivially have∫
Γ

v(v −m)dσ =
1
2
‖v‖2

L2(Γ) +
1
2
‖v −m‖2

L2(Γ) −
m2

2
|Γ|.

The first two terms on the right-hand side can be treated as follows:

‖u−m‖2
∗ +

∫
Ω

h(u−m)dx ≤ c‖u−m‖2
L2(Ω) + c‖u−m‖L2(Ω) ≤ c‖u−m‖2

L2(Ω) + c

and can be compensated with (3.21) by choosing M large enough there. Finally, we have∫
Γ

(hΓ − fΓ(v))(∂tv + v −m)dσ ≤ δ‖∂tv‖2
L2(Γ) + δ‖v −m‖2

L2(Γ) + cδ

for every δ > 0. Collecting all the inequalities that we have obtained and choosing δ small
enough, we deduce that the following holds for suitable α1 > 0 and C1 > 0:

d
dt
E + α1E + ‖f(u)‖L1(Ω) + ‖∂tu‖2

∗ + ‖∂tv‖2
L2(Γ) ≤ C1, a.e. in (0,+∞), (3.22)

where the (nonnegative) energy E is defined by

E : = ‖u−m‖2
∗ + ‖∇u‖2

L2(Ω) + 2
∫

Ω

(F (u) − hu)dx

+ ‖v −m‖2
L2(Γ) + ‖∇Γv‖2

L2(Γ) + λΓ‖v‖2
L2(Γ). (3.23)

We note that (the first (3.1) must be used)

E ≤ c(‖u‖2
H1(Ω) + ‖v‖2

H1(Γ) + ‖F0(u)‖L1(Ω) + 1), (3.24)

‖u‖2
H1(Ω) + ‖v‖2

H1(Γ) + ‖F0(u)‖L1(Ω) ≤ c(E + 1) (3.25)

at any time t ≥ 0. From (3.22), we deduce that

E(t) ≤ E(0)e−α1t + C2 for every t ≥ 0, (3.26)
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where C2 := C1
α1

.

Consequences
We now fix a bounded subset B of Φm and assume (u0, v0) ∈ B. This corresponds to

assuming (besides 〈u0〉Ω = m, of course)

‖u0‖H1(Ω) + ‖v0‖H1(Γ) + ‖F0(u0)‖L1(Ω) ≤ R, (3.27)

where R is a fixed positive number. Then, E(0) ≤ c(R) by (3.24). Hence, accounting for (3.25),
we deduce that

‖u(t)‖H1(Ω) + ‖v(t)‖H1(Γ) + ‖F0(u(t))‖L1(Ω) ≤ c(R)e−α1t + C for every t ≥ 0, (3.28)∫ t+1

t

(‖f(u)‖L1(Ω) + ‖∂tu‖2
∗ + ‖∂tv‖2

L2(Γ))dτ ≤ c(R)e−α1t + C for every t ≥ 0. (3.29)

We stress that, in the above relations (as well as in other ones of the same type below), C is
not allowed to depend on R.

Estimate of w

By (2.18) with y = w(t) and (2.21), we deduce that∫
Ω

|∇w|2dx = −〈∂tu,w − 〈w〉Ω〉 ≤ c‖∂tu‖2
∗

for all t ≥ 0. Then, by (3.29),

∫ t+1

t

‖∇w‖2
L2(Ω)dτ ≤ c(R)e−α1t + C for every t ≥ 0. (3.30)

Second a priori estimate
We test (2.19) by y = u−m and z = v −m. We have

‖∇u‖2
L2(Ω) +

∫
Ω

f(u)(u−m)dx + ‖∇Γv‖2
L2(Γ) + λΓ

∫
Γ

v(v −m)dσ

=
∫

Ω

(w + h)(u −m)dx+
∫

Γ

(hΓ − fΓ − ∂tv)(v −m)dσ. (3.31)

We estimate the first integral from below by using (3.11) and (3.13) as follows:∫
Ω

f(u)(u−m)dx =
1
2

∫
Ω

f(u)(u−m)dx+
1
2

∫
Ω

f(u)(u−m)dx

≥ α‖f(u)‖L1(Ω) − c+ ‖u−m‖2
L2(Ω) − c. (3.32)

Moreover, we simply write 2v(v −m) = v2 + (v −m)2 −m2 in the last term on the left-hand
side. As far as the right-hand side is concerned, we have∫

Ω

(w + h)(u−m)dx =
∫

Ω

(w − 〈w〉Ω + h)(u−m)dx

≤ (‖w − 〈w〉Ω‖L2(Ω) + ‖h‖L2(Ω))‖u−m‖L2(Ω)

≤ c(‖∇w‖L2(Ω) + 1)‖∇u‖L2(Ω) (3.33)
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thanks to the second (3.1). The boundary integral in (3.31) can be treated as follows:∫
Γ

(hΓ − fΓ − ∂tv)(v −m)dσ ≤ ‖hΓ − fΓ − ∂tv‖L2(Γ)‖v −m‖L2(Γ) ≤ c(‖∂tv‖L2(Γ) + 1). (3.34)

Thus, squaring (3.31) and using (3.32)–(3.34), we end up with (here and below, the value of α1

may vary)

‖∇u‖4
L2(Ω) + α‖f(u)‖2

L1(Ω) + ‖∇Γv‖4
L2(Γ)

≤ c(‖∇w‖2
L2(Ω) + 1)‖∇u‖2

L2(Ω) + c(‖∂tv‖2
L2(Γ) + 1)

≤ (‖∇w‖2
L2(Ω) + 1)(c(R)e−α1t + C) + c(‖∂tv‖2

L2(Γ) + 1), (3.35)

where (3.28) has been used to deduce the last inequality. Then, integrating over (t, t+ 1) for a
generic t ≥ 0 and using (3.29) and (3.30), we find∫ t+1

t

‖f(u)‖2
L1(Ω)dτ ≤ c(R)e−α1t + C for all t ≥ 0. (3.36)

By simply taking y = 1
|Ω| and z = 1

|Ω| in (2.19), we also deduce that

〈w〉Ω = 〈f(u)〉Ω − 〈h〉Ω +
1
|Ω|

∫
Γ

(∂tv + fΓ(v) + λΓv − hΓ)dσ,

whence immediately an estimate for |〈w〉Ω|, thanks to (3.36) and the bounds already proved.
Using (3.30) and the second (3.1) once more, we conclude that∫ t+1

t

‖w‖2
H1(Ω)dτ ≤ c(R)e−α1t + C for all t ≥ 0. (3.37)

Remark 3.2 We can give the outline of the proof of the existence of a solution, as stated in
Theorem 2.1. As we deal with a fixed initial datum, we choose R satisfying equality in (3.27),
or something connected with such a value, in order for the same bound to be satisfied by the
approximating initial datum uniformly with respect to ε. By going through the proofs of our
previous estimates, one clearly sees that bounds depending on R and some final time for several
norms can be found. In particular, proceeding as in the proof of (3.26), one can see that

‖u‖2
L∞(0,T ;V ) + ‖∂tu‖2

L2(0,T ;V ∗) + ‖v‖2
L∞(0,T ;VΓ)

+ ‖∂tv‖2
L2(0,T ;HΓ) + ‖w‖2

L2(0,T ;V ) ≤ C(T,R) (3.38)

for every T ∈ (0,+∞), where C(T,R) depends on R and on the final time T . Moreover, if
we use the same procedure on the solution (uε, vε, wε) to the approximating problem described
in Remark 2.3, an estimate similar to (3.38) is found with a constant C(R, T ) which does not
depend on ε. At this point, one can let ε tend to 0 and see that the weak limits given by weak
compactness actually provide a solution to a suitable formulation of problem (2.15)– (2.20).
However, the term f(u) in the limit problem should be understood in a weaker sense (see, e.g.,
[19, 24] for more details), since no L2-bound for it has been proved yet (the best that we have
up to now is (3.36)).

In order to obtain a solution in a stronger sense, we have to find a direct L2-estimate of
f(u) and just note here that a similar argument holds for the corresponding term fε(uε) of
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the approximating problem. This will require the compatibility conditions (2.6)– (2.7) not yet
used. We first give a lemma.

Lemma 3.3 For every n ∈ N, define f0,n, F0,n, ψ0,n,Ψ0,n : (−1, 1) → R by

f0,n(r) := min{n,max{−n, f0(r)}}, F0,n(r) :=
∫ r

0

f0,n(s)ds, (3.39)

ψ0,n(r) := min{n,max{−n, (F0(r))
1
2 sign r}} and Ψ0,n(r) :=

∫ r

0

ψ0,n(s)ds (3.40)

for r ∈ (−1, 1). Then, f0,n and ψ0,n are monotone and Lipschitz continuous. Moreover,
constants α > 0 and C > 0 exist such that

(fΓ(r) + λΓr − hΓ(x))f0,n(r) ≥ α(F0,n(r) + |f0,n(r)|) − C, (3.41)

(fΓ(r) + λΓr − hΓ(x))ψ0,n(r) ≥ −C (3.42)

for every r ∈ (−1, 1), a.e. x ∈ Γ, and every n ∈ N.

Proof Clearly, f0,n is monotone and Lipschitz continuous. As f0,n(0) = 0, F0,n is a convex
function with minimum at 0. Therefore, it is nonnegative, decreasing in (−1, 0), and increasing
in (0, 1). It follows that ψ0,n is monotone. In order to show the Lipschitz continuity, it suffices
to prove that the function ψ : (−1, 1) → R given by ψ(r) = (F0(r))

1
2 sign r is piecewise C1.

Clearly, only points where F0 vanishes could lead to some trouble. We recall that F0 is convex.
Moreover, it is nonnegative everywhere and strictly positive near ±1, since f0 is unbounded
there. As F0(0) = 0, we can find r± ∈ (−1, 1) such that ±r± ≥ 0, F0(r) = 0 for r ∈ [r−, r+],
and F0(r) > 0 elsewhere. The following formulas hold:

lim
r↑r−

ψ′(r) =
(f ′

0(r−)
2

) 1
2

and lim
r↓r+

ψ′(r) =
(f ′

0(r+)
2

) 1
2

(3.43)

and we prove, e.g., the second one. By using l’Hôpital’s rule, we have

lim
r↓r+

(ψ′(r))2 =
1
4

lim
r↓r+

f2
0 (r)
F0(r)

=
1
4

lim
r↓r+

2f0(r)f ′
0(r)

f0(r)
=

1
2
f ′
0(r+)

and the desired formula follows. As ψ is continuous, we deduce that ψ′
±(r±) = ( f ′

0(r±)
2 )

1
2 , where

ψ′
+(r) and ψ′

−(r) denote the right and left derivatives. It follows that ψ′
+ is right-continuous

at r+ and that ψ′− is left-continuous at r−. Hence, if r± = 0, ψ is piecewise C1. On the other
hand, the same conclusion holds if either r± is nonzero, since f0 vanishes in [r−, r+] in such a
case. Let us come to (3.41)–(3.42). We only prove (3.41), since the proof of (3.42) is similar
and easier. We set, for convenience, σ(r) := fΓ(r) + λΓr− hΓ for r ∈ (−1, 1), without stressing
the dependence on x in the notation. We recall (2.6)–(2.7) and assume r0 ≤ r < 1 (a similar
argument holds for −1 < r ≤ −r0). We notice that F0,n is convex, since f0,n is monotone.
Then, we have

σ(r)f0,n(r) ≥ ηf0,n(r) ≥ η

2
rf0,n(r) +

η

2
|f0,n(r)| ≥ η

2
F0,n(r) +

η

2
|f0,n(r)|

and (3.41) holds with α = η
2 and any C ≥ 0. Now, assume |r| < r0. By recalling that

hΓ ∈ L∞(Γ), we have

|σ(r)f0,n(r)| +
(η

2

)
(F0,n(r) + |f0,n(r)|) ≤ |σ(r)f0(r)| +

(η
2

)
(F0(r) + |f0(r)|) ≤ c.



694 G. Gilardi, A. Miranville and G. Schimperna

Therefore, (η
2 )(F0,n(r) + |f0,n(r)|) − σ(r)f0,n(r) ≤ c and we conclude.

Third a priori estimate
Our aim is to estimate F0(v) in L1(Γ). A bound is obviously obtained by using our bound-

edness assumption (2.25) on F0. Indeed, we immediately have

F0(v(t)) ∈ L∞(Γ) and ‖F0(v(t))‖L∞(Γ) ≤ |Γ| sup
|r|<1

|F0(r)| = c for t ≥ 0. (3.44)

We point out that this is the first time that we account for (2.25). However, as we would
like to extend our result to functionals which violate such an assumption (as explained in the
forthcoming Remark 3.3), we do not use (3.44) and argue in a more complicated way. We test
(2.19) by y = f0,n(u) and z = f0,n(v) (see (3.39)) and notice that such an estimate is rigorous,
since f0,n is a Lipschitz continuous function. We obtain∫

Ω

f ′
0,n(u)|∇u|2dx+

∫
Ω

f0(u)f0,n(u)dx+
d
dt

∫
Γ

F0,n(v)dσ

+
∫

Γ

f ′
0,n(v)|∇Γv|2dσ +

∫
Γ

(fΓ(v) + λΓv − hΓ)f0,n(v)dσ

=
∫

Ω

(h+ w − λu)f0,n(u)dx ≤ 1
2
‖f0,n(u)‖2

L2(Ω) +
1
2
‖h+ w − λu‖2

L2(Ω). (3.45)

On the other hand, the second integral on the left-hand side bounds ‖f0,n(u)‖2
L2(Ω) from above.

So, if we treat the last boundary integral on the left-hand side accounting for (3.41) as follows:∫
Γ

(fΓ(v) + λΓv − hΓ)f0,n(v)dσ ≥ α

∫
Γ

(F0,n(v) + |f0,n(v)|)dσ − c,

we deduce from (3.45) that

d
dt

∫
Γ

F0,n(v)dσ + α2(‖F0,n(v)‖L1(Γ) + ‖f0,n(v)‖L1(Γ) + ‖f0,n(u)‖2
L2(Ω))

≤ C3(‖u‖2
L2(Ω) + ‖w‖2

L2(Ω) + 1) for t ≥ 0. (3.46)

Such an inequality provides an estimate of F0,n(v(t)), thus of F0(v(t)) by letting n → +∞, in
L1(Γ) at some time t, provided that we have an estimate of the same norm at some earlier time.
So, let us start by assuming

F0(v(t∗)) ∈ L1(Γ) and ‖F0(v(t∗))‖L1(Γ) ≤ R∗ for some t∗ ≥ 0 (3.47)

and control how the next estimates depend on R∗ in what follows. Estimating the right-hand
side of (3.46) by means of (3.28) and (3.37), we end up with a differential inequality of the form

Y ′ + α2(Y + ‖f0,n(u)‖2
L2(Ω)) ≤M + c for all t ≥ 0 (3.48)

where Y (t) = ‖F0,n(v(t))‖L1(Γ) and

∫ t+1

t

M(τ)dτ ≤ c(R)e−α1t + C for all t ≥ 0. (3.49)
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Integrating (3.48) and then letting n tend to +∞, it is not difficult to see that there exists
α3 > 0 such that

‖F0(v(t))‖L1(Γ) ≤ c(R∗)e−α3(t−t∗) + c(R)e−α3t + C for all t ≥ t∗. (3.50)

Once such an estimate is established, by integrating (3.46) over (t, t+ 1) for t ≥ t∗, we also find∫ t+1

t

(‖f0(v)‖L1(Γ) + ‖f0(u)‖2
L2(Ω))dτ ≤ c(R∗)e−α3(t−t∗) + c(R)e−α3t + C. (3.51)

Remark 3.3 It is absolutely obvious that the dependence on R∗ of the constants that we
found can be replaced by a dependence on R, only, whenever R∗ can be estimated in terms of
R. The simplest case is given by assuming that F0 is bounded. In such a situation, we do not
have any dependence on R at all. Here, we want to show how (3.47) can be verified for some
R∗ and t∗ depending on R in some cases of an unbounded F0, namely, for a functional f0 such
that

f0(r) ∼ ±|r ∓ 1|−γ , as r → ±1 (3.52)

with γ ≥ 1. However, we proceed very formally.
As a first step, let us define, for every positive integer i,

ϕi(r) :=
1

(1 − r)
2i−1

2

− 1

(1 + r)
2i−1

2

, Φi(r) :=
∫ r

0

ϕi(s)ds, r ∈ (−1, 1). (3.53)

Notice that ϕi is smooth and monotone. Moreover, ϕi(0) = Φi(0) = 0 for all i ∈ N. Observe
also that Φ1 is bounded. Then, take y = ϕ1(u) and z = ϕ1(v) in (2.19). This leads to∫

Ω

ϕ′
1(u)|∇u|2dx+

∫
Ω

f0(u)ϕ1(u)dx+
d
dt

∫
Γ

Φ1(v)dσ +
∫

Γ

ϕ′
1(v)|∇Γv|2dσ

=
∫

Ω

(w − λu+ h)ϕ1(u)dx+
∫

Γ

(hΓ − fΓ(v) − λΓv)ϕ1(v)dσ, (3.54)

and we have to estimate several terms. First, we notice that∫
Ω

(w − λu+ h)ϕ1(u)dx ≤ ‖ϕ1(u)‖2
L2(Ω) + c(‖w‖2

L2(Ω) + ‖u‖2
L2(Ω) + 1). (3.55)

Now, (3.52) and (3.53) (with i = 1) entail that ϕ1 has a growth rate as |r| → 1 which is strictly
slower than the one of f0. In particular, this entails

‖ϕ1(u)‖2
L2(Ω) ≤

1
2

∫
Ω

f0(u)ϕ1(u)dx+ c. (3.56)

Moreover, again by (3.52) and (3.53), there exists p1 ∈ (1, 2) depending on γ such that

1
2

∫
Ω

f0(u)ϕ1(u)dx ≥ α‖f0(u)‖p1
Lp1(Ω) − c. (3.57)

Next, regarding the boundary term in (3.54), relations (2.6)–(2.7) entail∫
Γ

[hΓ − fΓ(v) − λΓv]ϕ1(v)dσ ≤ c. (3.58)
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Indeed, the quantity in square brackets is strictly positive for v ∼ 1 and strictly negative for
v ∼ −1, while ϕ1 is locally bounded in (−1, 1).

Collecting (3.55)–(3.58) and recalling estimates (3.26) and (3.37), we then find that, for any
T > 0, there exists a constant C(T,R) (where, as in (3.27), R is a measure of the “energy” of
the initial datum, i.e., of their “magnitude” w.r.t. the metric d (see (2.12)) such that

∫ T

0

ϕ′
1(u)|∇u|2dt+

∫ T

0

f0(u)ϕ1(u)dt+
∫ T

0

‖f0(u)‖p1
Lp1(Ω)dt ≤ C(T,R). (3.59)

In particular, we can take T = 1 and set, correspondingly, C1(R) := C(1, R).
Now, we aim to proceed by (finitely many) iteration steps. More precisely, let us assume

that the following analogue of (3.59) holds:

∫ Ti−1+1

Ti−1

∫
Ω

ϕ′
i−1(u)|∇u|2dxdt+

∫ Ti−1+1

Ti−1

∫
Ω

f0(u)ϕi−1(u)dxdt

+
∫ Ti−1+1

Ti−1

‖f0(u)‖pi−1

Lpi−1(Ω)dt ≤ Ci−1(R), (3.60)

where Ti−1 is a suitable “initial” time belonging to the interval (0, i− 1) and pi−1 ∈ (1, 2).
Then, as a consequence, we can find Ti ∈ (Ti−1, Ti−1 + 1) (so that, in particular, Ti ∈ (0, i))

such that ∫
Ω

ϕ′
i−1(u(Ti))|∇u(Ti)|2dx+

∫
Ω

f0(u(Ti))ϕi−1(u(Ti))dx ≤ Ci−1(R). (3.61)

Let us now observe that Gagliardo’s trace theorem in W 1,1(Ω) (see, e.g., [16]) entails

‖ϕi−1(v(Ti))‖L1(Γ)

≤ cΩ

∫
Ω

|ϕi−1(u(Ti))|dx + cΩ

∫
Ω

ϕ′
i−1(u(Ti))|∇u(Ti)|dx

≤ cΩ

∫
Ω

|ϕi−1(u(Ti))|dx + c

∫
Ω

ϕ′
i−1(u(Ti))dx + c

∫
Ω

ϕ′
i−1(u(Ti))|∇u(Ti)|2dx

≤ c

∫
Ω

f0(u(Ti))ϕi−1(u(Ti))dx + c+ c

∫
Ω

ϕ′
i−1(u(Ti))|∇u(Ti)|2dx

≤ cCi−1(R) + c, (3.62)

where we have also used (3.61) and the obvious fact that both ϕi−1(r) and ϕ′
i−1(r) do not grow

faster than f0(r)ϕi−1(r) as |r| ∼ 1 (see (3.52) and note that γ ≥ 1).
Formula (3.62) allows to go on with the next iteration step. More precisely, we would like

to take y = ϕi(u) and z = ϕi(v) in (2.19). However, we can do this only as long as ϕi grows
slower than f0. In case ϕi grows as fast as f0 or faster (namely, if γ in (3.52) is less than or
equal to 2i−1

2 in (3.53)), then the iteration argument stops. That said, we notice that (3.54)
obviously is modified as∫

Ω

ϕ′
i(u)|∇u|2dx+

∫
Ω

f0(u)ϕi(u)dx+
d
dt

∫
Γ

Φi(v)dσ +
∫

Γ

ϕ′
i(v)|∇Γv|2dσ

=
∫

Ω

(w − λu+ h)ϕi(u)dx+
∫

Γ

(hΓ − fΓ(v) − λΓv)ϕi(v)dσ (3.63)
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and estimates (3.56)–(3.58) can be repeated with obvious modifications. Notice that, since
2i−1

2 < γ, we still have pi < 2 in the analogue of (3.57). Thus, we can integrate (3.63) over the
interval (Ti, Ti + 1). Noticing that

‖Φi(v(Ti))‖L1(Γ) ≤ c(1 + ‖ϕi−1(v(Ti))‖L1(Γ)) ≤ c(1 + Ci−1(R)) (3.64)

by (3.53) and (3.62), we then obtain the i-analogue of (3.60), namely,
∫ Ti+1

Ti

∫
Ω

ϕ′
i(u)|∇u|2dxdt+

∫ Ti+1

Ti

∫
Ω

f0(u)ϕi(u)dxdt

+
∫ Ti+1

Ti

‖f0(u)‖pi

Lpi (Ω)dt ≤ Ci(R). (3.65)

Finally, let us assume that we have reached the end of the iteration, i.e., we have (3.65), where
i is such that

2i− 1
2

< γ ≤ 2(i+ 1) − 1
2

. (3.66)

By (3.65), we see that t∗ ∈ (Ti, Ti + 1) exists such that∫
Ω

ϕ′
i(u(t∗))|∇u(t∗)|2dx+

∫
Ω

f0(u(t∗))ϕi(u(t∗))dx ≤ Ci(R). (3.67)

Hence, proceeding as in (3.62) and finally using (3.67), we have

‖F0(v(t∗))‖L1(Γ) ≤ cΩ

∫
Ω

|F0(u(t∗))|dx+ cΩ

∫
Ω

f0(u(t∗))|∇u(t∗)|dx

≤ cΩ

∫
Ω

|F0(u(t∗))|dx+ c

∫
Ω

f0(u(t∗))dx+ c

∫
Ω

f0(u(t∗))|∇u(t∗)|2dx

≤ c

∫
Ω

f0(u(t∗))ϕi(u(t∗))dx + c

∫
Ω

ϕ′
i(u(t∗))|∇u(t∗)|2dx+ c

≤ cCi(R) + c, (3.68)

where the second last inequality follows from (3.52)–(3.53) and (3.66). Then, if R∗ = C(R)
denotes the last constant of (3.68), we obtain (3.47), as desired.

Remark 3.4 As detailed at the beginning, the above argument is just formal, due to
insufficient regularity of test functions. Nevertheless, to make it rigorous, it would be sufficient
to proceed as in the proof of Lemma 3.3. More precisely, one should use at each i-step suitable
truncations ϕi,n of the functions ϕi. Then, due to the Lipschitz continuity of ϕi,n, ϕi,n(u)
and ϕi,n(v) would be admissible test functions and could be used in place of ϕi(u) and ϕi(v).
Finally, to perform the iteration argument rigorously, one should pass to the limit n ↗ +∞
before performing the subsequent (i + 1)-step.

Therefore, by accounting either for (2.25) or for the previous remark, we can replace (3.50)
and (3.51) by the estimate

‖F0(v(t))‖L1(Γ) +
∫ t+1

t

(‖f0(v)‖L1(Γ) + ‖f0(u)‖2
L2(Ω))dτ

≤ c(R)e−α4t + C for all t ≥ t∗ (3.69)
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for a suitable α4 > 0. We point out that t∗ is independent of the “magnitude” R of the initial
data and, in fact, it only depends on the exponent γ in (3.52).

Remark 3.5 Thanks to (3.69), one could at this point improve the existence result sketched
in Remark 3.2. Indeed, one could now prove the existence of a global weak solution satisfying,
in addition, f0(u) ∈ L2(0, T ;H). We stress once more that, in particular, this regularity relies
on the compatibility assumption (2.6)– (2.7).

Our next aim is to prove parabolic regularization properties of the solution.

Fourth a priori estimate
We set

ϕ := ∂tu, ψ := ∂tw and ϑ := ∂tv (3.70)

and formally differentiate (2.18)–(2.19) with respect to time. We obtain

〈∂tϕ, y〉 +
∫

Ω

∇ψ · ∇ydx = 0, (3.71)∫
Ω

ψydx =
∫

Ω

∇ϕ · ∇ydx+
∫

Ω

f ′(u)ϕydx+
∫

Γ

∂tϑzdσ

+
∫

Γ

∇Γϑ · ∇Γzdσ +
∫

Γ

(f ′
Γ(v)ϑ+ λΓϑ)zdσ (3.72)

at any time t > 0, where (3.71) and (3.72) hold for every y ∈ V and every (y, z) ∈ V, respectively.
Now, we formally choose y = Nϕ in the former and (y, z) = (−ϕ,−ϑ) in the latter and sum the
equalities that we obtain. We have

〈∂tϕ,Nϕ〉 +
∫

Ω

∇ψ · ∇Nϕdx −
∫

Ω

ψϕdx+
∫

Ω

|∇ϕ|2dx+
∫

Ω

f ′(u)ϕ2dx

+
1
2

d
dt

∫
Γ

ϑ2dσ +
∫

Γ

|∇Γϑ|2dσ +
∫

Γ

(f ′
Γ(v) + λΓ)ϑ2dσ = 0.

Owing to (3.9) and (3.4), we deduce

1
2

d
dt

(‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ)) + ‖∇ϕ‖2
L2(Ω) + ‖∇Γϑ‖2

L2(Γ)

= −
∫

Γ

(f ′
Γ(v) + λΓ)ϑ2dσ −

∫
Ω

f ′(u)ϕ2dx ≤ c‖ϑ‖2
L2(Γ) −

∫
Ω

f ′(u)ϕ2dx, (3.73)

the last inequality is due to (2.3). We easily estimate the last term as follows (when dealing
with the approximating problem, Lemma 3.1 should be used here). Owing to (2.2), we find
r∗ ∈ (0, 1) such that f ′(r) ≥ 0 for |r| ≥ r∗. Then, if we denote by Ω∗ the (time dependent) set
on which |u| < r∗, we have

−
∫

Ω

f ′(u)ϕ2dx ≤ −
∫

Ω∗
f ′(u)ϕ2dx ≤ sup

|r|≤r∗
|f ′(r)|

∫
Ω∗
ϕ2dx ≤ c‖ϕ‖2

L2(Ω).

On the other hand, (3.2) yields, for every δ > 0,

‖ϕ‖2
L2(Ω) ≤ δ‖∇ϕ‖2

L2(Ω) + cδ‖ϕ‖2
∗. (3.74)
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Collecting (3.73) and the last inequalities and choosing δ small enough, we find

d
dt

(‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ)) + ‖∇ϕ‖2
L2(Ω) + ‖∇Γϑ‖2

L2(Γ) ≤ c(‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ)).

In particular, we obtain

d
dt

(‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ)) ≤ c(‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ))

and we are allowed to apply the uniform Gronwall lemma (see, e.g., [29, Lemma I.1.1]) in view
of (3.29). Therefore, we have the existence of a time t1 depending on R and of a constant c
which is independent of R such that

‖ϕ‖2
∗ + ‖ϑ‖2

L2(Γ) ≤ c for t ≥ t1(R). (3.75)

By integrating (3.73) over (t, t+ 1), we also have∫ t+1

t

(‖∇ϕ‖2
L2(Ω) + ‖∇Γϑ‖2

L2(Γ))dτ ≤ c for t ≥ t1(R).

By accounting for (3.29) and (3.74) once more, we find a similar estimate for the full norms of
ϕ and ϑ in H1(Ω) and H1(Γ), respectively. By adding (3.75) to this, we conclude that

‖∂tu(t)‖2
∗ + ‖∂tv(t)‖2

L2(Γ) +
∫ t+1

t

(‖∂tu‖2
H1(Ω) + ‖∂tv‖2

H1(Γ))dτ ≤ C4 for t ≥ t1(R), (3.76)

where C4 does not depend on R.
Finally, using the improved regularity of time derivatives following from (3.76) and coming

back to the second estimate, it is not difficult to see that (3.37) can be improved up to

‖w(t)‖2
H1(Ω) ≤ C for all t ≥ t1(R). (3.77)

Consequences
The solution (u, v, w) satisfies the elliptic problem

−Δu = h1 := w − f(u) + h, in Ω, (3.78)

−ΔΓv = h2 := hΓ − fΓ(v) − λΓv − ∂tv − ∂nu|Γ, on Γ, (3.79)

in a generalized sense, in principle, where t is just seen as a parameter (and does not appear
in the notation). To make the meaning of (3.78)–(3.79) precise, we use a bootstrap argument.
First, (3.78) surely holds in the sense of distributions (take y ∈ C∞

c (Ω) in (2.19)) and a com-
parison shows that Δu is a function in L2(Ω) (rather than a distribution) at every time. As
v = u|Γ ∈ H1(Γ), we deduce that u ∈ H

3
2 (Ω) (by the elliptic theory in Ω) and that (∂nu)|Γ

makes sense and belongs to H− 1
4 (Γ) (actually, it belongs to Hs(Γ) for every s < 0). In partic-

ular, (3.79) has a precise meaning and h2 ∈ H− 1
4 (Γ). By applying the boundary version of [21,

Theorem 7.5, p. 204], we deduce that v ∈ H2− 1
4 (Γ) ⊂ H

3
2 (Γ), whence also u ∈ H2(Ω) by the

elliptic theory in Ω once more. Thus, we can improve the regularity of (∂nu)|Γ. More precisely,
(∂nu)|Γ ∈ H

1
2 (Γ) ⊂ L2(Γ). As ∂tv ∈ L2(Γ), we infer that h2 ∈ L2(Γ), i.e., ΔΓv ∈ L2(Γ). There-

fore, we conclude that v ∈ H2(Γ) by the regularity theory on the boundary just mentioned.
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Moreover, each step of the above reasoning is complemented by a corresponding estimate. So,
we have, at any time,

‖u‖H2(Ω) + ‖v‖H2(Γ)

≤ c(‖u‖H2(Ω) + ‖ΔΓv‖L2(Γ) + ‖v‖L2(Γ))

≤ c(‖u‖H2(Ω) + ‖v‖L2(Γ) + ‖∂tv‖L2(Γ) + ‖∂nu|Γ‖L2(Γ) + 1)

≤ c(‖u‖H2(Ω) + ‖v‖L2(Γ) + ‖∂tv‖L2(Γ) + 1)

≤ c(‖Δu‖L2(Ω) + ‖v‖
H

3
2 (Γ)

+ ‖∂tv‖L2(Γ) + 1)

≤ c(‖Δu‖L2(Ω) + ‖ΔΓv‖
H− 1

4 (Γ)
+ ‖v‖L2(Γ) + ‖∂tv‖L2(Γ) + 1)

≤ c(‖Δu‖L2(Ω) + ‖v‖L2(Γ) + ‖∂tv‖L2(Γ) + ‖∂nu|Γ‖
H− 1

4 (Γ)
+ 1)

≤ c(‖Δu‖L2(Ω) + ‖v‖L2(Γ) + ‖∂tv‖L2(Ω) + ‖u‖
H

3
2 (Γ)

+ 1)

≤ c(‖Δu‖L2(Ω) + ‖v‖H1(Γ) + ‖∂tv‖L2(Ω) + 1)

≤ c(‖w‖L2(Ω) + ‖f(u)‖L2(Ω) + ‖v‖H1(Γ) + ‖∂tv‖L2(Ω) + 1). (3.80)

By combining this with the previous estimates, we deduce that

∫ t+1

t

(‖u‖2
H2(Ω) + ‖v‖2

H2(Γ))dτ ≤ c for t ≥ t1(R). (3.81)

On the other hand, (3.76) holds and the classical interpolation theory yields

‖y‖
C0(I;H

3
2 (Ω))

≤ cI(‖y‖L2(I;H2(Ω)) + ‖∂ty‖L2(I;H1(Ω))),

‖z‖
C0(I;H

3
2 (Γ))

≤ cI(‖z‖L2(I;H2(Γ)) + ‖∂tz‖L2(I;H1(Γ)))

for every y and z belonging to the spaces related to the corresponding right-hand sides and
where I is an arbitrary compact interval. As cI depends on I just through its length, we
conclude that

‖u(t)‖
H

3
2 (Ω)

+ ‖v(t)‖
H

3
2 (Γ)

≤ C5 for t ≥ t1(R), (3.82)

that is, (u(t), v(t)) belongs to a fixed compact subset of H1(Ω) ×H1(Γ) for t large enough.

Fifth a priori estimate
We recall (3.40) and choose y = ψ0,n(u) and z = ψ0,n(v) in (2.19). We obtain∫

Ω

ψ′
0,n(u)|∇u|2dx+

∫
Ω

|f0(u)| |F0,n(u)| 12 dx+
∫

Γ

ψ′
0,n(v)|∇Γv|2dσ

+
∫

Γ

(fΓ(v) + λΓv − hΓ)ψ0,n(v)dσ

=
∫

Ω

(w + h− λu)ψ0,n(u)dx−
∫

Γ

∂tvψ0,n(v)dσ.

Now, we observe that

|f0(r)| ≥ |f0,n(r)| ≥ rf0,n(r) ≥ F0,n(r) and |ψ0,n(r)| ≤ (F0(r))
1
2 for r ∈ (−1, 1),
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the former since sign f0,n(r) = sign r and F0,n is convex. Thus, by owing first to (3.42) and
then to (3.28), we deduce that∫

Ω

|F0,n(u)| 32 dx

≤ c(‖w‖2
L2(Ω) + ‖u‖2

L2(Ω) + ‖(F0(u))
1
2 ‖2

L2(Ω) + ‖∂tv‖2
L2(Γ) + ‖(F0(v))

1
2 ‖2

L2(Γ) + 1)

≤ c(‖w‖2
L2(Ω) + ‖u‖2

L2(Ω) + ‖F0(u)‖L1(Ω) + ‖∂tv‖2
L2(Γ) + ‖F0(v)‖L1(Γ) + 1).

Then, letting n tend to infinity, it is not difficult to obtain∫
Ω

|F0(u)| 32 dx ≤ c(‖w‖2
L2(Ω) + ‖u‖2

L2(Ω) + ‖∂tv‖2
L2(Γ) + ‖F0(v)‖L1(Γ) + 1).

By accounting for (3.77), (3.28), (3.75) (with the notation (3.70)), and (3.69), we conclude that∫
Ω

|F0(u)| 32 dx ≤ C6 for t ≥ t1(R). (3.83)

Sixth a priori estimate
Such an estimate will be used to prove Theorem 2.3. We choose y = N∂tu in (2.18) and

(y, z) = (−∂tu,−∂tv) in (2.19). Then, we sum the equalities that we obtain. We have (at any
positive time)

〈∂tu,N∂tu〉 +
∫

Ω

∇w · ∇N∂tudx−
∫

Ω

w∂tudx+
∫

Ω

∇u · ∇∂tudx+
∫

Ω

(f(u) − h)∂tudx

+
∫

Γ

∂tv∂tvdσ +
∫

Γ

∇Γv · ∇Γ∂tvdσ +
∫

Γ

(fΓ(v) + λΓv − hΓ)∂tvdσ = 0.

By arguing as we did for our first a priori estimate (here, it is even simpler), we find

‖∂tu‖2
∗ + ‖∂tv‖2

L2(Γ) +
1
2

d
dt

(
‖∇u‖2

L2(Ω) + ‖∇Γv‖2
L2(Γ) + 2

∫
Ω

(F (u) − hu)dx+ λΓ‖v‖2
L2(Γ)

)

=
∫

Γ

(hΓ − fΓ(v))∂tvdσ.

Now, we integrate over (0, t), where t > 0 is arbitrary. By forgetting some positive terms on
the left-hand side, we obtain

∫ t

0

(‖∂tu‖2
∗ + ‖∂tv‖2

L2(Γ))dτ +
λΓ

2
‖v(t)‖2

L2(Γ)

≤ 1
2

(
‖∇u0‖2

L2(Ω) + ‖∇Γv0‖2
L2(Γ) + 2

∫
Ω

(F (u0) − hu0)dx+ λΓ‖v0‖2
L2(Γ)

)

+
∫

Γ

(hΓv(t) − FΓ(v(t)) − hΓv0 + FΓ(v0))dσ,

where FΓ is the primitive of fΓ vanishing, e.g., at the origin. As the last integral is bounded by
c‖v(t)‖L2(Γ) + c(v0) and t > 0 is arbitrary, we immediately find

∂tu ∈ L2(0,+∞;V ∗) and ∂tv ∈ L2(0,+∞;HΓ). (3.84)
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4 Proof of Theorem 2.2

First, the continuity of the semigroup S(t) with respect to the dw-metric is standard (see,
e.g., the proof of uniqueness in [18]). This implies, in particular, that S(t) is closed in the sense
of Pata-Zelik [25]. Therefore, the existence of the global attractor with the desired regularity
follows from classical attractors’ existence results (see, e.g., [1, 29]), once we have proved the
dissipativity and the asymptotic compactness of S(t).

To do so, we fix a bounded set B of initial data. More precisely, we assume that (3.27) holds
for any (u0, v0) ∈ B and a suitable R > 0. Then, the a priori estimates of Section 3 hold. In
particular, thanks to (3.28), (3.82) and (3.83), (u(t), v(t)) belongs to the set Km defined by

Km : = {(y, z) ∈ Φm ∩ (H
3
2 (Ω) ×H

3
2 (Γ)) :

‖y‖
H

3
2 (Ω)

+ ‖z‖
H

3
2 (Γ)

≤ C5, ‖F0(y)‖
L

3
2 (Ω)

≤ C6} (4.1)

for all t ≥ t1(R). In other words, Km is an absorbing set for S(t). Moreover, we easily see that
it is also compact in Φm. Indeed, it is of course compact in V. Moreover, the L

3
2 -bound of

F0(u) following from (3.83) and Lebesgue’s theorem clearly imply the compactness with respect
to the metric (2.12), hence the asymptotic compactness of S(t). This finishes the proof.

5 Proof of Theorem 2.3

As we deal with a precise initial datum, we can choose R satisfying equality in (3.27).
However, we will not stress the dependence of the constants on R in the notation here. As
above, (u(t), v(t)) belongs to the set Km defined in (4.1), at least for t large enough, and (u, v) is
a weakly continuous V-valued function. As Km is a compact subset of V and we take the datum
(u0, v0) as a starting point, the first part of the statement follows from general results (see,
e.g., [20, p. 12]). Now, we prove our characterization of the ω-limit. Thus, we pick (uω, vω) ∈
ω(u0, v0) and a corresponding sequence tn ↑ +∞ such that (uω, vω) = lim(u(tn), v(tn)) strongly
in V. Moreover, as we prefer to consider functions on a finite time interval rather than pointwise
(in time) values, we fix T ∈ (0,+∞) once and for all and set

un(t) := u(t+ tn), vn(t) := v(t+ tn) and wn(t) := w(t + tn) for t ≥ 0. (5.1)

Then, the triplet (un, vn, wn) clearly satisfies (2.18)–(2.19) (besides (2.17)). Hence, it also
satisfies an integrated version of them, namely,∫ T

0

〈∂tun, y〉dt+
∫ T

0

∫
Ω

∇wn · ∇ydxdt = 0, (5.2)

∫ T

0

∫
Ω

wnydxdt =
∫ T

0

∫
Ω

∇un · ∇ydxdt+
∫ T

0

∫
Ω

(f(un) − h)ydxdt

+
∫ T

0

∫
Γ

∂tvnzdσdt+
∫ T

0

∫
Γ

∇Γvn · ∇Γzdσdt

+
∫ T

0

∫
Γ

(fΓ(vn) + λΓvn − hΓ)zdσdt (5.3)

for every y ∈ L2(0, T ;V ) and (y, z) ∈ L2(0, T ; V), respectively. Our aim is to take the limits
of such variational equations as n tends to infinity by using compactness methods. To do so,
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we account for our a priori estimates to derive corresponding estimates for the above functions.
More precisely, we observe that (3.82), (3.37), and (3.69) yield

‖un‖
L∞(0,T ;H

3
2 (Ω))

+ ‖vn‖
L∞(0,T ;H

3
2 (Γ))

+ ‖wn‖L∞(0,T ;V ) + ‖f0(un)‖L2(0,T ;H) ≤ c.

Therefore, we can use standard weak, weak*, and strong compactness results and have

un → u∞ weakly* in L∞(0, T ;H
3
2 (Ω)) and strongly in C0([0, T ];V ), (5.4)

vn → v∞ weakly* in L∞(0, T ;H
3
2 (Γ)) and strongly in C0([0, T ];VΓ), (5.5)

wn → w∞ weakly* in L∞(0, T ;V ), (5.6)

f0(un) → ξ weakly in L2(0, T ;H) (5.7)

for some u∞, v∞, w∞, ξ belonging to the corresponding spaces, at least for a subsequence. On
the other hand, (3.84) clearly implies that

∂tun → 0 and ∂tvn → 0 strongly in L2(0, T ;V ∗) and in L2(0, T ;HΓ), respectively, (5.8)

so that u∞ and v∞ must be time-independent by (5.8). Hence, we can define us and vs as their
constant values and we clearly have (us, vs) ∈ Φm. Furthermore, the strong convergence given
by (5.4) and (5.5), the weak convergence (5.7), the Lipschitz continuity of fΓ, and standard
monotonicity methods (see, e.g., [2, Proposition 2.5, p. 27] for a similar tool) allow us to conclude
that

fΓ(vn) → fΓ(v∞) strongly in C0([0, T ];HΓ), −1 < u∞ < 1 a.e. in Ω and ξ = f0(u∞).

In particular, ξ is time-independent as well and its constant value is f0(us). At this point, we
can let n tend to infinity in (5.2)–(5.3) and obtain similar variational equations for the triplet
(u∞, v∞, w∞), the only difference being that time derivatives no longer appear. Moreover, it is
straightforward to get rid of time integrations and obtain∫

Ω

∇w∞(t) · ∇ydx = 0 for every y ∈ V , (5.9)∫
Ω

∇us · ∇ydx+
∫

Ω

(f(us) − h− w∞(t))ydx

+
∫

Γ

∇Γvs · ∇Γzdσ +
∫

Γ

(fΓ(vs) + λΓvs − hΓ)zdσ = 0 for every (y, z) ∈ V, (5.10)

at almost every time t ∈ (0, T ). In particular, by taking y = w∞(t) in (5.9), we see that w∞(t)
must be space-independent. Once this is established, the choice y = 1 and z = 1 in (5.10) shows
that w∞ is even time-independent. Thus, w∞ takes a constant value ws and we conclude that
(us, vs) is a steady state. It remains to show that (uω, vω) = (us, vs). To this aim, we note that
(5.4) implies that un(0) converges to u∞(0) = us strongly in V . As un(0) = u(tn) converges to
uω strongly in V by assumption, we conclude that us = uω. As a similar argument holds for
vs and vω, the proof is complete.

Remark 5.1 The above proof clearly shows that different topologies could have been
considered in the definition of ω(u0, v0). For instance, any weaker topology, e.g., the weak
topology of V, would have worked as well in the conclusion of the proof. A stronger topology
can be used, provided that the compactness of Km still holds.
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6 Proof of Theorem 2.4

We start by analyzing a bit more carefully the stationary problem (2.29). Given m ∈ (−1, 1),
we denote by Sm the family of its solutions, namely,

Sm := {(us, vs) ∈ V : 〈us〉Ω = m; ∃ws ∈ R : (2.28)–(2.29) hold}. (6.1)

Lemma 6.1 Assume (2.1)– (2.7) and fix m ∈ (−1, 1). Then, there exists Mm > 0 depending
on m such that, for any element (us, vs) ∈ Sm,

|ws| ≤Mm. (6.2)

Moreover, there exists δm > 0, also depending on m, such that

−1 + δm ≤ us(x) ≤ 1 − δm, ∀x ∈ Ω. (6.3)

Proof Taking y ≡ 1 and z ≡ 1 in (2.29), we infer that

|Ω|ws =
∫

Ω

(f(us) − h)dx+
∫

Γ

(fΓ(vs) + λΓvs − hΓ)dσ. (6.4)

Choosing instead y = us −m and z = vs −m , we find∫
Ω

(|∇(us −m)|2 + f(us)(us −m))dx+
∫

Γ

(|∇Γ(vs −m)|2 + fΓ(vs)(vs −m))dσ

=
∫

Ω

h(us −m)dx−
∫

Γ

λΓvs(vs −m)dσ +
∫

Γ

hΓ(vs −m)dx ≤ c, (6.5)

where the last inequality follows from (2.5) and the fact that |us| ≤ 1. On the other hand,
estimating the left-hand side from below by means of (3.13), we end up with

‖(us, vs)‖2
V + ‖f(us)‖L1(Ω) ≤ c. (6.6)

Combining (6.4) and (6.6) and using once more (2.5) to estimate the remaining terms on the
right-hand side of (6.4), we readily obtain (6.2) for a suitable choice of Mm.

Next, we notice that, thanks to (2.2) and (2.5), we can find δm > 0 such that

f(r) − ‖h‖L∞(Ω) −Mm ≥ 1, ∀ r ∈ [1 − δm, 1] (6.7)

and a similar relation holds near −1. Moreover, we can assume 1 − δm ≥ r0 (cf. (2.6)–(2.7)).
Thus, take first y = (us − 1 + δm)+ and z accordingly, and then y = −(us + 1 − δm)+ in (2.29)
and using (2.6)–(2.7), it is immediate to obtain (6.3), which concludes the proof.

Corollary 6.1 Assume (2.1)– (2.7), (2.30), and m ∈ (−1, 1). Then, Sm is bounded in
H3(Ω) ×H3(Γ). In particular, this holds for the ω-limit set of any solution trajectory.

Proof Thanks to the separation property (6.3) and the C1-regularity of f , it is not difficult
to obtain (see, e.g., [19, Lemma 2.2]) that Sm is bounded in H2(Ω)×H2(Γ). Moreover, thanks
to this regularity, the stationary problem can be interpreted in the stronger form

− Δus + f(us) − h = ws, a.e. in Ω, (6.8)
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− ΔΓvs + fΓ(vs) + λΓvs − hΓ = −∂nus, a.e. on Γ. (6.9)

Using the continuous embedding H2(Ω) ⊂ L∞(Ω) and once more the C1-regularity of f and
fΓ, we then have, for any (us, vs) ∈ Sm, f(us) ∈ V and fΓ(vs) ∈ VΓ. Thus, applying standard
regularity results to the coupled elliptic system (6.8)–(6.9) and a simple bootstrap argument
(similar to the one given in (3.80)), it is not difficult to obtain us ∈ H3(Ω) and vs ∈ H3(Γ),
thanks also to (2.30). Refining a bit the procedure, we can have uniform H3-estimates as well.

In the next two lemmas, we give the key step of our procedure which consists in proving the
precompactness of any trajectory w.r.t. a better topology.

Lemma 6.2 Assume (2.1)– (2.7), (2.30), (2.31), m ∈ (−1, 1), and (u0, v0) ∈ Φm. Corre-
spondingly, take R as in (3.27). Then, there exist β > 0, t2 = t2(R), and c independent of R
such that the corresponding solution (u, v) satisfies

‖u(t)‖C0,β(Ω) ≤ c, ∀ t ≥ t2(R). (6.10)

Proof Let us assume ϕ : (−1, 1) → R to be a smooth and monotone function such that
ϕ(0) = 0. Then, taking y = ϕ(u) and z = ϕ(v) as test functions in (2.19) and using (2.6)–(2.7),
it is not difficult to find∫

Ω

ϕ′(u)|∇u|2dx+
∫

Ω

f(u)ϕ(u)dx+
∫

Γ

vtϕ(v)dσ +
∫

Γ

ϕ′(v)|∇Γv|2dσ

≤
∫

Ω

(w + h)ϕ(u)dx + c(ϕ) (6.11)

(as above, in case ϕ(r) explodes as |r| ∼ 1, the above estimate should be proved by truncating
ϕ and then passing to the limit). We now first consider the situation when (3.52) holds, i.e., f
explodes as a power for |r| ∼ 1. Indeed, when (2.25) holds, the procedure is simpler, as it will
sketched below.

Then, also recall the second of (2.2) and take

ϕ+(r) := (f ′(r) − f ′(0) + 2ζr)χ[0,1], ϕ−(r) := (−f ′(r) + f ′(0) + 2ζr)χ[−1,0] (6.12)

and also set

ϕ(r) := ϕ+(r) + ϕ−(r), ϕ̂(r) :=
∫ r

0

ϕ(s)ds (6.13)

where χ denotes the characteristic function and ζ ≥ 0 is as in (2.31). Now, as a consequence of
(3.69), for any t ≥ t1(r), there exists t̂ ∈ (t, t+ 1) such that

‖f(v( t̂ ))‖L1(Γ) ≤ c. (6.14)

Then, we take the function ϕ in (6.11) as defined by (6.13) and note that, by (3.52),

ϕ(r)f(r) ≥ α|f(r)|p − c, where p = 2 + γ−1 ∈ (2, 3] (6.15)

and

ϕ̂(r) ≤ c(|f(r)| + 1). (6.16)
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Thus, we can integrate (6.11) over ( t̂, t̂+ 2) and estimate the right-hand side as follows:∫
Ω

(w + h)ϕ(u)dx ≤ ‖w + h‖L6(Ω)‖ϕ(u)‖
L

6
5 (Ω)

≤ c‖ϕ(u)‖
L

6
5 (Ω)

≤ α

2
‖f(u)‖p

Lp(Ω) + c, (6.17)

where α is the same as in (6.15). Here, (3.52) has been used again. This finally yields∫ t+1

t

‖f(u)‖p
Lp(Ω)dτ ≤ c, ∀ t ≥ t1(R) + 1. (6.18)

To conclude, we notice that the same relation can be easily obtained when (2.25) holds, which
corresponds, e.g., to f behaving as a logarithm near ±1 or to the analogue of (3.52), but with
γ ∈ (0, 1). Indeed, in such a situation, one could simply take ϕ(r) ∼ |f(r)|p−1sign r, where the
exponent p is chosen such that the antiderivative ϕ̂ is bounded (we omit the details).

Next, we come back to the coupled elliptic problem (3.78)–(3.79) and aim to find additional
regularity. Actually, by (3.81), (3.82), and interpolation,

‖u‖
L3(t,t+1;H

11
6 (Ω))

≤ c(‖u‖
C0([t,t+1];H

3
2 (Ω))

+ ‖u‖L2(t,t+1;H2(Ω))) ≤ c. (6.19)

Hence, by continuity of the trace operator ∂n from H
11
6 (Ω) to H

1
3 (Γ),

‖∂nu‖L3(t,t+1;L3(Γ)) ≤ c‖∂nu‖
L3(t,t+1;H

1
3 (Γ))

≤ c. (6.20)

Also, on account of (2.5), (3.76) and (6.18), it thus follows that the functions h1 and h2 in the
right-hand sides of (3.78)–(3.79) satisfy∫ t+1

t

(‖h1‖p
Lp(Ω) + ‖h2‖p

Lp(Γ))dτ ≤ c, ∀ t ≥ t1(R) + 1 (6.21)

again for a suitable p ∈ (2, 3]. Applying Agmon-Douglis-Nirenberg regularity results, we then
have

‖u‖Lp(t,t+1;W 2,p(Ω)) ≤ c, ∀ t ≥ t1(R) + 1. (6.22)

Let us now observe that, by (3.76) and Sobolev embeddings, there also holds

‖u‖
W

p+2
2p

,p
(t,t+1;W

6−p
2p

,p
(Ω))

≤ c‖u‖H1(t,t+1;V ) ≤ c, ∀ t ≥ t1(R). (6.23)

Then, by Lp-interpolation, we obtain

Lp(t, t+ 1;W 2,p(Ω)) ∩W p+2
2p ,p(t, t+ 1;W

6−p
2p ,p(Ω)) ⊂W ρ,p(t, t+ 1;W r,p(Ω)) (6.24)

with continuous embedding, where

ρ = ϑ
p + 2

2p
, r = 2(1 − ϑ) + ϑ

6 − p

2p
(6.25)

and ϑ can be taken arbitrarily in (0, 1). Then, it is easily seen that p > 2 guarantees that ϑ
can be chosen so that ρ > 1

p and r > 3
p . Applying once more the Sobolev embedding theorems,

we then deduce from (6.24) that

‖u‖C0,β([t,t+1]×Ω) ≤ c, ∀ t ≥ t1(R) + 1 (6.26)
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for some β > 0, which implies, in particular, (6.10).

Lemma 6.3 Assume (2.1)– (2.7), (2.30), (2.31), m ∈ (−1, 1), and (u0, v0) ∈ Φm. Corre-
spondingly, take R as in (3.27). Then, there exists a time t3 > 0 depending on the trajectory
and a constant c which is independent of R such that the corresponding solution (u(t), v(t))
satisfies

‖u(t)‖H3(Ω) + ‖v(t)‖H3(Γ) + ‖f(u(t))‖W 1,∞(Ω) ≤ c, ∀ t ≥ t3. (6.27)

Proof We first claim that there exists t3 > 0 such that

−1 +
δm
2

≤ u(x, t) ≤ 1 − δm
2
, ∀ t ≥ t3, (6.28)

where δm is as in (6.3). Indeed, we can proceed by contradiction. If we could find a diverging
sequence {tn} such that the above inequality does not hold for t = tn, then, by the precom-
pactness deriving from (6.10), (u(tn), v(tn)) would admit a subsequence converging uniformly
in Ω to an element (us, vs) ∈ Sm. Now, since us satisfies (6.3), we have a contradiction. It is
then clear that (6.28) and the C1-regularity of f entail

‖f(u(t))‖L∞(Ω) + ‖f ′(u(t))‖L∞(Ω) ≤ c, ∀ t ≥ t3. (6.29)

Similarly with (3.78)–(3.79), we now rewrite (the strong formulation of) (2.18)–(2.19) in the
more convenient form

− Δu = k1 := −f(u) + w + h, in Ω, (6.30)

∂tv − ΔΓv + ∂nu = k2 := −fΓ(v) − λΓv + hΓ, on Γ (6.31)

and notice that, for any t ≥ t3, thanks to (3.77), (3.76), and (6.29),

‖k1‖L∞(t,t+1;V ) ≤ c and ‖k2‖L∞(t,t+1;VΓ) + ‖∂tv‖L∞(t,t+1;L2(Γ)) ≤ c, ∀ t ≥ t3. (6.32)

Thus, viewing (6.31) as an elliptic equation (i.e., moving ∂tv to the right-hand side), a further
application of [19, Lemma 2.2] gives

‖u‖L∞(t,t+1;H2(Ω)) + ‖v‖L∞(t,t+1;H2(Γ)) ≤ c, ∀ t ≥ t3. (6.33)

To improve the regularity, we have to come back to the full system (2.18)–(2.19), differentiate
both equations in time, and take y = −(t−τ)wt as a test function in ∂t(2.18) and y = (t−τ)utt

and z = (t − τ)vtt in ∂t(2.19), where τ is a generic “initial time” taken larger than t3. Then,
observing that ∫

Ω

f ′(u)ututtdx =
1
2
∂t

∫
Ω

f ′(u)|ut|2dx− 1
2

∫
Ω

f ′′(u)|ut|3dx (6.34)

and integrating by parts with respect to time, we end up with

1
2
∂t

[
(t− τ)

( ∫
Ω

|∇ut|2dx+
∫

Γ

|∇Γvt|2dσ +
∫

Ω

f ′(u)|ut|2dx
)]

+ (t− τ)(‖∇wt‖2
L2(Ω) + ‖vtt‖2

L2(Ω))
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≤ (t− τ)
∫

Γ

|(f ′
Γ(v)vt + λΓvt)vtt|dσ

+
1
2

(∫
Ω

|∇ut|2dx+
∫

Γ

|∇Γvt|2dσ +
∫

Ω

f ′(u)|ut|2dx+ (t− τ)
∫

Ω

f ′′(u)|ut|3dx
)
.

At this point, we can split the last term on the second row by means of Young’s inequality
and observe that, by (6.33), the C2-regularity of f , standard embedding theorems, and the
Poincaré-Wirtinger inequality, we have∫

Ω

f ′(u)|ut|2dx+ (t− τ)
∫

Ω

f ′′(u)|ut|3dx ≤ c‖ut‖2
V + c‖ut‖V (t− τ)

∫
Ω

|∇ut|2dx. (6.35)

Thus, integrating over (τ, τ + 2), recalling (3.76), and using assumption (2.1) and Gronwall’s
lemma, we finally obtain

‖ut‖L∞(t,t+1;V ) + ‖vt‖L∞(t,t+1;VΓ) ≤ c, ∀ t ≥ t3 (6.36)

again up to increasing t3 a bit. With this enhanced regularity at our disposal, we come back
to system (6.30)–(6.31) (again seen as a coupled elliptic system). Noting that now

‖k1‖L∞(t,t+1;V ) + ‖ − vt + k2‖L∞(t,t+1;VΓ) ≤ c, ∀ t ≥ t3 (6.37)

we then obtain (6.27) by means of standard elliptic regularity results as in the proof of Corollary
6.1. As a concluding remark, it is worth noting that, however, we are no longer able to evaluate
the time t3 in terms of the “initial energy” R.

In order to go on with the proof, we introduce several simplifications which are in fact not
restrictive. More precisely, we assume h = hΓ = 0 and m = 0. Accordingly, the constants δm
and Mm and the set Sm introduced above will be simply renamed as δ, M , and S. It is worth
noting that, in case m �= 0, one could simply set um := u−m and vm := v−m and notice that
the pair (um, vm) solves the system

∂tum − Δ(−Δum + fm(um)) = 0, in Ω, (6.38)

∂tvm + (∂num)|Γ − ΔΓvm + fΓ,m(vm) + λΓvm = 0, on Γ, (6.39)

where fm(r) := f(r + m) and fΓ,m(r) := fΓ(r + m). One, then, could simply work on system
(6.38)–(6.39).

That said, we can now introduce the function spaces V0, H0, V′
0, W0 as the (closed) sub-

spaces of V, H, V′, (H2(Ω)×H2(Γ))∩V, respectively, consisting of the functions, or functionals,
having zero mean over Ω. The latter space W0 is endowed with the norm of H2(Ω) ×H2(Γ).
We can then define the energy functional E : V0 → [0,+∞] by

E(u, v) :=
1
2
‖∇u‖2

L2(Ω) +
∫

Ω

F (u)dx+
1
2
‖∇Γv‖2

L2(Γ) +
1
2

∫
Γ

(2FΓ(v) + λΓv
2)dσ. (6.40)

Due to the singular character of F , E can very well take the value +∞. We then have to restrict
it to a suitable subset of V0. We let c > 0 be such that ‖z‖C0(Ω) ≤ c‖z‖H2(Ω) for all z ∈ H2(Ω).
Next, we define

U : =
{

(u, v) ∈ W0 : v = u|Γ, ∃(us, vs) ∈ S : ‖u− us‖H2(Ω) + ‖v − vs‖H2(Γ) < c−1 δ

2

}
. (6.41)
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It is clear that U is an open set in W0 and S ⊂ U. We also have, for any (u, v) ∈ U (the closure
is intended in H2(Ω) ×H2(Γ), of course),

−1 +
δ

2
≤ u(x) ≤ 1 − δ

2
, ∀x ∈ Ω. (6.42)

Thus, as a consequence of Lemma 6.3, any global solution to our system eventually lies in U.

Lemma 6.4 The restriction of E to U is twice Fréchet differentiable with respect to the
topology of W0. Moreover, (u, v) is a stationary point of E belonging to U if and only if
(u, v) ∈ S.

Proof The key observation is that, thanks to (6.42), E is uniformly bounded on U. Then,
we note that the stationary points of E are precisely those elements (u, v) ∈ V0 such that

〈E′(u, v), (k, κ)〉 =
∫

Ω

(∇u · ∇k + f(u)k)dx +
∫

Γ

(∇Γv · ∇Γκ+ (fΓ(v) + λΓv)κ)dσ = 0 (6.43)

holds for all (k, κ) ∈ V0. At this point, the thesis follows by proceeding along the lines of the
proof of [6, Proposition 6.4]. Actually, once we restrict E to U, everything is well separated
from the singular values ±1 of f . Thus, we are in the very same regularity setting as the one
of [6].

We can now state the Simon-�Lojasiewicz inequality which will be needed in what follows [6,
Proposition 6.6].

Proposition 6.1 Let (u, v) ∈ U be a critical point of E and let F , FΓ be analytic. Then,
there exist constants ϑ ∈ (0, 1

2 ], Λ > 0, and σ ∈ (0, c−1 δ
2 ) such that

|E(u, v) − E(u, v)|1−ϑ ≤ Λ‖E′(u, v)‖V′ (6.44)

for all (u, v) ∈ W0 such that

‖(u, v) − (u, v)‖W0 ≤ σ. (6.45)

Proof The proof can be carried out in the same way as in [6]. We point out the only
remarkable difference, namely, the occurrence of the W0-norm in (6.45) (in place of the V0-
norm appearing in [6, Proposition 6.6]). Actually, one can find elements (u, v) ∈ V0 which are
arbitrarily close to some (u, v) ∈ S in the V-norm and such that E(u, v) = +∞ (see also [6,
Remark 6.7]). Instead, if (6.45) holds, then we are sure that (u, v) is uniformly separated from
±1. In particular, (6.42) holds.

Now, by Corollary 6.1, S is bounded in H3(Ω) ×H3(Γ), hence precompact in W0. In fact,
it is compact, since it is obviously closed in W0. Given any (u, v) ∈ S, we can then associate to
(u, v) the numbers ϑ,Λ, σ given by Proposition 6.1. We obtain a covering

S ⊂
⋃

(u,v)∈S

B((u, v), σ), (6.46)
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where the ball B is intended in the topology of W0. By compactness, we can extract a finite
subcovering of S. More precisely, we have S ⊂ B, where

B :=
i⋃

i=1

B((ui, vi), σi). (6.47)

Actually, since σi ≤ c−1 δ
2 for all i, we have

S ⊂ B ⊂ U. (6.48)

In particular, any element of B is separated from ±1 in the sense of (6.42) and the functional
E is analytic on B. Moreover, due to the finiteness of the covering, the Simon-�Lojasiewicz
inequality holds in B with uniform constants ϑ and Λ.

Let us now consider a trajectory (u, v). By Lemma 6.3, (u, v) eventually lies in H3(Ω) ×
H3(Γ) and, consequently, is precompact in W0. Then, a simple contradiction argument similar
to the one given in the proof of Lemma 6.3 allows to prove that (u(t), v(t)) ∈ B for all t
larger than some t4 depending on the trajectory itself. At this point, to complete the proof
of the theorem, we notice that t �→ E(u(t), v(t)) is a decreasing functional. Moreover, setting
E∞ := lim

t→+∞ E(u(t), v(t)), it is easy to see that, for any (u∞, v∞) in the ω-limit set of (u(t), v(t)),

we have E(u∞, v∞) = E∞.
Then, we can compute, as in [6, Proof of Theorem 2.3] and for t ≥ t4, the derivative

−∂t(E(u(t), v(t)) − E∞)ϑ = −ϑ∂t(E(u(t), v(t)) − E(u, v))(E(u(t), v(t)) − E∞)ϑ−1

≥ −ϑ ∂tE(u(t), v(t))
Λ‖E′(u(t), v(t))‖V′

(6.49)

where (u, v) is an element of the ω-limit set such that (u(t), v(t)) ∈ B((u, v), σ) and σ is such
that the Simon-�Lojasiewicz inequality holds. At this point, the rest of the proof follows by
estimating E′(u, v) as in [6]. More precisely, taking y = −w in (2.18) and y = ut and z = vt in
(2.19), we obtain

∂tE = −‖∇w‖2
L2(Ω) − ‖vt‖2

L2(Γ). (6.50)

On the other hand, computing E′(u, v) as in (6.43) and integrating by parts, we have

〈E′(u, v), (k, κ)〉 =
∫

Ω

(−Δu+ f(u))kdx+
∫

Γ

(−ΔΓv + fΓ(v) + λΓv + ∂nu)κdσ (6.51)

for all (k, κ) ∈ V0. Notice that the integrations by parts are rigorous, since (u, v) ∈ H3(Ω) ×
H3(Γ). For the same reason, the system holds in the strong form (1.1)–(1.3). Thus, comparing
terms, we obtain

〈E′(u, v), (k, κ)〉 =
∫

Ω

(w − 〈w〉Ω)kdx−
∫

Γ

vtκdσ. (6.52)

Indeed, we could subtract the mean 〈w〉Ω, since (k, κ) ∈ V0. Thus, using the Poincaré-Wirtinger
inequality and passing to the supremum w.r.t. (k, κ) ∈ V0 of unit norm, we have

‖E′(u, v)‖V′ ≤ c‖E′(u, v)‖H ≤ c(‖∇w‖L2(Ω) + ‖vt‖L2(Γ)). (6.53)
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Next, estimating the right-hand side of (6.49) with the help of (6.50) and (6.53), we infer

−∂t(E(u, v) − E∞)ϑ ≥ ϑ
‖∇w‖2

L2(Ω) + ‖vt‖2
L2(Γ)

Λc(‖∇w‖L2(Ω) + ‖vt‖L2(Γ))

≥ c(ϑ,Λ)(‖∇w‖L2(Ω) + ‖vt‖L2(Γ)) (6.54)

which is intended to hold for any t ≥ t4. Integrating over (t4,+∞) and making a further
comparison of terms in (1.1), we then obtain

ut ∈ L1(t4,+∞;V ′), ∇w ∈ L1(t4,+∞;H), vt ∈ L1(t4,+∞;L2(Γ)) (6.55)

which readily entails that the whole trajectory (u(t), v(t)) converges to a single (u, v) in V′
0×H .

By precompactness, we have more precisely (2.33), which completes the proof.
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